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Abstract. For at least a century academics and governmental researchers have been

developing measures that would aid them in understanding income distributions, their

differences with respect to geographic regions, and changes over time periods. It is a

challenging area due to a number of reasons, one of them being the fact that different

measures, or indices, are needed to reveal different features of income distributions.

Keeping also in mind that the notions of ‘poor’ and ‘rich’ are relative to each other,

M. Zenga has recently proposed a new index of economic inequality. The index is

remarkably insightful and useful, but deriving statistical inferential results has been

a challenge. For example, unlike many other indices, Zenga’s new index does not fall

into the classes of L-, U -, and V -statistics. In this paper we derive desired statistical

inferential results, explore their performance in a simulation study, and then employ

the results to analyze data from the Bank of Italy’s Survey on Household Income and

Wealth.

Keywords and phrases : Zenga index, lower conditional expectation, upper conditional

expectation, confidence interval, Bonferroni curve, Lorenz curve, Vervaat process.

1



2

1. Introduction

Measuring and analyzing incomes, losses, risks and other (non-negative) random

outcomes, which we denote by X, has been an active and fruitful research area, par-

ticularly in the fields of econometrics and actuarial science. The Gini index has been

arguably the most popular measure of inequality, with a number of extensions and

generalizations available in the literature. Recently, keeping in mind that the notions

of ‘poor’ and ‘rich’ are relative to each other, M. Zenga constructed an new index that

reflects this relativity. We shall next introduce the Gini and Zenga indices in such a

way that they would be easy to compare and interpret.

To proceed, we need additional notation. Let F (x) denote the cumulative distri-

bution function (cdf) of X, and let F−1(s) denote the corresponding quantile func-

tion. Furthermore, let μF denote the mean of X. In terms of the Lorenz curve

LF (p) = μ−1
F

∫ p

0
F−1(s)ds (see Pietra, 1915), the Gini index can be written as follows:

GF =

∫ 1

0

(
1 − LF (p)

p

)
ψ(p)dp,

where ψ(p) = 2p, which is a density function on [0, 1]. Given the usual econometric

interpretation of the Lorenz curve LF (p), the function

GF (p) = 1 − LF (p)

p

is a relative measure of inequality (see Gini, 1914), called the Gini curve. Indeed,

LF (p)/p is the ratio between 1) the mean income of the poorest p × 100 % of the

population and 2) the mean income of the entire population; the closer to each other

these two means are, the lower is the inequality. Zenga’s (2007) index of inequality is

defined by the formula

ZF =

∫ 1

0

ZF (p)dp, (1.1)

where

ZF (p) = 1 − LF (p)

p
· 1 − p

1 − LF (p)
, (1.2)

called the Zenga curve, measures the inequality between 1) the poorest p×100 % of the

population and 2) the richer remaining (i.e., (1−p)×100 %) part of it by comparing the

mean incomes of these two disjoint and exhaustive sub-populations. We shall elaborate

on this interpretation later, in Section 5 below.

Both the Gini and Zenga indices are averages of point inequality measures, that is,

of the Gini and Zenga curves, respectively, but while in the case of the Gini index

the weight (i.e., density) function ψ(p) = 2p is employed, in the case of the Zenga
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index the uniform weight (i.e., density) function is used. As a consequence, the Gini

index underestimates comparisons between the very poor and the whole population and

emphasizes comparisons which involve almost identical population subgroups. From

this point of view, the Zenga index is more impartial: it is based on all comparisons

between complementary disjoint population subgroups and gives the same weight to

each comparison. Hence, with the same sensibility, the index detects all deviations

from equality in any part of the distribution.

To illustrate the Gini curve GF (p) and its weighted version gF (p) = GF (p)ψ(p), and

to also facilitate their comparisons with the Zenga curve ZF (p), we choose the Pareto

distribution

F (x) = 1 −
(x0

x

)θ

, x > x0, (1.3)

where x0 > 0 and θ > 0 are parameters. (We shall use this distribution in our simula-

tion study later in this paper as well, setting x0 = 1 and θ = 2.06.) Corresponding to

this distribution, the Lorenz curve is equal to LF (p) = 1− (1− p)1−1/θ (see Gastwirth,

1971), and so the Gini curve is equal to GF (p) = ((1−p)1−1/θ−(1−p))/p. In Figure 1.1

(left panel) we have depicted the Gini and weighted Gini curves. The corresponding

Zenga curve is equal to ZF (p) = (1− (1− p)1/θ)/p and is depicted in Figure 1.1 (right

panel) alongside the Gini curve GF (p) for an easy comparison.
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Figure 1.1. The Gini curve GF (p) (dashed; both panels), the weighted

Gini curve gF (p) (solid; left panel), and the Zenga curve ZF (p) (solid;

right panel) in the Pareto case with x0 = 1 and θ = 2.06.

The rest of this paper is organized as follows. In Section 2 we define two estimators

of the Zenga index and develop statistical inferential results. In Section 3 we present

results of a simulation study, which explores the empirical performance of the two

empirical Zenga estimators, including their coverage accuracy and length of several

types of confidence intervals. In Section 4 we present an analysis of data from the

Bank of Italy’s Survey on Household Income and Wealth. In Section 5 we further
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contribute to understanding of the Zenga index by relating it to lower and upper

conditional expectations. In Section 6 we provide a theoretical justification of the

aforementioned two empirical Zenga estimators. In Section 7 we justify the definitions

of several variance estimators as well as their uses in constructing confidence intervals.

In Section 8 we prove Theorem 2.1 of Section 2, which is the main technical result of

the present paper. Some technical lemmas and their proofs are relegated to Section 9.

2. Estimators and statistical inference

Let X1, . . . , Xn be independent copies of a random variable X ≥ 0, which may, for

example, represent incomes in the context of economic inequality, or risks and losses

in the insurance context. We use two non-parametric estimators of the Zenga index.

The first one (see Greselin and Pasquazzi, 2009) is given by the formula

Ẑn = 1 − 1

n

n−1∑
i=1

i−1
∑i

k=1 Xk:n

(n − i)−1
∑n

k=i+1 Xk:n

, (2.1)

where X1:n ≤ · · · ≤ Xn:n are the order statistics of X1, . . . , Xn. With X denoting the

sample mean of X1, . . . , Xn, the second estimator of the Zenga index is given by the

formula

Zn = −
n∑

i=2

∑i−1
k=1 Xk:n − (i − 1)Xi:n∑n

k=i+1 Xk:n + iXi:n

log

(
i

i − 1

)

+
n−1∑
i=1

(
X

Xi:n

− 1 −
∑i−1

k=1 Xk:n − (i − 1)Xi:n∑n
k=i+1 Xk:n + iXi:n

)
log

(
1 +

Xi:n∑n
k=i+1 Xk:n

)
. (2.2)

The two estimators Ẑn and Zn are asymptotically equivalent. However, despite the

fact that the estimator Zn is obviously more complex, it is more convenient to work

with when establishing asymptotic results, as we shall see later in this paper.

Unless explicitly stated otherwise, our following statistical inferential results are de-

rived under the assumption that data are outcomes of independent and identically

distributed (i.i.d.) random variables. It should be noted, however, that – as is the

case in many surveys concerning income analysis – households are selected using com-

plex sampling designs. In such cases statistical inferential tools and results are quite

complex. To alleviate the difficulties, in the present paper we follow the commonly

accepted practice and treat income data as if they were i.i.d. Certainly, extensions of

our results to complex sampling designs would be an interesting and worthwhile con-

tribution, though it would certainly be considerably more involved than the current

one, which is already quite complex as we shall see later in the paper.
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Unless explicitly stated otherwise, throughout we assume that the cdf F of X is a

continuous function. We note that continuous cdf’s are natural choices when modeling

income distributions, insurance risks and losses (see, e.g., Kleiber and Kotz, 2003).

Theorem 2.1. If the moment E[X2+α] is finite for some α > 0, then we have the

asymptotic representation

√
n (Zn − ZF ) =

1√
n

n∑
i=1

h(Xi) + oP(1), (2.3)

where

h(Xi) =

∫ ∞

0

(
1{Xi ≤ x} − F (x)

)
wF (F (x))dx

with the weight function

wF (t) = − 1

μF

∫ t

0

(
1

p
− 1

)
LF (p)

(1 − LF (p))2
dp +

1

μF

∫ 1

t

(
1

p
− 1

)
1

1 − LF (p)
dp.

In view of Theorem 2.1, the asymptotic distribution of
√

n (Zn − ZF ) is centered

normal with the variance σ2
F = E[h2(X)], which is finite (see Theorem 7.1) and can be

rewritten as follows:

σ2
F =

∫ ∞

0

∫ ∞

0

(
min{F (x), F (y)} − F (x)F (y)

)
wF (F (x))wF (F (y))dxdy (2.4)

or, alternatively,

σ2
F =

∫ 1

0

( ∫
[0,u)

twF (t)dF−1(t) −
∫

[u,1)

(1 − t)wF (t)dF−1(t)

)2

du. (2.5)

The latter expression is particularly convenient when working with distributions for

which the first derivative (when it exists) of F−1(t) is a simple function, as is the case

for a large class of distributions (see, e.g., Karian and Dudewicz, 2000).

Irrespectively of what expression for the variance σ2
F we use, it is unknown since

the cdf F (x) is unknown. Replacing the cdf F (x) on the right-hand side of equation

(2.4) by the empirical cdf Fn(x) = n−1
∑n

i=1 1{Xi ≤ x} where 1 denotes the indicator

function, we obtain the following variance estimator (see Theorem 7.2 for details):

S2
X,n =

n−1∑
k=1

n−1∑
l=1

(
min{k, l}

n
− k

n

l

n

)

× wX,n

(
k

n

)
wX,n

(
l

n

)
(Xk+1:n − Xk:n)(Xl+1:n − Xl:n), (2.6)
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where

wX,n(k/n) = −
k∑

i=1

IX,n(i) +
n∑

i=k+1

JX,n(i)

with the following expressions for the summands IX,n(i) and JX,n(i). First, we have

IX,n(1) = −
∑n

k=2 Xk:n − (n − 1)X1:n

(
∑n

k=1 Xk:n) (
∑n

k=2 Xk:n)
+

1

X1,n

log

(
1 +

X1:n∑n
k=2 Xk:n

)
. (2.7)

Furthermore, for every i = 2, . . . , n − 1, we have

IX,n(i) =n

∑i−1
k=1 Xk:n − (i − 1)Xi:n( ∑n

k=i+1 Xk:n + iXi:n

)2 log

(
i

i − 1

)

− (
∑n

k=i+1 Xk:n − (n − i)Xi:n) (
∑n

k=1 Xk:n)

(
∑n

k=i+1 Xk:n + iXi:n) (
∑n

k=i+1 Xk:n) (
∑n

k=i Xk:n)

+

(
1

Xi:n

+ n

∑i−1
k=1 Xk:n − (i − 1)Xi:n( ∑n

k=i+1 Xk:n + iXi:n

)2

)
log

(
1 +

Xi:n∑n
k=i+1 Xk:n

)
(2.8)

and

JX,n(i) =
n∑n

k=i+1 Xk:n + iXi:n

log

(
i

i − 1

)

−
∑n

k=i+1 Xk:n − (n − i)Xi:n

Xi:n(
∑n

k=i+1 Xk:n + iXi:n)
log

(
1 +

Xi:n∑n
k=i+1 Xk:n

)
. (2.9)

Finally,

JX,n(n) =
1

Xn,n

log

(
n

n − 1

)
. (2.10)

With the just defined estimator S2
X,n of the variance σ2

F , we have the asymptotic result

√
n (Zn − ZF )

SX,n

→d N (0, 1). (2.11)

We shall next discuss variants of statement (2.11) in the case of two populations, when

samples are independent and also when paired.

We start with the independent case. Namely, let the random variables X1, . . . , Xn ∼
F and Y1, . . . , Ym ∼ H be independent within and between the two samples. Just like

in the case of F (x), we assume that the cdf H(x) is continuous and E[Y 2+α] < ∞ for

some α > 0. Furthermore, we assume that the sample sizes n and m are comparable

in the sense that there exists η ∈ (0, 1) such that

m

n + m
→ η ∈ (0, 1)

when n and m tend to infinity. Then from statement (2.3) and its counterpart for

Yi ∼ H we have that
√

nm/(n + m) ((ZX,n − ZY,m) − (ZF − ZH)) is asymptotically
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normal with mean zero and the variance ησ2
F + (1 − η)σ2

H . To estimate the variances

σ2
F and σ2

H , we use S2
X,n and S2

Y,n, respectively, and obtain the following result:

(ZX,n − ZY,m) − (ZF − ZH)√
1
n
S2

X,n + 1
m

S2
Y,m

→d N (0, 1). (2.12)

Consider now the case when the two samples X1, . . . , Xn ∼ F and Y1, . . . , Ym ∼ H

are paired. Thus, we have m = n and know that the pairs (X1, Y1), . . . , (Xn, Yn)

are independent and identically distributed, but nothing is assumed about the joint

distribution of (X,Y ). As before, the cdf’s F (x) and H(y) are continuous and have

finite moments of the order 2+α for some α > 0. From statement (2.3) and its analog

for Y we have that
√

n ((ZX,n − ZY,n) − (ZF − ZH)) is asymptotically normal with

mean zero and the variance σ2
F,H = E[(h(X) − h(Y ))2]. The variance can of course be

written as σ2
F − 2E[h(X)h(Y )] + σ2

H . With the already constructed estimators S2
X,n

and S2
Y,n, we are only left to construct an estimator for E[h(X)h(Y )]. (Note that when

X and Y are independent, then P[X ≤ x, Y ≤ y] = F (x)H(y) and the expectation

E[h(X)h(Y )] vanishes.) To this end, we write the equation

E[h(X)h(Y )] =

∫ ∞

0

∫ ∞

0

(
P[X ≤ x, Y ≤ y] − F (x)H(y)

)
wF (F (x))wH(H(y))dxdy.

Replacing the cdf’s F (x) and H(y) everywhere on the right-hand side of the above

equation by their respective estimators Fn(x) and Hn(y), we have (see Theorem 7.3 for

details)

SX,Y,n =
n−1∑
k=1

n−1∑
l=1

(
1

n

k∑
i=1

1{Y(i,n) ≤ Yl:n} − k

n

l

n

)

× wX,n

(
k

n

)
wY,n

(
l

n

)
(Xk+1:n − Xk:n)(Yl+1:n − Yl:n), (2.13)

where Y(1,n), . . . , Y(n,n) are the induced (by X1, . . . , Xn) order statistics of Y1, . . . , Yn.

(Note that when Y ≡ X, then Y(i,n) = Yi:n and the sum
∑k

i=1 1{Y(i,n) ≤ Yl:n} is

equal to min{k, l}; hence, estimator (2.13) coincides with estimator (2.6) as expected.)

Consequently, S2
X,n − 2SX,Y,n + S2

Y,n is an empirical estimator of σ2
F,H and so

√
n (ZX,n − ZY,n) − (ZF − ZH)√

S2
X,n − 2SX,Y,n + S2

Y,n

→d N (0, 1). (2.14)

We conclude this section with a note that the above established asymptotic results

(2.11), (2.12), and (2.14) are what we typically need when dealing with two populations,

or two time periods, but extensions to more populations and/or time periods would be

a worthwhile contribution.
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3. A simulation study

We investigate the numerical performance of the estimators Ẑn and Zn by simulating

data from Pareto distribution (1.3) with the parameters x0 = 1 and θ = 2.06, which

give the value ZF = 0.6000 that we approximately see in real income distributions. Fol-

lowing Davison and Hinkley (1997, Chapter 5), we compute four types of confidence

intervals: normal, percentile, BCa, and t-bootstrap. For normal and studentized boot-

strap confidence intervals we estimate the variance using empirical influence values.

For the estimator Zn, the influence values h(Xi) have been obtained from Theorem

2.1, and those for the estimator Ẑn using numerical differentiation.

In Table 3.1 we report coverage percentages of 10, 000 confidence intervals, for

Table 3.1. Coverage proportions of confidence intervals from the Pareto

parent distribution with x0 = 1 and θ = 2.06 (ZF = 0.6).

Ẑn Zn

——————————————– ——————————————–
0.9000 0.9500 0.9750 0.9900 0.9000 0.9500 0.9750 0.9900

n Normal confidence intervals
200 0.7915 0.8560 0.8954 0.9281 0.7881 0.8527 0.8926 0.9266
400 0.8059 0.8705 0.9083 0.9409 0.8047 0.8693 0.9078 0.9396
800 0.8256 0.8889 0.9245 0.9514 0.8246 0.8882 0.9237 0.9503

n Percentile confidence intervals
200 0.7763 0.8326 0.8684 0.9002 0.7629 0.8190 0.8567 0.8892
400 0.8004 0.8543 0.8919 0.9218 0.7934 0.8487 0.8864 0.9179
800 0.8210 0.8777 0.9138 0.9415 0.8168 0.8751 0.9119 0.9393

n BCa confidence intervals
200 0.8082 0.8684 0.9077 0.9383 0.8054 0.867 0.9047 0.9374
400 0.8205 0.8863 0.9226 0.9531 0.8204 0.886 0.9212 0.9523
800 0.8343 0.8987 0.9331 0.9634 0.8338 0.8983 0.9323 0.9634

n t-boostrap confidence intervals
200 0.8475 0.9041 0.9385 0.9658 0.8485 0.9049 0.9400 0.9675
400 0.8535 0.9124 0.9462 0.9708 0.8534 0.9120 0.9463 0.9709
800 0.8580 0.9168 0.9507 0.9758 0.8572 0.9169 0.9504 0.9754

each of the four types: normal, percentile, BCa, and t-bootstrap. Bootstrap based

approximations have been obtained from 9999 resamples of the original samples. As

suggested by Efron (1987), we have approximated the acceleration constant for the BCa
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confidence intervals by one-sixth times the standardized third moment of the influence

values. In Table 3.2 we report summary statistics concerning the size of the 10, 000

confidence intervals. As expected, the confidence intervals based on Ẑn and Zn exhibit

similar characteristics. We observe from Table 3.1 that all the confidence intervals suffer

from some undercoverage. For example, about 97.5% of the studentized bootstrap

confidence intervals with 0.99 nominal confidence level contain the true value of the

Zenga index. It should be noted that the higher coverage accuracy of the studentized

bootstrap confidence intervals (when compared to other ones) comes at the cost of

their larger sizes, as seen in Table 3.2. Some of the studentized bootstrap confidence

Table 3.2. Size of the 95% asymptotic confidence intervals from the

Pareto parent distribution with x0 = 1 and θ = 2.06 (ZF = 0.6).

Ẑn Zn

——————————– ——————————–
min mean max min mean max

n Normal confidence intervals
200 0.0680 0.1493 0.7263 0.0674 0.1500 0.7300
400 0.0564 0.1164 0.7446 0.0563 0.1167 0.7465
800 0.0462 0.0899 0.6528 0.0462 0.0900 0.6535

n Percentile confidence intervals
200 0.0673 0.1456 0.4751 0.0667 0.1462 0.4782
400 0.0561 0.1140 0.4712 0.0561 0.1143 0.4721
800 0.0467 0.0883 0.4110 0.0468 0.0884 0.4117

n BCa confidence intervals
200 0.0668 0.1491 0.4632 0.0661 0.1497 0.4652
400 0.0561 0.1183 0.4625 0.0558 0.1186 0.4629
800 0.0465 0.0925 0.4083 0.0467 0.0927 0.4085

n t-boostrap confidence intervals
200 0.0677 0.2068 2.4307 0.0680 0.2099 2.5148
400 0.0572 0.1550 2.0851 0.0573 0.1559 2.1009
800 0.0473 0.1159 2.2015 0.0474 0.1162 2.2051

intervals extend beyond the range of the Zenga index, but this can easily be fixed by

taking the minimum between the currently recorded upper bounds and 1, which is

the upper bound of the Zenga index ZF for every cdf F . We note that for the BCa

confidence intervals, the number of bootstrap replications of the original sample has to
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be increased beyond 9, 999 if the nominal confidence level is high. Indeed, for samples

of size 800, it turns out that the upper bound of 1, 598 (out of 10, 000) of the BCa

confidence intervals based on Ẑn and with 0.99 nominal confidence level is given by

the largest order statistics of the bootstrap distribution. For the confidence intervals

based on Zn, the corresponding figure is 1, 641.

4. An analysis of Italian income data

Here we use the Zenga index to analyze data from the Bank of Italy’s Survey on

Household Income and Wealth. The sample of the 2006 wave of this survey contain

7, 768 households, with 3, 957 of them being panel households. For detailed informa-

tion on the survey, we refer to the Bank of Italy (2006) publication. In order to treat

data correctly in the case of different household sizes, we work with equivalent incomes,

which we have obtained by dividing the total household income by an equivalence coef-

ficient, which is the sum of weights assigned to each household member. Following the

modified OECD (Organization for Economic Cooperation and Developement) equiva-

lence scale, we give weight 1 to the household head, 0.5 to the other adult members of

the household, and 0.3 to the members under 14 years of age.

In Table 4.1 we report the values of Ẑn and Zn according to the geographic area of

households, and we also report confidence intervals for ZF based on the two estimators.

We note that two households in the sample had negative incomes in 2006 and so

we have not included them in our computations. Consequently, the point estimates

of ZF are based on 7, 766 equivalent incomes with values Ẑn = 0.6470 and Zn =

0.6464. As pointed out by Maasoumi (1994), however, good care is needed when

comparing point estimates of inequality measures. Indeed, direct comparison of the

point estimates corresponding to the five geographical areas of Italy would lead us to

the erroneous conclusion that the inequality is higher in the central and southern areas

when compared to the northern area and the islands. But as we glean from pairwise

comparisons of the confidence intervals, only the differences between the estimates

corresponding to the northwestern and southern areas and perhaps to the islands and

the southern area may be deemed statistically significant.

Moreover, we have used the 3, 957 panel households to check whether the Zenga

inequality index has changed from the year 2004 to 2006. Table 4.2 reports the values

of Zn based on the panel households for these two years, and the 95% confidence

intervals for the difference between the values of the Zenga index for the years 2006

and 2004. These computations have been based on formula (2.14). Removing the
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Table 4.1. Confidence intervals for ZF in the 2006 Italian income distribution

Ẑn estimator Zn estimator
———————————————– ———————————————–

95% 99% 95% 99%
——————– ——————– ——————– ——————–
Lower Upper Lower Upper Lower Upper Lower Upper

Northwest: n = 1988, Ẑn = 0.5953, Zn = 0.5948
Normal 0.5775 0.6144 0.5717 0.6202 0.5771 0.6138 0.5713 0.6196
Student 0.5786 0.6168 0.5737 0.6240 0.5791 0.6172 0.5748 0.6243
Percent 0.5763 0.6132 0.5710 0.6193 0.5758 0.6124 0.5706 0.6185
BCa 0.5789 0.6160 0.5741 0.6234 0.5785 0.6156 0.5738 0.6226

Northeast: n = 1723, Ẑn = 0.6108, Zn = 0.6108
Normal 0.5849 0.6393 0.5764 0.6478 0.5849 0.6393 0.5764 0.6479
Student 0.5874 0.6526 0.5796 0.6669 0.5897 0.6538 0.5836 0.6685
Percent 0.5840 0.6379 0.5773 0.6476 0.5839 0.6379 0.5772 0.6475
BCa 0.5894 0.6478 0.5841 0.6616 0.5894 0.6479 0.5842 0.6615

Center: n = 1574, Ẑn = 0.6316, Zn = 0.6316
Normal 0.5957 0.6708 0.5839 0.6826 0.5956 0.6708 0.5838 0.6827
Student 0.5991 0.6991 0.5897 0.7284 0.6036 0.7016 0.5977 0.7311
Percent 0.5948 0.6689 0.5864 0.6818 0.5948 0.6688 0.5863 0.6818
BCa 0.6024 0.6850 0.5963 0.7021 0.6024 0.6850 0.5963 0.7020

South: n = 1620, Ẑn = 0.6557, Zn = 0.6543
Normal 0.6358 0.6770 0.6293 0.6834 0.6346 0.6756 0.6282 0.6820
Student 0.6371 0.6805 0.6313 0.6902 0.6371 0.6796 0.6320 0.6900
Percent 0.6351 0.6757 0.6286 0.6828 0.6337 0.6742 0.6276 0.6812
BCa 0.6375 0.6793 0.6325 0.6888 0.6363 0.6778 0.6315 0.6873

Islands: n = 861, Ẑn = 0.6109, Zn = 0.6095
Normal 0.5918 0.6317 0.5856 0.6380 0.5910 0.6302 0.5848 0.6364
Student 0.5927 0.6339 0.5864 0.6405 0.5928 0.6330 0.5874 0.6401
Percent 0.5897 0.6297 0.5839 0.6360 0.5885 0.6275 0.5831 0.6340
BCa 0.5923 0.6324 0.5868 0.6414 0.5914 0.6307 0.5860 0.6394

Italy (entire population): n = 7766, Ẑn = 0.6470, Zn = 0.6464
Normal 0.6346 0.6596 0.6307 0.6636 0.6341 0.6591 0.6302 0.6630
Student 0.6359 0.6629 0.6327 0.6686 0.6358 0.6627 0.6331 0.6683
Percent 0.6348 0.6597 0.6314 0.6640 0.6343 0.6592 0.6309 0.6635
BCa 0.6363 0.6619 0.6334 0.6676 0.6358 0.6613 0.6330 0.6669
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Table 4.2. 95% confidence intervals for the difference of the Zenga

indices between 2006 and 2004 in the Italian income distribution

Northwest (926 pairs) Northest (841 pairs) Center (831 pairs)
Z

(2006)
n 0.5797 Z

(2006)
n 0.6199 Z

(2006)
n 0.5921

Z
(2004)
n 0.5955 Z

(2004)
n 0.6474 Z

(2004)
n 0.5766

Difference -0.0158 Difference -0.0275 Difference 0.0155

Lower Upper Lower Upper Lower Upper
Normal -0.0426 0.0102 -0.0573 0.0003 -0.0183 0.0514
Student -0.0463 0.0103 -0.0591 0.0017 -0.0156 0.0644
Percent -0.0421 0.0108 -0.0537 0.0040 -0.0183 0.0505
BCa -0.0440 0.0087 -0.0551 0.0022 -0.0130 0.0593

South (843 pairs) Islands (512 pairs) Italy (3953 pairs)
Z

(2006)
n 0.6200 Z

(2006)
n 0.6179 Z

(2006)
n 0.6362

Z
(2004)
n 0.6325 Z

(2004)
n 0.6239 Z

(2004)
n 0.6485

Difference -0.0125 Difference -0.0060 Difference -0.0123

Lower Upper Lower Upper Lower Upper
Normal -0.0372 0.0129 -0.0333 0.0213 -0.0259 0.0007
Student -0.0365 0.0166 -0.0351 0.0222 -0.0264 0.0013
Percent -0.0372 0.0131 -0.0333 0.0214 -0.0253 0.0016
BCa -0.0351 0.0162 -0.0331 0.0216 -0.0255 0.0013

four households with at least one negative income in the paired sample, we are left

with a total of 3, 953 observations. As before, we see that even though we deal with

large sample sizes, the point estimates alone are not reliable. Indeed, for Italy as the

whole and for all geographic areas except the center, the point estimates suggest that

the Zenga index decreased from the year 2004 to 2006. However, the 95% confidence

intervals in Table 4.2 suggest that this change is not significant.

5. An alternative look at the Zenga index

In various contexts we have notions of rich and poor, large and small, risky and

secure. They divide the underlying population into two parts, which we can view as

sub-populations. The quantile

F−1(p) = inf{x : F (x) ≥ p}

for some p ∈ (0, 1) usually serves as a boundary separating the two sub-populations. For

example, we may define ‘rich’ if X > F−1(p) and ‘poor’ if X ≤ F−1(p). Calculating the
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mean value of the former sub-population gives rise to the upper conditional expectation

E[X|X > F−1(p)], which is known in the actuarial risk theory as the conditional tail

expectation. Calculating the mean value of the latter sub-population gives rise to the

lower conditional expectation E[X|X ≤ F−1(p)], which is known in the econometric

literature as the absolute Bonferroni curve, as a function of p. The ratio

RF (p) =
E[X|X ≤ F−1(p)]

E[X|X > F−1(p)]

of the lower and upper conditional expectations takes on values in the interval [0, 1],

as we show in the next lemma.

Lemma 5.1. For every p ∈ (0, 1), we have that RF (p) ∈ [0, 1].

Proof. We rewrite the ratio RF (p) as follows:

RF (p) =
E[Xw1(X)]

E[w1(X)]

/ E[Xw2(X)]

E[w2(X)]
, (5.1)

where w1(x) = −1{x ≤ F−1(p)} and w2(x) = 1{x > F−1(p)}. Both functions w1(x)

and w2(x) are non-decreasing, and so by Lemma 3 on p. 1140 of Lehmann (1966) we

have that E[Xw1(X)] ≥ E[X]E[w1(X)] and E[Xw2(X)] ≥ E[X]E[w2(X)]. Hence, the

ratio E[Xw1(X)]/E[w1(X)] is not larger than E[X] (note that E[w1(X)] is negative)

and the ratio E[Xw2(X)]/E[w2(X)] is not smaller than E[X]. Consequently, the right-

hand side of equation (5.1) does not exceed 1. This proves Lemma 5.1. �

When X is a constant, which can be interpreted as ‘egalitarian’ case, then RF (p) is

equal to 1. The ratio RF (p) is equal to 0 for all p ∈ (0, 1) when the lower conditional

expectation is equal to 0 for all p ∈ (0, 1) which means extreme inequality in the sense

that, loosely speaking, there is only one individual who possesses the entire wealth.

Our wish to associate the egalitarian case with 0 and the extreme inequality with 1

leads to curve 1 − RF (p), which coincides with the Zenga curve (see equation (1.2))

when the cdf F is continuous. The area

1 −
∫ 1

0

E[X|X ≤ F−1(p)]

E[X|X > F−1(p)]
dp

(
= ZF when F is continuous

)
(5.2)

beneath the curve 1−RF (p) is always in the interval [0, 1] as follows from Lemma 5.1.

Quantity (5.2) is a measure of inequality and coincides with the earlier defined Zenga

index when the cdf F is continuous, which we assume throughout the paper. Note

that under this assumption, the lower and upper conditional expectations are equal
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to the absolute Bonferroni curve p−1ALF (p) and the dual absolute Bonferroni curve

(1 − p)−1(μF − ALF (p)), respectively, where

ALF (p) =

∫ p

0

F−1(t)dt

is the absolute Lorenz curve. This leads us to the expression of the Zenga index ZF

given by equation (1.1), which we rewrite in terms of the just introduced absolute

Lorenz curve as follows:

ZF = 1 −
∫ 1

0

(
1

p
− 1

)
ALF (p)

μF − ALF (p)
dp. (5.3)

We shall extensively use expression (5.3) in the proofs below.

6. A closer look at the two Zenga estimators

Since samples are ‘discrete populations’, equations (5.2) and (5.3) lead to slightly

different empirical estimators of ZF . If we choose equation (1.1), then we arrive at the

estimator Ẑn, as seen from the proof of the following theorem.

Theorem 6.1. The empirical Zenga index Ẑn is an empirical estimator of ZF .

Proof. Let U be a uniform on [0, 1] random variable independent of X. The cdf of

F−1(U) is F . Hence, we have the following equations:

ZF = 1 − EU

(
EX [X|X ≤ F−1(U)]

EX [X|X > F−1(U)]

)

= 1 −
∫

(0,∞)

1 − F (x)

F (x)

E[X1{X ≤ x}]
E[X1{X > x}]dF (x)

= 1 −
∫

(0,∞)

1 − F (x)

F (x)

∫
(0,x]

ydF (y)∫
(x,∞)

ydF (y)
dF (x). (6.1)

Replacing every F on the right-hand side of equation (6.1) by Fn, we obtain

1 − 1

n

n−1∑
i=1

1 − Fn(Xi:n)

Fn(Xi:n)

∑n
k=1 Xk:n1{Xk:n ≤ Xi:n}∑n
k=1 Xk:n1{Xk:n > Xi:n} ,

which simplifies to

1 − 1

n

n−1∑
i=1

1 − i/n

i/n

∑i
k=1 Xk:n∑n

k=i+1 Xk:n

.

This is the estimator Ẑn. �
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If we choose equation (5.3) as the starting point for constructing an estimator for

ZF , then we replace the quantile F−1(p) by its empirical counterpart

F−1
n (p) = inf{x : Fn(x) ≥ p}.

= Xi:n when p ∈ (
(i − 1)/n, i/n

]
in the definition of ALF (p), which gives us the empirical absolute Lorenz curve ALn(p),

and then we replace each ALF (p) on the right-hand side of equation (5.3) by the just

constructed ALn(p). (Note that μF = ALF (1) ≈ ALn(1) = X̄.) This gives us the

empirical Zenga index Zn as seen from the proof of the following theorem.

Theorem 6.2. The empirical Zenga index Zn is an estimator of ZF .

Proof. By construction, the estimator Zn is given by the equation:

Zn = 1 −
∫ 1

0

(
1

p
− 1

)
ALn(p)

X − ALn(p)
dp. (6.2)

Hence, the proof of the lemma reduces to verifying that the right-hand sides of equations

(2.2) and (6.2) coincide. For this, we split the integral in equation (6.2) into the sum of

integrals over the intervals ((i− 1), i/n) for i = 1, . . . , n. For every p ∈ ((i− 1)/n, i/n),

we have ALn(p) = Ci,n + pXi:n, where

Ci,n =
1

n

i−1∑
k=1

Xk:n − i − 1

n
Xi:n. (6.3)

Hence, equation (6.2) can be rewritten as Zn =
∑n

i=1 ζi,n, where

ζi,n =
1

n
−

∫ i/n

(i−1)/n

(
1

p
− 1

)
Λi,n + p

Ψi,n − p
dp

with

Λi,n =
Ci,n

Xi:n

and Ψi,n =
X − Ci,n

Xi:n

. (6.4)

Consider the case i = 1. We have C1,n = 0 and thus Λ1,n = 0, which implies

ζ1,n =

(
X

X1:n

− 1

)
log

(
1 +

X1:n∑n
k=2 Xk:n

)
.

Next, consider the case i = n. We have Cn,n = X − Xn:n and thus Ψn,n = 1, which

implies

ζn,n =

(
1 − X

Xn:n

)
log

(
n

n − 1

)
.
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When 2 ≤ i ≤ n − 1, then the integrand in the definition of ζi,n does not have any

singularity, since Ψi,n > i/n due to
∑n

k=i+1 Xk:n > 0 almost surely. Hence, after simple

integration we have that, for i = 2, . . . , n − 1,

ζi,n =
(i − 1)Xi:n − ∑i−1

k=1 Xk:n∑n
k=i+1 Xk:n + iXi:n

log

(
i

i − 1

)

+

(
X

Xi:n

− 1 +
(i − 1)Xi:n − ∑i−1

k=1 Xk:n∑n
k=i+1 Xk:n + iXi:n

)
log

(
1 +

Xi:n∑n
k=i+1 Xk:n

)
.

With the above formulas for ζi,n we easily check that the sum
∑n

i=1 ζi,n is equal to the

right-hand side of equation (2.2). This completes the proof of Theorem 6.2. �

7. A closer look at variances

Following the formulation of Theorem 2.1 we claimed that the asymptotic distribu-

tion of
√

n (Zn − ZF ) is centered normal with the finite variance σ2
F = E[h2(X)]. The

following theorem provides a proof of this claim.

Theorem 7.1. When E[X2+α] < ∞ for some α > 0, then n−1/2
∑n

i=1 h(Xi) converges

in distribution to the centered normal random variable

Γ =

∫ ∞

0

B(F (x))wF (F (x))dx,

where B is the Brownian bridge on the interval [0, 1]. The variance of Γ is finite and

equal to σ2
F .

Proof. Note that n−1/2
∑n

i=1 h(Xi) can be written as
∫ ∞
0

en(F (x))wF (F (x))dx, where

en(p) =
√

n(En(p) − p) is the empirical process based on the uniform on [0, 1] random

variables Ui = F (Xi), i = 1, . . . , n. We shall next show that∫ ∞

0

en(F (x))wF (F (x))dx →d

∫ ∞

0

B(F (x))wF (F (x))dx. (7.1)

The proof is based on the well known fact that, for every ε > 0,{
en(p)

p1/2−ε(1 − p)1/2−ε
, 0 ≤ p ≤ 1

}
⇒

{ B(p)

p1/2−ε(1 − p)1/2−ε
, 0 ≤ p ≤ 1

}
.

Hence, in order to prove statement (7.1), we only need to check that the integral∫ ∞

0

F (x)1/2−ε(1 − F (x))1/2−εwF (F (x))dx (7.2)
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is finite. For this, by considering the two cases p ≤ 1/2 and p > 1/2 separately, we

easily show that |wF (p)| ≤ c + c log(1/p) + c log(1/(1 − p)). Hence, for every ε > 0,

there exists a constant c < ∞ such that, for all p ∈ (0, 1),

|wF (p)| ≤ c

pε(1 − p)ε
. (7.3)

Bound (7.3) implies that integral (7.2) is finite provided that
∫ ∞

0
(1 − F (x))1/2−2εdx

is finite, which is true since the moment E[X2+α] is finite for some α > 0 and the

parameter ε > 0 can be chosen as small as desired. Hence, n−1/2
∑n

i=1 h(Xi) →d Γ

with Γ denoting the integral on the right-hand side of statement (7.1). The random

variable Γ is normal because the Brownian bridge is a Gaussian process. Furthermore,

Γ has mean zero because B(p) has mean zero for every p ∈ [0, 1]. The variance of Γ is

equal to σ2
F because E[B(p)B(q)] = min{p, q} − pq for all p, q ∈ [0, 1]. We are left to

show that E[Γ2] < ∞. For this, we write the bound:

E[Γ2] =

∫ ∞

0

∫ ∞

0

E[B(F (x))B(F (y))]wF (F (x))wF (F (y))dxdy

≤
( ∫ ∞

0

√
E[B2(F (x))] wF (F (x))dx

)2

. (7.4)

Since E[B2(F (x))] = F (x)(1 − F (x)), the finiteness of the integral on the right-hand

side of bound (7.4) follows from the earlier proved statement that integral (7.2) is finite.

Hence, E[Γ2] < ∞, which concludes the proof of Theorem 7.1. �

Theorem 7.2. The empirical variance S2
X,n is an estimator of σ2

F .

Proof. We construct an empirical estimator for σ2
F by replacing every F (x) on the

right-hand side of equation (2.4) by the empirical Fn(x). In particular, we replace the

function wF (t) by its empirical version

wX,n(t) = −
∫ t

0

(
1

p
− 1

)
ALn(p)

(X − ALn(p))2
dp +

∫ 1

t

(
1

p
− 1

)
1

X − ALn(p)
dp.

We denote the just defined estimator of σ2
F by S2

X,n, and the rest of the proof consists

of showing that the estimator S2
X,n coincides with the one defined by equation (2.6).

Note that min{Fn(x), Fn(y)} − Fn(x)Fn(y) = 0 when x ∈ [0, X1:n) ∪ [Xn:n,∞) and/or

y ∈ [0, X1:n) ∪ [Xn:n,∞). Hence, the just defined S2
X,n is equal to∫ Xn:n

X1:n

∫ Xn:n

X1:n

(
min{Fn(x), Fn(y)} − Fn(x)Fn(y)

)
wX,n(Fn(x))wX,n(Fn(y))dxdy.
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Since Fn(x) = k/n when x ∈ [Xk:n, Xk+1:n), we therefore have that

S2
X,n =

n−1∑
k=1

n−1∑
l=1

(
min{k, l}

n
− k

n

l

n

)

× wX,n

(
k

n

)
wX,n

(
l

n

)
(Xk+1:n − Xk:n)(Xl+1:n − Xl:n).

Furthermore,

wX,n

(
k

n

)
= −

∫ k/n

0

(
1

p
− 1

)
ALn(p)

(X − ALn(p))2
dp +

∫ 1

k/n

(
1

p
− 1

)
1

X − ALn(p)
dp

= −
k∑

i=1

IX,n(i) +
n∑

i=k+1

JX,n(i), (7.5)

where, using notations (6.3) and (6.4), the summands on the right-hand side of equation

(7.5) are:

IX,n(i) =
1

Xi:n

∫ i/n

(i−1)/n

(
1

p
− 1

)
Λi,n + p

(Ψi,n − p)2
dp

for all i = 1, . . . , n − 1, and

JX,n(i) =
1

Xi:n

∫ i/n

(i−1)/n

(
1

p
− 1

)
1

Ψi,n − p
dp

for all i = 2, . . . , n. When i = 1, then Λi,n = 0, and we easily check the expression for

IX,n(1) given by equation (2.7). When 2 ≤ i ≤ n − 1, then

IX,n(i) =
Λi,n

Xi:nΨ2
i,n

log

(
i

i − 1

)
− (Λi,n + Ψi,n)(Ψi,n − 1)

nXi:nΨi,n

(
Ψi,n − (i − 1)/n

)(
Ψi,n − i/n

)
+

1

Xi:n

(
1 +

Λi,n

Ψ2
i,n

)
log

(
Ψi,n − (i − 1)/n

Ψi,n − i/n

)
,

and, after some algebra, we arrive at the right-hand side of equation (2.8). When

2 ≤ i ≤ n − 1, then we have

JX,n(i) =
1

Xi:nΨi,n

log

(
i

i − 1

)
− 1

Xi:n

(
1 − 1

Ψi,n

)
log

(
Ψi,n − (i − 1)/n

Ψi,n − i/n

)
,

which, after some algebra, becomes equation (2.9). When i = n, then Ψi,n = 1, and

we thus easily see that JX,n(i) is given by equation (2.10). This completes the proof of

Theorem 7.2. �

Theorem 7.3. The empirical mixed moment SX,Y,n is an estimator of E[h(X)h(Y )].
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Proof. We proceed similarly to the proof of Theorem 7.2. We estimate the integrand

P[X ≤ x, Y ≤ y] − F (x)H(y) using

1

n

n∑
i=1

1{Xi ≤ x, Yi ≤ y} − 1

n

n∑
i=1

1{Xi ≤ x} 1

n

n∑
i=1

1{Yi ≤ y}. (7.6)

After some rearrangement of terms, estimator (7.6) becomes

1

n

n∑
i=1

1{Xi:n ≤ x, Y(i,n) ≤ y} − 1

n

n∑
i=1

1{Xi:n ≤ x} 1

n

n∑
i=1

1{Yi:n ≤ y}. (7.7)

When x ∈ [Xk:n, Xk+1:n) and y ∈ [Yl:n, Yl+1:n), then estimator (7.7) is n−1
∑k

i=1 1{Y(i,n) ≤
Yl:n}− (k/n)(l/n), which leads us to the estimator SX,Y,n and thus completes the proof

of Theorem 7.3. �

8. Proof of Theorem 2.1

Throughout the proof we conveniently use the notation AL∗
F (p) for the dual absolute

Lorenz curve
∫ 1

p
F−1(t)dt, which is equal to μF −ALF (p). Likewise, we use the notation

AL∗
n(p) for the empirical dual absolute Lorenz curve. Hence,

√
n (Zn − ZF ) = −√

n

∫ 1

0

(
1

p
− 1

)(
ALn(p)

AL∗
n(p)

− ALF (p)

AL∗
F (p)

)
dp.

Simple algebra gives the representation

√
n (Zn − ZF ) = −√

n

∫ 1

0

(
1

p
− 1

)
ALn(p) − ALF (p)

AL∗
F (p)

dp

+
√

n

∫ 1

0

(
1

p
− 1

)
ALF (p)

AL∗2
F (p)

(AL∗
n(p) − AL∗

F (p))dp

− rn,1 + rn,2, (8.1)

where the two remainder terms are:

rn,1 =
√

n

∫ 1

0

(
1

p
− 1

)
(ALn(p) − ALF (p))

(
1

AL∗
n(p)

− 1

AL∗
F (p)

)
dp

and

rn,2 =
√

n

∫ 1

0

(
1

p
− 1

)
ALF (p)

AL∗
F (p)

(AL∗
n(p) − AL∗

F (p))

(
1

AL∗
n(p)

− 1

AL∗
F (p)

)
dp.

We shall later show (Lemmas 9.1 and 9.2 below) that the remainder terms rn,1 and rn,2

are of the order oP(1). Hence, we proceed with an analysis of the first two terms on

the right-hand side of equation (8.1), for which we use the (general) Vervaat process

Vn(p) =

∫ p

0

(F−1
n (t) − F−1(t))dt +

∫ F−1(p)

0

(Fn(x) − F (x))dx (8.2)
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and its dual version

V ∗
n (p) =

∫ 1

p

(F−1
n (t) − F−1(t))dt +

∫ ∞

F−1(p)

(Fn(x) − F (x))dx. (8.3)

For mathematical and historical details on the Vervaat process, see Zitikis (1998),

Greselin et al. (2009), and references therein. Since
∫ 1

0
(F−1

n (t) − F−1(t))dt = X − μF

and
∫ ∞

0
(Fn(x)−F (x))dx = −(X −μF ), adding the right-hand sides of equations (8.2)

and (8.3) gives the equation V ∗
n (p) = −Vn(p). Hence, whatever upper bound we have

for |Vn(p)|, the same bound also holds for |V ∗
n (p)|. In fact, the absolute value can be

dropped from |Vn(p)| since Vn(p) is non-negative. Among other facts that we know

about Vn(p) is that it does not exceed (p−Fn(F−1(p)))(F−1
n (p)−F−1(p)). Hence, with

en(p) =
√

n(Fn(F−1(p))− p), which is the uniform on [0, 1] empirical process, we have

that

√
nVn(p) ≤ ∣∣en(p)

∣∣∣∣F−1
n (p) − F−1(p)

∣∣. (8.4)

Bound (8.4) implies the following asymptotic representation for the first term on the

right-hand side of equation (8.1):

−√
n

∫ 1

0

(
1

p
− 1

)
ALn(p) − ALF (p)

AL∗
F (p)

dp

=
√

n

∫ 1

0

(
1

p
− 1

)
1

AL∗
F (p)

( ∫ F−1(p)

0

(Fn(x) − F (x))dx

)
dp + OP(rn,3), (8.5)

where

rn,3 =

∫ 1

0

(
1

p
− 1

)
1

AL∗
F (p)

∣∣en(p)
∣∣∣∣F−1

n (p) − F−1(p)
∣∣dp.

We shall later show (Lemma 9.3 below) that rn,3 = oP(1). Furthermore, we have

the following asymptotic representation for the second term on the right-hand side of

equation (8.1):

√
n

∫ 1

0

(
1

p
− 1

)
ALF (p)

AL∗2
F (p)

(AL∗
n(p) − AL∗

F (p))dp

= −√
n

∫ 1

0

(
1

p
− 1

)
ALF (p)

AL∗2
F (p)

( ∫ ∞

F−1(p)

(Fn(x) − F (x))dx

)
dp + OP(rn,4), (8.6)

where

rn,4 =

∫ 1

0

(
1

p
− 1

)
ALF (p)

AL∗2
F (p)

∣∣en(p)
∣∣∣∣F−1

n (p) − F−1(p)
∣∣dp.
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We shall later show (Lemma 9.4 below) that rn,4 = oP(1). Hence, equations (8.1), (8.5)

and (8.6) together with the statements rn,1, . . . , rn,4 = oP(1) imply that

√
n (Zn − ZF ) =

√
n

∫ 1

0

(
1

p
− 1

)
1

AL∗
F (p)

( ∫ F−1(p)

0

(Fn(x) − F (x))dx

)
dp

−√
n

∫ 1

0

(
1

p
− 1

)
ALF (p)

AL∗2
F (p)

( ∫ ∞

F−1(p)

(Fn(x) − F (x))dx

)
dp + oP(1)

=
1√
n

n∑
i=1

h(Xi) + oP(1),

which completes the proof of Theorem 2.1.

9. Negligibility of remainder terms

The following four lemmas establish the earlier noted statements that the remainder

terms rn,1, . . . , rn,4 are of the order oP(1). In the proofs of the lemmas we shall use a

parameter δ ∈ (0, 1/2], possibly different from line to line but never depending on n.

Furthermore, we shall frequently use the fact that

E[Xq] < ∞ =⇒
∫ 1

0

∣∣F−1
n (t) − F−1(t)

∣∣qdt = oP(1). (9.1)

Another technical result that we shall frequently use is the fact that, for any ε > 0 as

small as desired,

sup
x∈R

√
n |Fn(x) − F (x)|

F (x)1/2−ε(1 − F (x))1/2−ε
= OP(1) (9.2)

when n → ∞.

Lemma 9.1. Under the conditions of Theorem 2.1, we have that rn,1 = oP(1).

Proof. We split the remainder term rn,1 =
√

n
∫ 1

0
. . . dp into the sum of r∗n,1(δ) =

√
n

∫ 1−δ

0
. . . dp and r∗∗n,1(δ) =

√
n

∫ 1

1−δ
. . . dp. The lemma follows if:

(1) For every δ > 0, the statement r∗n,1(δ) = oP(1) holds when n → ∞.

(2) r∗∗n,1(δ) = h(δ)OP(1) for a deterministic h(δ) ↓ 0 when δ ↓ 0, where OP(1) does

not depend on δ.

To prove part (1), we first note that when 0 < p < 1−δ, then AL∗
F (p) ≥ ∫ 1

1−δ
F−1(t)dt,

which is positive, and AL∗
n(p) ≥ ∫ 1

1−δ
F−1(t)dt+oP(1) due to statement (9.1) with q = 1.

Hence, we are left to show that, when n → ∞,

√
n

∫ 1−δ

0

1

p
|ALn(p) − ALF (p)| |AL∗

n(p) − AL∗
F (p)|dp = oP(1). (9.3)
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Since AL∗
n(p) − AL∗

F (p) = (X − μF ) − (ALn(p) − ALF (p)), statement (9.3) follows if

√
n |X − μF |

∫ 1−δ

0

1

p
|ALn(p) − ALF (p)|dp = oP(1) (9.4)

and
√

n

∫ 1−δ

0

1

p
|ALn(p) − ALF (p)|2dp = oP(1). (9.5)

We have
√

n |X−μF | = OP(1) and |ALn(p)−ALF (p)| ≤ √
p (

∫ 1

0
|F−1

n (p)−F−1(p)|2dp)1/2.

Since
∫ 1

0
|F−1

n (p) − F−1(p)|2dp = oP(1) and
∫ 1−δ

0
p−1√p dp < ∞, we have statement

(9.4). To prove statement (9.5), we use bound (8.4) and reduce the proof to showing

that
1√
n

∫ 1−δ

0

1

p

∣∣∣∣
∫ F−1(p)

0

√
n (Fn(x) − F (x))dx

∣∣∣∣2dp = oP(1) (9.6)

and
1√
n

∫ 1−δ

0

1

p

∣∣en(p)
∣∣2∣∣F−1

n (p) − F−1(p)
∣∣2dp = oP(1). (9.7)

To prove statement (9.6), we use statement (9.2) and observe that∫ 1−δ

0

1

p

( ∫ F−1(p)

0

F (x)1/2−εdx

)2

dp ≤ c(F, δ)

∫ 1−δ

0

1

p
p1−2εdp < ∞. (9.8)

To prove statement (9.7), we use the uniform on [0, 1] version of statement (9.2) and

Hölder’s inequality, and in this way reduce the proof to showing that

1√
n

( ∫ 1−δ

0

1

p2εa
dp

)1/a( ∫ 1−δ

0

∣∣F−1
n (p) − F−1(p)

∣∣2b
dp

)1/b

= oP(1) (9.9)

for some a, b > 1 such that a−1 + b−1 = 1. We choose a and b as follows. First, since

E[X2+α] < ∞, we set b = (2 + α)/2. Next, we choose ε > 0 on the left-hand side

of statement (9.9) so that 2εa < 1, which holds when ε < α/(4 + 2α) in view of the

equation a−1 + b−1 = 1. Hence, statement (9.9) holds and thus statement (9.7) follows.

This completes the proof of part (1).

To establish part (2), we first estimate |r∗∗n,1(δ)| from above using the bounds AL∗
F (p) ≥

(1 − p)F−1(1/2) and AL∗
n(p) ≥ (1 − p)F−1

n (1/2), which hold since δ ≤ 1/2. Hence,

we have reduced our task to showing that
√

n
∫ 1

1−δ
|ALn(p)−ALF (p)|dp = h(δ)OP(1).

Using the Vervaat process, we reduce the latter statement to showing that the integrals∫ 1

1−δ

( ∫ F−1(p)

0

√
n |Fn(x) − F (x)|dx

)
dp (9.10)

and ∫ 1

1−δ

∣∣en(p)
∣∣∣∣F−1

n (p) − F−1(p)
∣∣dp (9.11)
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are of the order h(δ)OP(1) with possibly different h(δ) ↓ 0 in each case. In view of

statement (9.2), we have the desired statement for integral (9.10) if the quantity∫ 1

1−δ

( ∫ F−1(p)

0

(1 − F (x))1/2−εdx

)
dp (9.12)

converges to 0 when δ ↓ 0, in which case we set the quantity to be our h(δ). The inner

integral of (9.12) does not exceed
∫ ∞

0
(1−F (x))1/2−εdx, which is finite for all sufficiently

small ε > 0 since E[X2+α] < ∞ for some α > 0. This completes the proof that quantity

(9.10) is of the order h(δ)OP(1). To show that quantity (9.11) is of the same order, we

use the uniform on [0, 1] version of statement (9.2) and reduce the task to showing that∫ 1

1−δ
|F−1

n (p)−F−1(p)|dp is of the desired order. By the Cauchy-Bunyakowski-Schwarz

inequality, we have∫ 1

1−δ

|F−1
n (p) − F−1(p)|dp ≤

√
δ

( ∫ 1

0

|F−1
n (p) − F−1(p)|2dp

)1/2

.

Since E[X2] < ∞, we have
∫ 1

0
|F−1

n (p)−F−1(p)|2dp = oP(1), and so setting h(δ) =
√

δ

establishes the desired asymptotic result for integral (9.11). This also completes the

proof of part (2) and also of Lemma 9.1. �

Lemma 9.2. Under the conditions of Theorem 2.1, we have that rn,2 = oP(1).

Proof. Like in the proof of Lemma 9.1, we split the remainder term rn,2 =
√

n
∫ 1

0
. . . dp

into the sum of r∗n,2(δ) =
√

n
∫ 1−δ

0
. . . dp and r∗∗n,2(δ) =

√
n

∫ 1

1−δ
. . . dp. To prove the

lemma, we need to show that:

(1) For every δ > 0, the statement r∗n,2(δ) = oP(1) holds when n → ∞.

(2) r∗∗n,2(δ) = h(δ)OP(1) for a deterministic h(δ) ↓ 0 when δ ↓ 0, where OP(1) does

not depend on δ.

To prove part (1), we first estimate |r∗n,2(δ)| from above using the bounds p−1ALF (p) ≤
F−1(1 − δ) < ∞, AL∗

F (p) ≥ ∫ 1

1−δ
F−1(t)dt > 0, and AL∗

n(p) ≥ ∫ 1

1−δ
F−1(t)dt + oP(1).

This reduces our task to showing that, for every δ > 0,

√
n

∫ 1−δ

0

|AL∗
n(p) − AL∗

F (p)|2dp = oP(1). (9.13)

Since AL∗
n(p)−AL∗

F (p) = (X − μF )− (ALn(p)−ALF (p)) and
√

n (X − μF )2 = oP(1),

statement (9.13) follows from

√
n

∫ 1−δ

0

|ALn(p) − ALF (p)|2dp = oP(1),
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which is an elementary consequence of statement (9.5). This establishes part (1).

To prove part (2), we first estimate |r∗∗n,2(δ)| from above using the bounds AL∗
F (p) ≥

(1 − p)F−1(1/2) and AL∗
n(p) ≥ (1 − p)F−1

n (1/2), and in this way reduce the task to

showing that
√

n

∫ 1

1−δ

1

1 − p
|AL∗

n(p) − AL∗
F (p)|dp = h(δ)OP(1). (9.14)

Using the Vervaat process, the proof of statement (9.14) follows if∫ 1

1−δ

1

1 − p

( ∫ ∞

F−1(p)

√
n |Fn(x) − F (x)|dx

)
dp = h(δ)OP(1) (9.15)

and ∫ 1

1−δ

1

1 − p

∣∣en(p)
∣∣∣∣F−1

n (p) − F−1(p)
∣∣dp = h(δ)OP(1) (9.16)

with possibly different h(δ) ↓ 0 in each case. Using statement (9.2), we have that

statement (9.15) holds with h(δ) set as the integral∫ 1

1−δ

1

1 − p

( ∫ ∞

F−1(p)

(1 − F (x))1/2−εdx

)
dp, (9.17)

which converges to 0 when δ ↓ 0 as the following argument shows. First, we write the

integrand as the product of (1 − F (x))ε and (1 − F (x))1/2−2ε. Then we estimate the

first factor by (1 − p)ε. The integral
∫ ∞
0

(1 − F (x))1/2−2εdx is finite for all sufficiently

small ε > 0 since E[X2+α] < ∞ for some α > 0. Since
∫ 1

1−δ
(1−p)−1+εdp ↓ 0 when δ ↓ 0,

integral (9.17) converges to 0 when δ ↓ 0. The proof of statement (9.15) is finished.

We are left to prove statement (9.16). Using the uniform on [0, 1] version of statement

(9.2), we reduce the task to showing that∫ 1

1−δ

1

(1 − p)1/2+ε

∣∣F−1
n (p) − F−1(p)

∣∣dp = h(δ)OP(1). (9.18)

(In fact, we shall see below that OP(1) can be replaced by oP(1).) Using Hölder’s

inequality, we have that the right-hand side of equation (9.18) does not exceed( ∫ 1

1−δ

1

(1 − p)(1/2+ε)a
dp

)1/a( ∫ 1

1−δ

∣∣F−1
n (p) − F−1(p)

∣∣bdp

)1/b

(9.19)

for some a, b > 1 such that a−1 +b−1 = 1, which we choose as follows. Since E[X2+α] <

∞, we set b = 2 + α, and so the right-most integral of (9.19) is of the order oP(1).

Furthermore, a = (2 + α)/(1 + α) < 2, which can be made arbitrarily close to 2 by

choosing sufficiently small α > 0. Choosing ε > 0 so small that (1/2+ε)a < 1, we have

that the left-most integral in (9.19) converges to 0 when δ ↓ 0 and, as a consequence,
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we set the integral to be our function h(δ). This establishes statement (9.16) and

completes the proof of Lemma 9.2. �

Lemma 9.3. Under the conditions of Theorem 2.1, we have that rn,3 = oP(1).

Proof. We split the remainder term rn,3 =
∫ 1

0
. . . dp into the sum of r∗n,3 =

∫ 1/2

0
. . . dp

and r∗∗n,3 =
∫ 1

1/2
. . . dp. The lemma follows if the two summands are of the order oP(1).

To prove r∗n,3 = oP(1), we use the bound AL∗
F (p) ≥ ∫ 1

1/2
F−1(p)dp and the uniform

on [0, 1] version of statement (9.2), and in this way reduce our task to showing that∫ 1/2

0

1

p1/2+ε

∣∣F−1
n (p) − F−1(p)

∣∣dp = oP(1).

This statement can be established following the proof of statement (9.18), with minor

modifications.

To prove r∗∗n,3 = oP(1), we use the bound AL∗
F (p) ≥ (1 − p)F−1(1/2), the fact that

supt |en(t)| = OP(1), and statement (9.1) with q = 1. The desired result for r∗∗n,3 follows,

which finishes the proof of Lemma 9.3. �

Lemma 9.4. Under the conditions of Theorem 2.1, we have that rn,4 = oP(1).

Proof. We split rn,4 =
∫ 1

0
. . . dp into the sum of r∗n,4 =

∫ 1/2

0
. . . dp and r∗∗n,4 =

∫ 1

1/2
. . . dp,

and then show that the two summands are of the order oP(1).

To prove r∗n,4 = oP(1), we use the bounds p−1ALF (p) ≤ F−1(1/2) < ∞ and

AL∗
F (p) ≥ ∫ 1

1/2
F−1(p)dp > 0 together with the uniform on [0, 1] version of statement

(9.2). This reduces our task to showing that
∫ 1/2

0
|F−1

n (p) − F−1(p)|dp = oP(1), which

holds due to statement (9.1) with q = 1.

To prove r∗∗n,4 = oP(1), we use the bound AL∗
F (p) ≥ (1−p)F−1(1/2) and the uniform

on [0, 1] version of statement (9.2), and in this way reduce the proof to showing that∫ 1

1/2

1

(1 − p)1/2+ε

∣∣F−1
n (p) − F−1(p)

∣∣dp = oP(1).

This statement can be established following the proof of statement (9.18). The proof

of Lemma 9.4 is finished. �
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