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1. Introduction

In modern economies, most wealth is held in the form of human capital, and publicly
funded schools play a key role in creating this wealth. Thus, reform proposals that seek to
enhance the efficiency of schools are an omnipresent feature of debates concerning public
policy and societal welfare. In recent decades, education policy makers have increasingly
designed these reform efforts around measures of school output such as test scores rather
than measures of school inputs such as computer labs or student-teacher ratios. Although
scholars and policy makers still debate the benefits of smaller classes, improved teacher
preparation, or improved school facilities, few are willing to measure school quality using
only measures of school inputs. During the 1990s many states adopted accountability
systems that dictated sanctions and remediation for schools based on how their students
performed on standardized assessments. In 2001, the No Child Left Behind Act (NCLB)
mandated that all states adopt such systems or risk losing federal funds, and more recently,
several states and large districts have introduced incentive pay systems that link the salaries
of individual teachers to the performance of their students.

We pose the provision of teacher incentives as a mechanism design problem. In our
setting, an education authority possesses two sets of test scores for a population of students.
The first set of scores provides information about student achievement at the beginning (fall)
of a school year. The second set provides information about the achievement of the same
population of students at the end (spring) of the school year. Taken together, these test
scores provide information concerning the effort that teachers invested in their students.

We begin by noting that if the authority knows the mapping between the test score scale
and the expected value of student skill, the authority can implement an incentive scheme
that pays teachers for the skills that their efforts helped create. Some will contend that
social scientists have no idea how to construct such a mapping and therefore argue that
such performance pay systems are infeasible.1 However, even if policy makers are able to
discover the mapping between a particular test score scale and the value of student skill,
the authority will find it challenging to map scores to skills in practice because attempts
to minimize opportunities for coaching behaviors make it difficult to maintain a mapping
between test scores and the value of student skill that is consistent across assessments.
In order to deter “teaching to the test" and related behaviors, an education authority
must employ a series of assessments over time that differ in terms of specific item content
and form. But, in order to map results from each assessment into a common scale that
measures the value of skills, the authority must equate the various assessment forms, and
equating requires common items that link the various forms. If designers limit the number
of common items, they advance the goal of preventing teachers from coaching students
for specific questions or question formats, but they hinder the goal of properly equating

1See Balou (2009) for more on difficulties of interpreting psychometric scales. Cawley et al (1999)
addresses the task of using psychometric scales in value-added pay for performance schemes. Cunha and
Heckman (2008) describe methods for anchoring psychometric scales to adult outcomes. Their methods
cannot be applied to new incentive systems involving new assessments because data on the adult outcomes
of test takers cannot be collected before a given generation of students ages into adulthood.



and thus properly scaling the various assessment forms. In addition, because equating is
a complex task and proper equating is difficult to verify, the equating process itself is an
obvious target for corruption.2

Given these observations, we turn our attention to mechanisms that require authorities
to make incentive payments based only on the ordinal information contained in assessment
results, without any knowledge of how the fall and spring assessments are scaled. Because
such systems involve no attempt to equate various assessment forms, they can include
completely new assessment forms at each point in time and thus eliminate incentives to
coach students regarding any particular form of an assessment.

We describe a system called “pay for percentile,” that works as follows. For each student
in a school system, first form a comparison set of students against which the student will be
compared. Assumptions concerning the nature of instruction dictate exactly how to define
this comparison set, but the general idea is to form a set that contains all other students
in the system who begin the school year at the same level of baseline achievement in a
comparable classroom setting. At the end of the year, give a cumulative assessment to all
students. Then, assign each student a percentile score based on his end of year rank among
the students in his comparison set. For each teacher, sum these within-peer percentile scores
over all the students she teaches and denote this sum as a percentile performance index.
Then, pay each teacher a common base salary plus a bonus that is proportional to her
percentile performance index. We demonstrate that this system can elicit efficient effort
from all teachers in all classrooms to all students.

The linear relationship between bonus pay and our index does not imply that percentile
units are a natural or desirable scale for human capital. Rather, percentiles within com-
parison sets tell us what fraction of head-to-head contests teachers win when competing
against other teachers who educate similar students. For example, a student with a within-
comparison set percentile score of .5 performed as well or better than half of his peers.
Thus, in our scheme, his teacher gets credit for beating half of the teachers who taught sim-
ilar students. We propose a linear relationship between total bonus pay and the fraction of
contests won because all of the contests share an important symmetry. Each pits a student
against a peer who has the same expected spring achievement when both receive the same
instruction and tutoring from their teachers.

The scheme we propose extends the work of Lazear and Rosen (1981). They demonstrate
that tournaments can elicit efficient effort from workers when firms are only able to rank the
performance of their workers. In their model, workers make one effort choice and compete
in one contest. In our model, teachers make multiple effort choices, and these choices may
simultaneously affect the outcomes of many contests, but we still find that a common prize
for winning each tournament can induce efficient effort. Further, we show that pay for

2A significant literature on state level proficiency rates under NCLB suggests that political pressures
have compromised the meaning of proficiency cutoff scores in numerous states. States can inflate their
proficiency rates by making exams easier while holding scoring procedures constant or by introducing a
completely new assessment and then producing a crosswalk between the old and new assessment scale that
effectively lowers the proficiency threshold. See Cronin et al (2007)
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percentile can elicit efficient effort in the presence of heterogeneous gains from instruction,
instructional spillovers, and direct peer effects among students in the same classroom.

Within our framework, it is natural to think of teachers as workers who perform complex
jobs that require multiple tasks because each teacher devotes effort to general classroom
instruction as well as one-on-one tutoring for each student. Our results offer new insight
for the design of incentives in this setting. If employers can form an accurate ordinal
ranking of worker performance on each task that defines their job, these rankings are a set
of performance indices that may provide a basis for efficient incentive pay.

Many engaged in current education policy debates implicitly argue that proper equating
of different exam forms is fundamental to sound education policy because education au-
thorities must be able to document the evolution of the distribution of student achievement
over time. However, our results suggest that education authorities should treat the pro-
vision of incentives and the documenting of student progress as separate tasks. Equating
studies are not necessary for incentive provision, and the equating process is more likely to
be corrupted when high stakes are attached to the exams in question.

Even though our scheme does not map transparently into the multi-tasking framework de-
veloped by Holmstrom and Milgrom (1991), some may worry that it too provides incentives
for teachers to engage in activities that inflate assessment results relative to student subject
mastery. Here, we make the assumption that, if the authority gives a new assessment at
each point in time, the only way teachers can directly affect the rank of their students is by
teaching. Our aim is to address the design of optimal performance pay systems in settings
where at least the ordinal information in assessments cannot be contaminated by actions
that the education authority cannot observe. Further, it is important to note that we are
proposing a mechanism designed to induce teachers to teach the material in a given cur-
riculum. We do not address the often voiced concern that potentially important dimensions
of student skill, e.g. creativity and curiosity, may not be included in curricular definitions.

2. Basic Model

Here, we describe our basic model and derive optimal teacher effort for our setting.
Assume there are J classrooms, indexed by j ∈ {1, 2...J}. Each classroom has one teacher,
so j also indexes teachers. We assume all teachers are equally effective in fostering the
creation of human capital among their students, and all teachers face the same costs of
providing effective instruction. This approach allows us to focus on the task of eliciting effort
from teachers, but it does not allow us to address other issues that arise in settings with
heterogeneous teachers, such as how teachers should be screened for hiring and retention
and who should be assigned to teach which students.

Each classroom has N students, indexed by i ∈ 1, 2...N . Let aij denote the initial human
capital of the i-th student in the j-th class. Students within each class are ordered from
least to most able, i.e.

a1j ≤ a2j ≤ · · · ≤ aNj
3



We assume all J classes are identical, i.e. aij = ai for all j ∈ {1, 2, ...J}. However, this
does not mean that we are restricting our attention to an environment where all classes
share a common baseline achievement distribution. The task of determining efficient effort
in an entire system can be accomplished by determining efficient effort for each classroom.
Thus, the planner may solve the allocation problem for the system by solving the problem
we analyze for each baseline achievement distribution that exists in one or more classes.3

Teachers can undertake two types of efforts to help students acquire additional human
capital. They can tutor individual students or teach the class as a whole. The tutoring
instruction is student-specific, and any effort spent on teaching student i will not directly
affect any student i′ 6= i. Classroom teaching benefits all students in the class. Examples
include tasks like lecturing or planning assignments.

Let eij denote the effort teacher j spends on individual instruction of student i, and tj
denote the effort she spends on classroom teaching. The human capital of a student at
the end of the period, denoted a′ij , depends on his initial skill level ai, the efforts of his
teacher eij and tj , and a shock εij that does not depend on teacher effort, e.g. random
disruptions to the student’s life at home. For now, we assume the production of human
capital is separable between the student’s initial human capital and all other factors and is
linear in teacher efforts.

(2.1) a′ij = g(ai) + tj + αeij + εij

where g(·) is an increasing function and α > 0 measures the relative productivity of class-
room teaching versus individual instruction. Here, the productivities of both tutoring
effort and classroom instruction are not a function of a student’s baseline achievement or
the baseline achievement of his classmates. This specification provides a useful starting
point because it is analytically tractable. Further, given this production environment, the
incentive scheme that we propose below is quite easy to implement. In later sections, we
consider more general production technologies.

The shocks εij are pairwise independent for any pair (i, j). Let F (x) ≡ Pr(εij ≤ x).

We assume there is an associated density f(x) =
dF (x)
dx

that is unimodal and symmetric
around 0.

Let Xj denote teacher j’s expected income. Then her utility is

(2.2) Uj = Xj − C(e1j , ..., eNj , tj)

where C(·) denotes the teacher’s cost of effort. We assume C(·) is increasing in all of
its arguments and is strictly convex. We further assume it is symmetric with respect to

3Here, we assume the planner takes the composition of each class as given. One could imagine a more
general problem where the planner chooses the composition of classrooms and the effort vector for each
classroom. However, given the optimal composition of classrooms, the planner still needs to choose the
optimal levels of effort in each class. We focus on this second step because we are analyzing the provision
of incentives for educators taking as given the sorting of students among schools and classrooms.
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individual effort, i.e. let ej be any vector of tutoring efforts (e1j , ..., eNj) for teacher j, and
let e′j be any permutation of ej, then

C(ej, tj) = C(e′j, tj)
We also impose the usual boundary conditions on marginal costs. The lower and upper

limits of the marginal costs with respect to each dimension of effort are 0 and∞ respectively.
These conditions ensure the optimal plan will be interior. Although we do not make it
explicit, C(·) also depends on N . Optimal effort decisions will vary with class size, but the
tradeoffs between scales economies and congestion externalities at the center of this issue
have been explored by others.4 Our goal is to analyze the optimal provision of incentives
given a fixed class size, N , and here, we suppress reference to N in the cost function.

Let R denote the social value of a unit of a′. Assume that each teacher has an outside
option equal to U0, an omniscient social planner chooses teacher effort levels in each class
j = 1, 2, ..J to maximize the following:

max
ej,tj

E
[
R

N∑
i=1

[g(ai) + tj + αeij + εij ]− C(ej, tj)− U0

]
Because we have normalized units of time so that

∂a′ij
∂tj

= 1, R may also be interpreted
as the gross social return per student when one unit of teacher time is effectively devoted
to classroom instruction. Since C(·) is strictly convex, first-order conditions are necessary
and sufficient for an optimum. Since all teachers share the same cost of effort, the optimal
allocation will dictate the same effort levels in all classrooms, i.e. eij = ei and tj = t for all
j. Hence, the optimal effort levels dictated by the social planner, e1, ..., eN and t, will solve
the following system of equations:

∂C(ej, tj)
∂eij

=Rα for i = 1, ..., N

∂C(ej, tj)
∂tj

=RN

Given our symmetry and separability assumptions, the cost and returns associated with
devoting additional instruction time to a student are not a function of the student’s baseline
achievement or the distribution of baseline achievement in the class. Thus, in this case,
the social optimum dictates the same levels of instruction in all classrooms and the same
tutoring effort for all students. Let e∗ denote the socially optimal level of tutoring effort
that is common to all students, t∗ denote the efficient level of classroom instruction common
to all classes, and (e∗,t∗) denote the socially optimal effort vector common to all classrooms.

4See Lazear (2001) for example.
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In section 6, we generalize the model to allow heterogeneity in returns from instruction,
instructional spillovers, and peer effects, and in this more general setting, optimal tutoring
effort and classroom instruction effort will generally vary with the baseline achievement of
individual students and their classmates.

3. Performance Pay With Invertible Scales

Now consider the effort elicitation problem faced by an education authority that su-
pervises our J teachers. For now, assume that this authority knows everything about the
technology of human capital production but cannot observe teacher effort eij or tj . Instead,
the authority observes test scores that provide a perfect ranking of students according to
their achievement at a point in time, s = m(a) and s′ = m(a′), where m(a) is a strictly
monotonic function.

Suppose the authority knows m(·), i.e. it knows how to invert the psychometric scale
s and recover a. In this setting, there are many schemes that the authority can use to
induce teachers to provide socially efficient effort levels. For example, the authority could
induce teachers to value improvements in student skill correctly simply by paying bonuses
per student equal to Ra′ij . However, from the authority’s perspective, this scheme would
be wasteful because it compensates teachers for both the skill created by their efforts and
for the stock of skills that students would have enjoyed without instruction, g(a).5

If the authority knows both m(·) and g(·), the authority can form an unbiased estimator,
Vij , of teacher j’s contribution to student i’s human capital,

Vij = a′ij − g(aij)

= m−1(s′ij)− g(m−1(sij))

and elicit efficient effort by paying teachers RVij per student. Further, even if the author-
ity does not know g(·), it can still provide incentives for teachers based on their contributions
to student skill. For each student i, let the authority form a comparison group comprised
of all students with the same initial test score as student i at the beginning of the period.
Given the environment we describe above, this set contains the i-th student in each class-
room. Next, define a′i as the average achievement for this group at the end of the period,
i.e.

a′i =
1
J

J∑
j=1

a′ij

and consider a bonus schedule that pays each teacher j bonuses linked to the relative
performance of her students; specifically R(a′ij − a′i) for each student i = 1, 2, ...N . If our

5Here, we take the assignment of students to classrooms as fixed, and we are assuming that the educa-
tion authority cannot simply hold an auction and sell teachers the opportunity to earn Ra′ij per student.
However, absent such an auction mechanism, we expect any scheme that pays teachers for skills students
possess independent of instruction should create wasteful activities by teachers seeking assignments to high
achieving students.
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comparison groups are large, teachers will ignore the effect of their choices on a′i, and it is
straightforward to show that this bonus scheme elicits efficient effort, (e∗,t∗).

Because plim a′i = g(ai) + t∗ + αe∗, the relative achievement of student i, (a′ij − a′i),
is not a function of g(·) or ai in equilibrium. Here, as in the pay for percentile scheme
we propose below, teachers receive rewards or penalties for how their students perform
relative to comparable students. Both schemes can be implemented without knowledge of
the particular baseline scores associated with each baseline achievement level or the score
gains achieved by any student.

If the authority knows R and m(·), it can implement this bonus scheme using a standard
regression model that includes fixed effects for baseline achievement levels and classroom
assignment.6 Teachers associated with a negative classroom effect will receive a negative
bonus or what might be better described as a performance based fine, and total bonus
pay over all teachers will be zero. Because expected bonus pay per teacher is zero in this
scheme, teachers must receive a base salary that covers their costs. Let X0 denote the base
salary per student. The authority could minimize the cost of eliciting efficient effort by
choosing X0 to satisfy NX0 = C(e∗, t∗) + U0.

In this scheme, the focus on variation within comparison sets allows the authority to
overcome the fact that it does not know how natural rates of human capital growth, g(ai),
differ among students of different baseline achievement levels, ai. In the following sections,
we demonstrate that by focusing on rank comparisons within comparison sets, the authority
can similarly overcome its lack of knowledge concerning how changes in test scores map into
changes in human capital at different points on a given psychometric scale.

4. Tournaments

The scheme described above relies on the education authority’s ability to translate test
scores into the values of students’ skills. In order to motivate why the authority might have
limited knowledge of how scores map into human capital, suppose the education authority
cannot create and administer the assessments but must hire a testing agency to provide s
and s′, the vector of fall and spring test scores for all students. In order to implement the
relative performance scheme we describe above, the authority must announce a mapping
between the distribution of student test scores, s′, and the distribution of reward pay given
to the teachers of these students. But, once the authority announces how it will invert
s′ = m(a′), it must guard against at least two ways that teachers may attempt to game
this incentive system.

To begin, teachers may coach rather than teach. We have not modeled this activity ex-
plicitly, but the existing literature provides much evidence that teachers can inflate student
assessment results by giving students the answers to specific questions or having students

6For example, if the authority regresses a′ij on only a set of N+J indicator variables that identify baseline
achievement groups and classroom assignment, the estimated coefficient on the indicator for teacher j will
equal 1

N

PN
i=1(a

′
ij − a′i), and the authority can multiply these coefficients by RN to determine the total

bonus payment for each teacher j.
7



practice taking tests that contain questions in a specific format.7 Teachers have opportunity
and incentive to engage in these behaviors whenever the specific items and format of one
assessment can be used to predict the items and format present on future assessments.

In order to deter this activity, the education authority could instruct its testing agency
to administer exams each fall and spring that cover the same topics but contain different
questions in different formats. However, this instruction would be difficult to follow since
existing psychometric methods for equating results from different assessments require that
the assessments in question contain common items. Further, even if the testing agency
possessed a technology that made it possible to correctly equate results from a series of
assessments containing no overlap in item content or format, teachers face a strong incentive
to lobby the testing agency to alter the content of the spring assessment or its scaling in
a manner that weakens effort incentives. For example, if the pay for relative performance
scheme described in the previous section is in place, teachers may secretly pressure the
agency to correctly equate various assessments but then report spring scores equal to the
correct spring scores divided by some constant greater than one. If teachers believe their
lobbying efforts have been successful, each individual teacher’s incentive to provide effort
will be reduced, but teachers will still collect base salaries that compensate them for the
cost of efficient effort levels. Teachers can achieve a similar result by convincing the testing
agency to manipulate the content of the spring exam in a way that compresses scores.

Concerns about scale manipulation may seem far fetched to some, but the literature on
the implementation of state accountability systems under NCLB contains suggestive evi-
dence that several states inflated the growth in their reported proficiency rates by making
assessments easier without making appropriate adjustments to how exams are scored or by
introducing new assessments and equating the scales between the old and new assessments
in ways that appear generous to the most recent cohorts of students.8 Given these obser-
vations, it is natural to explore the optimal design of teacher incentives in a setting where
the testing agency administers new forms of the assessment each period, and the education
authority must employ incentive schemes that are scale invariant, i.e. schemes that rely
only on ordinal information and are thus implemented without regard to the scaling of
various assessment results. In order to develop intuition for our results, we first consider
ordinal contests among pairs of teachers. We then examine tournaments that involve si-
multaneous competition among large numbers of teachers and show that such tournaments
are essentially a pay for percentile scheme.

Consider a scheme where each teacher j competes against one other teacher and the
results of this contest determine bonus pay for teacher j and her opponent. Teacher j does
not know who her opponent will be when she makes her effort choices. She knows only that
her opponent will be randomly chosen from the set of other teachers in the system and that
her opponent will be facing the same compensation scheme that she faces. Let each teacher

7See Jacob (2005), Jacob and Levitt (2002), Klein et al (2000) and Koretz (2002).
8See Peterson and Hess (2006) and Cronin et al (2007). Further, in 2006, the state of Illinois saw

dramatic and incredible increases in proficiency rates that were coincident with the introduction of a new
assessment series. See ISBE (2006).
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receive a base pay of X0 per student, and at the end of the year, match teacher j with
some other teacher j′ and pay teacher j a bonus (X1 −X0) for each student i whose score
is higher than the corresponding student in teacher j′’s class, i.e. if s′ij ≥ s′ij′ . Since scores
increase monotonically with human capital, this rewards the teacher whose student has
attained the higher level of human capital by the end of the year. The total compensation
for teacher j is thus

NX0 + (X1 −X0)
N∑
i=1

I(a′ij ≥ a′ij′)

where I(A) is an indicator that equals 1 if event A is true and 0 otherwise. Because ordinal
comparisons determine all payoffs, teacher behavior and teacher welfare are invariant to
any re-scaling of the assessment results that preserves ordering.

For each i ∈ 1, ..., N , let us define a new variable νi = εij − εij′ as the difference in
the shock terms for students in the two classes whose initial human capital is ai. Let
H(x) ≡ Pr(νi ≤ x) denote the distribution of νi. We define h(x) = dH(x)/dx, and note
that given our assumptions about F (·), H(·) is also unimodal, mean zero, and symmetric.
Further. we assume that H(.) is twice differentiable.

Since the initial achievement of the students who are compared to each other is identical,
the maximization problem for teacher j is

max
ej,tj

NX0 + (X1 −X0)
N∑
i=1

H(α(eij − eij′) + tj − tj′)− C(ej, tj)− U0

The first order conditions for each teacher are given by

∂C(ej, tj)
∂eij

=αh(α(eij − eij′) + tj − tj′)(X1 −X0) for i = 1, 2..N(4.1)

∂C(ej, tj)
∂tj

=
N∑
i=1

h(α(eij − eij′) + tj − tj′)(X1 −X0)(4.2)

Consider setting the bonus X1−X0 = R/h(0), and suppose both teachers j and j′ choose
the same effort levels, i.e. ej = ej′ and tj = tj′ . Then (4.1) and (4.2) become

∂C(ej, tj)
∂ei

= Rα for i = 1, ..., N

∂C(ej, tj)
∂tj

= RN

9



Recall that these are the first order conditions for the planner’s problem, and thus, the
socially optimal effort levels (e∗, t∗) solve these first order conditions. Nonetheless, the fact
that these levels satisfy teacher j’s first order conditions is not enough to show that they
are optimal responses to the effort decisions of the other teacher. In particular, since H(·)
is neither strictly convex nor strictly concave everywhere, the fact that ej = e∗ and tj = t∗

satisfy the first order conditions does not imply that these effort choices are global best
responses to teacher j′ choosing the same effort levels.

Appendix A provides proofs for the following two propositions that summarize our main
results for two teacher contests:

Proposition 1: Let ε̃ij denote a random variable with a symmetric unimodal density and
mean zero, and let εij=σε̃ij. There exists σ such that ∀σ > σ, both teachers choosing the
socially optimal effort levels (e∗, t∗) is a pure strategy Nash equilibrium of the two teacher
contest.

The intuition behind the variance restriction in this proposition is straightforward. In any
given contest, both effort choices and chance play a role in determining the winner. When
chance plays a small role, small prizes are optimal because large prizes would induce too
much effort. In fact, the optimal bonus, R

h(0) , tends to zero as σ → 0. Thus, the restriction
on σ in Proposition 1 is needed to rule out cases where, given that the other teacher is
choosing (e∗, t∗), the bonus is so small that teacher j’s expected gain from responding
with (e∗, t∗) as opposed to some lower effort level does not cover the incremental cost.9
However, if the element of chance in these contests is important enough, a pure strategy
Nash equilibrium exists which involves both teachers choosing the socially optimal effort
vectors, (e∗, t∗), and Proposition 2 adds that this equilibrium is unique.

Proposition 2: In the two teacher contest, whenever a pure strategy Nash equilibrium
exists, it involves both teachers choosing the socially optimal effort levels (e∗, t∗).

Taken together, our propositions imply that our tournament scheme can elicit efficient
effort from teachers who compete against each other in seeded competitions. Thus, the
efficiency properties that Lazear and Rosen (1981) derived for a setting in which two players
make one effort choice and compete in a single contest carry over to settings in which two
players make multiple effort choices and engage in many contests simultaneously. This is
true even when some of these effort choices can affect the outcome of many contests.

Finally, to ensure that teachers are willing to participate in this scheme, we need to make
sure that

NX0 +
RN

2h(0)
− C(e∗, t∗) ≥ U0

Given this constraint, the following compensation scheme minimizes the cost of providing
efficient incentives

9Lazear and Rosen (1981) require a similar condition for existence in their single task, two person game.
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X0 =
U0 + C(e∗, t∗)

N
− R

2h(0)

X1 =
U0 + C(e∗, t∗)

N
+

R

2h(0)

Note that the authority needs only four pieces of information to implement this contest
scheme. The authority needs to know each student’s teacher, the ranks implied by s and
s′, and the ratio R

h(0) . Recall that R is the gross social return per student generated by
one effective unit of classroom instruction. If we stipulate that the authority knows what
effective instruction is worth to society but simply cannot observe whether or not effective
instruction is being provided, h(0) is the key piece of information that the authority requires.

Here, h(0) is the derivative with respect to classroom instruction, t, of the probability
that a given teacher wins one of our contests when both teachers are initially choosing
the same effort vectors. It will be difficult for any authority to learn h(0) precisely, but
one can imagine experiments that could provide considerable information about h(0). The
key observation is that, for many different prize levels other than R

h(0) , there exists a sym-
metric Nash equilibrium among teachers in pure strategies. Thus, given our tournament
mechanism and some initial choice for the prize structure, suppose the authority selected
a random sample of students from the entire student population and then invited these
students to a small number of weekend review classes taught by the authority and not by
teachers. If our teachers share a common prior concerning the probability that any one
student is selected to participate in these review classes, there will still exist a Nash equilib-
rium in which both teachers choose the same effort levels. However, given any symmetric
equilibrium, the ex post probability that a particular student who received extra instruction
will score better than a peer who did not receive extra instruction should increase. Let ∆t
be the length of the review session. The associated change in the probability of winning
is ∆p ≈ h(0)+h(∆t)

2 ∆t. If we assume that the authority can perfectly monitor instruction
quality during these experimental sessions and if we choose a ∆t that is a trivial interven-
tion relative to the range of shocks, ε, that affect achievement during the year, the sample
mean of ∆p

∆t provides a useful approximation for h(0).10

The two-teacher contest system described here elicits efficient effort from teachers and
because it relies only on ordinal information, it can be implemented without equating scores
scores from different assessment forms. Further, since equating is not required, our scheme
allows the education authority to employ completely new assessment forms at each point
in time and thereby remove any opportunity for teachers to coach students for specific
questions or question formats based on previous assessments. Our scheme is also robust

10Our production technology implicitly normalizes the units of ε so that shocks to achievement can
be thought of in terms of additions to or deletions from the hours of effective classroom instruction t
students receive. Further, because R is the social value of a unit of effective instruction time, the prize

R
h(0)

determined by this procedure is the same regardless of the units used to measure instruction time, e.g.
seconds, minutes, hours.
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against efforts to weaken performance incentives by corrupting assessment scales because
the mapping between outcomes and reward pay is scale invariant.

5. Pay for Percentile

While our two-teacher contests address some ways that teachers can manipulate incentive
pay systems, the fact that each teacher plays against a single opponent may raise concerns
about a different type of manipulation. Recall, we assume that the opponent for teacher
j is announced at the end of the year after students are tested. Thus, some teachers
may respond to this system by lobbying school officials to be paired with a teacher whose
students performed poorly. If one tried to avoid these lobbying efforts by announcing the
pairs of contestants at the beginning of the year, then one would worry about collusion
on low effort levels within pairs of contestants. We now turn to performance contests that
involve large numbers of teachers competing anonymously against one another. We expect
that collusion on low effort among teachers is less of a concern is this environment.

Suppose that each teacher now competes against K teachers who also have N students.
Each teacher knows that K other teachers will be drawn randomly from the population
of teachers with similar classrooms to serve as her contestants, but teachers make their
effort choices without knowing whom they are competing against. We assume that teachers
receive a base salary of X0 per student and a constant bonus of (X1−X0) for each contest
she wins.11 In this setting, teacher j’s problem is

max
ej,tj

NX0 +
K∑
k=1

N∑
i=1

H(α(eij − eik) + tj − tk)(X1 −X0)− C(ej, tj)− U0

The first order conditions are given by

∂C(ej, tj)
∂eij

=
K∑
k=1

αh(α(eij − eik) + tj − tk)(X1 −X0) for i = 1, ..., N(5.1)

∂C(ej, tj)
∂tj

=
K∑
k=1

N∑
i=1

h(α(eij − eik) + tj − tk)(X1 −X0)(5.2)

As before, suppose all teachers put in the same effort level, i.e. given any j, tj = tk
and ej = ek for k = 1, ...,K. In this case, the right-hand side of (5.1) and (5.2) reduce to
αKh(0)(X1−X0) and NKh(0)(X1−X0), respectively. Thus, if we set X1−X0 = R

Kh(0) and
assume that all teachers choose the socially optimal effort levels, the first order conditions

11A constant prize per contest is not essential for eliciting efficient effort, but we view it as natural given
the symmetry of the contests.
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for each teacher are satisfied. Further, Proposition 1 extends trivially to contests among
K > 2 teachers. Given a similar restriction on the scale parameter σ from Proposition 1
and a prize R

Kh(0) per student, there exists a pure strategy Nash equilibrium in which all
teachers choose the socially optimal levels of effort.

Now let K = (J − 1) → ∞ and let A′i denote a terminal score chosen at random
and uniformly from the set of all terminal scores (a′i1, ..., a

′
iJ). Since the distribution

(a′i1, ...ai,j−1, ai,j+1, ..., a
′
iJ) converges to the distribution (a′i1, ...ai,j−1, aij,ai,j+1, ..., a

′
iJ) as

K →∞, it follows that

lim
K→∞

K∑
k=1

I(a′ij ≥ a′ik)
K

= Pr(a′ij ≥ A′i)

and the teacher’s maximization problem reduces to

max
ej,tj

NX0 +
R

h(0)

N∑
i=1

Pr(a′ij ≥ A′i)− C(ej, tj)− U0

This pay for percentile scheme is the limiting case of our simultaneous contests scheme as
the number of teachers grows large. Thus, a system that pays teachers bonuses that are
proportional to the sum of the within comparison set percentile scores of their students can
elicit efficient effort from all teachers.

In our presentation so far, comparison sets contain students who share not only a com-
mon baseline achievement level but also by assumption share a common distribution of
baseline achievement among their peers. However, given the separability we impose on
the human capital production function in equation (2.1) and the symmetry we impose on
the cost function, student i’s comparison set need not be restricted to students with sim-
ilar classmates. For any given student, we can form a comparison set for this student by
choosing all students from other classrooms who have the same baseline achievement level
regardless of the distributions of baseline achievement among their classmates. This result
holds because the socially optimal allocation of effort (e∗, t∗) dictates the same level of
classroom instruction and tutoring effort from all teachers to all students regardless of the
baseline achievement of a given student or the distribution of baseline achievement in his
class.

Therefore, given the production technology that we have assumed so far, pay for per-
centile can be implemented quite easily and transparently in any large school system. The
education authority can form one comparison set for each distinct level of baseline achieve-
ment and then assign within comparison set percentiles based on the end of year assessment
results. In the following section, we consider more general production functions, and in these
environments, comparison sets must condition on classroom characteristics. We show that
the existence of peer effects, instructional spillovers and other forces that we have not mod-
elled to this point do not alter the efficiency properties of pay for percentile but simply
complicate the task of constructing comparison sets.
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6. Heterogeneous Gains from Instruction And Other Generalizations

We now generalize the benchmark model above and show that pay for percentile can
be used to elicit socially efficient effort from teachers even when optimal effort for a given
student varies with his baseline achievement or is affected by the distribution of baseline
achievement among his classmates. Let aj = (a1j , ..., aNj) denote the initial level of human
capital of all students in teacher j’s class, where j ∈ {1, ..., J}. We allow the production of
human capital for each student i in class j to depend quite generally on his own baseline
achievement, aij , the composition of baseline achievement within the class, aj, the tutoring
he receives, eij , and the tutoring received by all students in his class, ej. We further allow
students at different achievement levels to differ in their rates of learning given various
levels of instruction and tutoring, and we allow both direct peer effects and instructional
spillovers. Formally, the human capital of student i in classroom j is given by

(6.1) a′ij = gi(aj , tj , ej) + εij

Because gi (·, ·, ·) is indexed by i, this formulation allows different students in the same
class to benefit differently from the same environmental inputs, i.e. from their other
classmates, their classroom instruction, tj , and any common level of individual tutoring,
eij = ei′j for i 6= i′. Nonetheless, we place two restriction on gi (·, ·, ·). It must be weakly
concave, and it must depend on class identity, j, only through teacher efforts. Our con-
cavity assumption places restrictions on forms that peer effects and instructional spillovers
may take. Our assumption that j enters only through teacher effort choices implies that,
for any two classrooms (j, j′) with the same composition of baseline achievement, if the
two teachers in question choose the same effort levels, i.e. tj = tj′ and ej = e′j, the ex-
pected human capital for any two students in different classrooms but with the same initial
achievement, i.e. aij = aij′ , will be same. Given this result and the fact that the marginal
cost of devoting more effort to either of these students will be the same for both teachers,
we can form comparison sets at the classroom level and guarantee that all contests are
properly seeded.

For now, we will continue to assume the εij are pairwise identically distributed across all
pairs (i, j), although we comment below on how our scheme can be modified if the distri-
bution of εij is assumed to be identical only for students with similar baseline achievement.
In section 2, given our separable form for gi (·, ·, ·), we could interpret the units of εij in
terms of additions to or deletions from effective classroom instruction time. Given the
more general formulation of gi (·, ·, ·) here, this interpretation need no longer apply in all
classrooms. Thus, the units of εij can now only be interpreted as additions to or deletions
from the stock of student skill.

We maintain our assumption that the cost of spending time teaching students does not
depend on their identity, i.e. C(ej , tj) is symmetric with respect to the elements of ej and
does not depend on the achievement distribution of the students. Our results would not
change if we allowed the cost of effort to depend on the baseline achievement distribution
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in a class, i.e. C(aj, ej , tj), or to be asymmetric, as long as we maintain our assumption
that C(·) is strictly convex and is the same for all teachers.

For each class j, the optimal allocation of effort solves

(6.2) max
ej ,tj

N∑
i=1

R[gi(aj , tj , ej) + εij ]− C(ej , tj)− U0

Since gi(·, ·, ·) is assumed to be concave for all i and C(·) is strictly convex, this problem
is strictly concave, and the first-order conditions are both necessary and sufficient for an
optimum. These are given for all j by

∂C(ej, tj)
∂eij

= R

N∑
m=1

∂gm(aj , tj , ej)
∂eij

for i = 1, ..., N

∂C(ej, tj)
∂tj

= R

N∑
m=1

∂gm(aj , tj , ej)
∂tj

For any composition of baseline achievement, there will be a unique
(
e∗j , t

∗
j

)
that solves

these equations. However, this vector will differ for classes with different compositions, aj,
and the tutoring effort, eij , for each student will generally differ across students in the same
class if the students have different initial achievement.

We now argue that the pay for percentile scheme we described above will continue to
elicit socially optimal effort vectors from all teachers. The bonus scheme is the same as
before, and again, each student will be compared to all students with the same baseline
achievement who belong to one of the K other classrooms in his comparison set.12

Assume that we offer each teacher j a base pay of X0 per student, and a bonus X1−X0 =
R

Kh(0) for each student in any comparison class k = 1, 2..K who scores below his counterpart
in teacher j’s class on the spring assessment. Teacher j’s problem can be expressed as
follows:

max
ej,tj

NX0 + (X1 −X0)
K∑
k=1

N∑
i=1

H(gi(aj , tj , ej)− gi(ak, tk, ek))− C(ej, tj)

The first order conditions for teacher j are

12As we note at the end of the previous section, this composition restriction on comparison sets is now
binding. We noted in the previous section that when gi (·, ·, ·) is separable in ai and teacher’s effort, the
comparison set for student i may contain any student with the same baseline achievement regardless of the
composition of baseline achievement in this student’s class.
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∂C(ej, tj)
∂eij

= (X1 −X0)
K∑
k=1

N∑
m=1

∂gm(aj , tj , ej)
∂eij

h(gm(aj , tj , ej)− gm(ak, tk, ek)) for i = 1, ..., N

∂C(ej, tj)
∂tj

= (X1 −X0)
K∑
k=1

N∑
m=1

∂gm(aj , tj , ej)
∂tj

h(gm(aj , tj , ej)− gm(ak, tk, ek))

If all teachers provide the same effort levels, these first order conditions collapse to the
planner’s first order conditions. If we assume that other teachers are choosing the socially
optimal levels of effort, then for large enough σ, these first-order conditions are necessary
and sufficient for an optimal response. Thus, there exists a Nash equilibrium such that all
teachers choose the first best effort levels in response to a common prize structure. How-
ever, base pay is not common across all classrooms. Because socially efficient effort levels
vary with classroom composition, the level of base pay required to satisfy the teachers’ par-
ticipation constraints will be a function of the specific distribution of baseline achievement
that defines a comparison set or a set of competing classrooms.

Here, pay for percentile amounts to competition among teachers within leagues defined
by classroom type. These leagues offer properly seeded contests even in the presence of
peer effects and heterogeneity in student learning rates. Further, because the competition
involves all students in each classroom, teachers internalize the consequences of instructional
spillovers.

In practice, it may be impossible to form large comparison sets containing classrooms
with identical distributions of baseline achievement. Nevertheless, it may still be possible to
implement our system using a large set of quantile regression models that allow researchers
to create, for any set of baseline student and classroom characteristics, a set of predicted
scores associated with each percentile in the conditional distribution of scores. Given a
predicted score distribution for each individual student that conditions on his own baseline
achievement and the distribution of baseline achievement among his classmates, education
authorities can assign a conditional percentile score to each student and then form percentile
performance indices at the classroom level.13

Note that, even with our more general formulation for gi (·, ·, ·), the optimal prize struc-
ture does not vary with baseline achievement and does not depend on the functional form
of gi (·, ·, ·). This result hinges on our assumption that the distribution of εij and thus h(0)
do not vary among students, and this assumption is not testable. If we permit returns to
effective instruction to vary with baseline achievement, it is straightforward to show that, if
the populations of students at two different baseline achievement levels differ with respect
to both h(0) and the rate at which they acquire new skill given effective instruction, these
differences cannot be separately identified from experiments like those described at the end

13See Briggs and Betebenner (2009) for an example of how these conditional percentile scores can be
calculated in practice.
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of section 4 above.14 If h(0) differs with baseline achievement, the authority can still elicit
efficient effort by using a pay for percentile scheme that offers different prizes for winning
contests that involve students of different baseline achievement levels. However, education
authorities cannot implement such schemes without prior information concerning how h(0)
or g (·, ·, ·) differs among students.

The key implication of our analyses is that performance pay for educators should be
based on ordinal rankings of student outcomes within properly chosen comparison sets.
Whether or not the optimal mapping between rankings and reward money is constant over
all comparison sets or all students within a comparison set, the decision to tie rewards
to relative performance measures that are scale invariant allows the authority to combat
teaching to the test behaviors by using a new form of the assessment in each period while
also eliminating incentives to corrupt the system by manipulating the scales used to report
assessment results.

7. Lessons for Policy Makers

In the previous sections, we describe a simultaneous contest mechanism that can elicit
efficient effort from teachers and is robust to certain types of manipulation. In this section,
we shift our attention to existing performance pay systems and analyze them in light of
the lessons learned from our model. Table 1 summarizes a number of existing pay for
performance schemes that are currently in operation.

Our model yields several insights that are important but have not been fully recognized
in current policy debates. To begin, our analyses highlight the value of competition as
a means of revealing what efficient achievement targets should be. With the exception
of TAP, all the systems described in Table 1 permit subjective judgements by principals
or education officials concerning ex ante achievement targets for individual students or ex
post measurement of teacher performance. We will not develop an explicit model of the
negotiations and lobbying efforts that are part of these processes, but we note that one
possible outcome is that many or all teachers will receive bonus payments for providing less
than efficient effort level. The Performance Related Pay (PRP) system in England directed
teachers who were applying for a performance bonus as follows:

14In the experiment we describe at the end of section 4, students are given a small amount of extra

instruction, and the experiment identifies h(0)
∂a

′
ij

∂tj
. Because the separable production function employed

in Section 4 imposes the normalization,
∂a

′
ij

∂tj
=1, h(0) is identified. This normalization implies that the

shocks that affect a
′
ij can be interpreted as additions to or deletions from the effective instruction that

students receive. However, if both rates of student gains from instruction and the distribution of shocks
differ at each point in the baseline achievement distribution, no such normalization is possible, and h(0) is

not identified because many different combinations of h(0) and
∂a

′
ij

∂tj
will provide ways to rationalize any

particular increase in winning percentage that might be induced when a particular type of student receives
extra instruction.
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“Please summarise evidence that as a result of your teaching your pupils achieve well
relative to their prior attainment, making progress as good or better than similar pupils
nationally.”15

Ex post, roughly 77% of teachers with enough experience to be eligible for the bonus received
the bonus. Unless the benefits of teaching experience in England are quite extraordinary,
this outcome is strong suggestive evidence that education officials adopted a rather lenient
interpretation of what “as good or better” means.

Table 1
Recent Pay for Performance Systems in Education

Name Place Description
ProComp Denver Teachers and principals negotiate achievement targets for

individual students.
QComp Minnesota Schools develop their own plans for measuring teacher

contributions to students’ achievement.
TAP 14 States Statistical VAM method produces teacher performance indices.
MAP Florida Districts choose their own method for measuring teacher

contribution to achievement.
PRP England Teachers submit applications for bonus pay and provide

documentation of better than average performance in
promoting student achievement.

Notes: Each system employs additional measures of teacher performance that are not directly tied to
student assessment results. The descriptions presented here describe how performance statistics
derived from test scores are calculated.

In contrast, our pay for percentile system involves endogenous performance thresholds de-
termined by competition among large numbers of contestants, and every dollar of bonus
pay won by one teacher is a dollar of bonus pay lost by another teacher. Forcing teachers
to compete within our scheme or any other relative performance pay schemes for a fixed
amount of bonus money minimizes the possibility that performance pay systems simply be-
come a means of bestowing pay raises on teachers regardless of whether or not they improve
their performance.16 Pay for relative performance systems allows education authorities to
implement incentive pay without adopting any procedures that specify ex ante achievement

15See Atkinson et al (2009) and Wragg et al (2001). If one uses the pass rate from the Wragg et al
(2001) sample to extrapolate the success rate for the population, the application rate found in Atkinson et
al (2009) implies that 77.6 percent of eligible teachers received the bonus.

16This point is most easily understood in the context of systems that involve subjective judgements
concerning achievement targets. However, similar problems may arise when education authorities employ
statistical models to develop such targets. In any system that does not involve direct competition for a fixed
amount of bonus pay, there will be incentives for teachers to lobby those who develop tests and models of
achievement growth to design measurement systems in a manner that makes it easier for teachers to earn
bonuses.
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targets for students because by focusing on relative student performance within comparison
sets, the authority avoids the need to forecast gi(aj, e∗j , t

∗
j ), i.e. expected spring achievement

for student i given efficient teacher effort.
Among the entries in Table 1, the Value-Added Model (VAM) approach is the only

scheme based on an objective mapping between student test scores and relative performance
measures for teachers. The VAM approach embodies the assumption, s = a, i.e. the units
of a given psychometric scale s are at least proportional to the correct units for expressing
the social value of student skill. Advocates of VAM are quick to point out that, given this
assumption, VAM models produce performance indices that allow education authorities
to both implement relative performance pay schemes and make judgements concerning
whether or not the rate of achievement growth is increasing or decreasing over time both
at an aggregate level and within a classroom or school.17 In contrast, our pay for percentile
scheme employs only ordinal information and thus provides no information about changes
in rates of achievement growth over time. However, we contend that this limit on pay for
percentile’s ambitions is the key reason to prefer it over VAM approaches.

Donald Campbell (1976) famously claimed that government performance statistics are
always corrupted when high stakes are attached to them, and our analyses indicate that
Campbell’s observation may reflect the perils of trying to accomplish two objectives with one
set of performance measures. Systems that try to both provide incentives for teachers and
track the evolution of student achievement and educational productivity over time are likely
to do neither well because assessment procedures that enhance an education authority’s
capacity to measure achievement growth consistently over time introduce opportunities for
teachers to game assessment-based incentive systems. Systems that track achievement must
place results from a series of assessments on a common scale, and the equating process
that creates this common scale will not be credible unless the assessments in question
contain common items. The existence of these common items invites teachers to coach
students based on the specific items and format found in the last assessment. Further,
any system that links rewards to cardinal measures of achievement growth may introduce
political pressures that corrupt equating procedures and compromise our understanding of
how student achievement is changing over time.

In contrast, if education authorities employ our pay for percentile scheme, they can
provide incentives for teachers while employing new assessments at each point in time that
need not be equated and therefore need not contain common items. The absence of common
items makes it difficult for teachers to coach students for particular questions or question
formats, and our scheme provides no incentive for anyone to manipulate the scales used
to report results since the distribution of reward pay is based only on ranks and is thus
scale invariant. If education authorities desire measures of changes in achievement growth

17Some VAM practitioners employ functional form assumptions that allow them to also produce universal
rankings of teacher performance and make judgements about the relative performance of two teachers even
if the baseline achievement distributions in their classes do not overlap. In contrast, our pay for percentile
scheme takes seriously the notion that teaching academically disadvantaged students may be a different job
than than teaching honors classes and provides a context-specific measure of how well teachers are doing
the job they actually have.
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over time, they can deploy a second assessment system that is scale dependent but with no
stakes attached and with only random samples of schools within the system involved. By
separating the tasks of incentive provision and output measurement, education authorities
are likely to do both tasks better.

8. Conclusion

Designing a set of assessments and statistical procedures that will not only allow policy
makers to measure secular achievement growth over time but also isolate the contribution
of educators and schools to this growth is a daunting task in the best of circumstances.
Further, when the results of this endeavor determine rewards and punishments for teachers
and principals, some educators respond by taking actions that artificially inflate measures
of student learning. These actions may include coaching students for assessments as well
as lobbying testing agencies concerning how results from different assessments are equated.
The high stakes testing literature provides much evidence that teachers coach students for
high stakes assessments in ways that inflate assessment results relative to student subject
mastery, and the literature on NCLB involves significant debate concerning the integrity
of proficiency standards. For example, in 2006 in Illinois, the percentage of eighth graders
deemed proficient in math under NCLB jumped from 54.3 to 78.2 in one year. This im-
provement dwarfs gains typically observed in other years and in other states. Because this
enormous gain was coincident with the introduction of a new series of assessments that
were scored on a new scale and then equated to previous tests, the entire episode raises
suspicions about the comparability of proficiency standards across assessment forms.18

We propose an incentive scheme that makes no attempt to compare levels of achievement
or achievement growth over time. Because our scheme does not require that education
authorities equate results from different assessments, it can be implemented using a sequence
of assessments that contain no common items and random variation in item formats. Thus,
our system is robust to many forms of teaching to the test that have plagued existing
performance pay and accountability systems, and since our scheme does not require testing
agencies to equate assessments, it is completely robust to political pressure concerning the
scaling of assessment results.

Our key insight is that properly seeded contests where winners are determined by the rank
of student outcomes can provide incentives for efficient effort. Thus, the ordinal content
of assessment results provides the information that education authorities need in order to
elicit socially efficient effort from teachers. Policy makers may still want to know how
achievement levels are evolving over time or how the contribution of schools to achievement
is evolving over time. However, they will do a better job of providing credible answers

18See ISBE 2006. The new system came online when the state began testing in grades other than grades
3, 5, and 8. The introduction of the new assessment system resulted in significant jumps in both reading
and math proficiency in all three grades, but the eighth grade math results are the most suspicious. Cronin
et al (2007) contends that other states have inflated proficiency results by compromising the comparability
of assessment scales over time.
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to these questions if they address them using a separate measurement system that has no
impact on the distribution of rewards and sanctions among teachers and principals.

We are advocating competition based on ranks as the basis for incentive pay systems
that are immune to specific corruption activities that plague existing performance pay and
accountability systems, but several details concerning how to organize such competition
remain for future research. First and foremost, teachers who teach in the same school should
not compete against each other. This type of direct competition could undermine useful
cooperation among teachers. Further, although we have discussed all our results in terms of
competition among individual teachers, education authorities may wish to implement our
scheme at the school or school-grade level as a means of providing incentives for effective
cooperation.19

In addition, because our scheme is designed to elicit effort from teachers who share the
same cost of providing effective effort, it may be desirable to have teachers compete only
against other teachers with similar levels of experience, similar levels of support in terms
of teacher’s aids, and similar access to computers and other resources.20 While more work
remains concerning the ideal means of organizing the contests we describe above, our results
demonstrate that education authorities can enjoy important efficiency gains from building
incentive pay systems for teachers that are based on the ordinal outcomes of properly seeded
contests and that are completely distinct from any assessment systems used to measure the
progress of students or secular trends in student achievement.

19This approach is particularly attractive if one believes that peer monitoring within teams is effective.
New York City’s accountability system currently includes a component that ranks school performance within
leagues defined by student characteristics.

20The task of developing a scheme that addresses unobservable differences in teacher talent remains
for future research. We have not yet characterized the optimal system for both screening teachers and
providing effort incentives based only on the ordinal information in assessments.
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Appendix A: Proofs

Proposition 1: Let ε̃ij denote a random variable with a symmetric unimodal density and
mean zero, and let εij=σε̃ij. There exists σ such that ∀σ > σ, both teachers choosing the
socially optimal effort levels (e∗, t∗) is a pure strategy Nash equilibrium of the two teacher
contest.

Proof of Proposition 1: Define ν̃ii = ε̃ij − ε̃ij′ , and let H̃(x) ≡ Pr(ṽi ≤ x). Then,

H̃(x/σ) = H(x). Similarly, we have h(x) ≡ dH(x)
dx

=
1
σ
h̃(x/σ). Note that

h(0) =
1
σ
h̃(0)

and

H(αei − αe∗ + t− t∗) =
∫ αei−αe∗+t−t∗

−∞
h(x)dx

=
∫ αei−αe∗+t−t∗

−∞

1
σ
h̃(x/σ)dx

The teacher’s objective function is given by

max
ej ,tj

NX0 + (X1 −X0)
N∑
i=1

H(αeij − αe∗ + tj − t∗)− C(ej , tj)− U0

If we set X1 − X0 = R/h(0), and use the fact that h(x)
h(0) =

eh(x/σ)eh(0)
this objective function

reduces to

(8.1) max
ej ,tj

NX0 +R
N∑
i=1

[∫ αeij−αe∗+tj−t∗

−∞

h̃(x/σ)

h̃(0)
dx

]
− C(ej , tj)− U0

We first argue that the solution to this problem is bounded in a way that does not depend
on σ. Observe that the objective function (8.1) is nonnegative at (e, t)=(0,0). Next, since

h̃ (·) is unimodal with a peak at zero, it follows that
h̃(x/σ)

h̃(0)
≤ 1 for all x and so

∫ αeij−αe∗+tj−t∗

−∞

h̃(x/σ)

h̃(0)
dx =

∫ −αe∗−t∗
−∞

h̃(x/σ)

h̃(0)
dx+

∫ αeij−αe∗+tj−t∗

−αe∗−t∗

h̃(x/σ)

h̃(0)
dx

≤
∫ −αe∗−t∗
−∞

h̃(x/σ)

h̃(0)
dx+ αeij + tj

The objective function in (8.1) is thus bounded above by

(8.2) NX0 +NR

∫ −αe∗−t∗
−∞

h̃(x/σ)

h̃(0)
dx+R

N∑
i=1

(αeij + tj)− C(ej , tj)− U0
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Next, define the set U =
{

u ∈ RN+1
+ :

∑N+1
i=1 u2

i = 1
}
. Any vector (ej , tj) can be uniquely

expressed as λu for some λ ≥ 0 and some u ∈ U . Given our assumptions on C(·, ·), for any
vector u it must be the case that C(λu) is increasing and convex in λ and satisfies the limit

lim
λ→∞

∂C(λu)
∂λ

= ∞. Since λR
∑N

i=1 (αeij + tj) is linear in λ, for any u ∈ U there exists a

finite cutoff λ∗ (u) such that the expression in (8.2) evaluated at (ej , tj) = λu is negative
for all λ > λ∗ (u). Since U is compact, λ∗ = sup {λ∗ (u) : u ∈ U} is well defined and finite.
It follows that the solution to (8.1) lies in the bounded set [0, λ∗]N+1.

Next, we argue that there exists a σ such that for σ > σ, the Hessian matrix of second
order partial derivatives for this objective function is negative definite over the bounded set
[0, λ∗]N+1. Define π(t, e1, ..., eN ) ≡ R

∑N
i=1

[∫ αeij−αe∗+t−t∗
−∞

eh(x/σ)eh(0)
dx
]
. Then the Hessian

matrix is the sum of two matrices, Π−C, where

C ≡



∂2C

∂e2
1

∂2C

∂e2∂e1
· · · ∂2C

∂t∂e1

∂2C

∂e1∂e2

∂2C

∂e2
2

· · · ∂2C

∂t∂e2
...

...
. . .

...
∂2C

∂e1∂t

∂2C

∂e2∂t
· · · ∂2C

∂t2


and

Π ≡



∂2π

∂e2
1

∂2π

∂e2∂e1
· · · ∂2π

∂t∂e1

∂2π

∂e1∂e2

∂2π

∂e2
2

· · · ∂2π

∂t∂e2
...

...
. . .

...
∂2π

∂e1∂t

∂2π

∂e2∂t
· · · ∂2π

∂t2


Since the function C(·) is strictly convex, −C must be a negative definite matrix. Turning
to Π, since we assume that H(·) is twice differentiable, it follows that H̃(·) is also twice
differentiable, and so

Π =
R

σh̃(0)
×


α2h̃′(αe1−αe

∗+t−t∗
σ ) 0 · · · αh̃′(αe1−αe

∗+t−t∗
σ )

0 α2h̃′(αe2−αe
∗+t−t∗
σ ) · · · αh̃′(αe2−αe

∗+t−t∗
σ )

...
...

. . .
...

αh̃′(αe1−αe
∗+t−t∗
σ ) αh̃′(αe2−αe∗+t−t∗σ ) · · ·

∑N
i=1 h̃

′(αei−αe∗+t−t∗
σ )


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For a fixed x, all of the elements in Π converge to positive multiples of h̃′(0) as σ →∞. Since
h̃′(0) = 0, we have Π→ 0 uniformly as σ →∞ within the bounded set [0, λ∗]N+1. Since C
is positive definite and Π→ 0, it follows that there exists a σ such that for all σ > σ, the
matrix Π−C is negative definite for all values of (ej , tj) ∈ [0, λ∗]N+1. Hence, the objective
function is strictly concave in the region that contains the global optimum, ensuring the
first-order conditions are both necessary and sufficient to define a global maximum. �

Proposition 2: In the two teacher contest, whenever a pure strategy Nash equilibrium
exists, it involves both teachers choosing the socially optimal effort levels (e∗, t∗).

Proof of Proposition 2:

We begin our proof by establishing the following Lemma:

Lemma: Suppose C(·) is a convex differentiable function which satisfies standard bound-
ary conditions concerning the limits of the marginal costs of each dimension of effort as effort
on each dimension goes to 0 or ∞. Then for any positive real numbers a1, ..., aN and b,
there is a unique solution to the system of equations

∂C(e1, ..., eN , t)
∂ei

= ai for i = 1, ..., N

∂C(e1, ..., eN , t)
∂t

= b

Proof : Define a function bt +
∑N

i=1 aiei − C(e1, .., , eN , t). Since C(·) is strictly con-
vex, this function is strictly concave, and as such has a unique maximum. The boundary
conditions, together with the assumption that a1, ..., aN and b are positive, ensure that
this maximum must be at an interior point. Because the function is strictly concave, this
interior maximum and the solution to the above equations is unique, as claimed. �

Armed with this lemma, we can demonstrate that any pure strategy Nash equilibrium
of the two teacher contest involves both teachers choosing the socially optimal effort levels.
Note that, given any pure strategy Nash equilibrium, both teacher’s choices will satisfy the
first order conditions for a best response to the other teacher’s actions. Further, since h(.)
is symmetric, we know that given the effort choices of j and j′,

h(α(eij − eij′) + tj − tj′) = h(α(eij′ − eij) + tj′ − tj)
In combination, these observations imply that any Nash equilibrium strategies, (ej, tj)

and (ej′ , tj′), must satisfy

h(0)
∂C(ej, tj)
∂eij

= Rαh(α(eij − eij′) + tj − tj′)

= Rαh(α(eij′ − eij) + tj′ − tj) = h(0)
∂C(ej′ , tj′)

∂eij′
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and

h(0)
∂C(ej, tj)

∂tj
= Rαh(α(eij − eij′) + tj − tj′)

= Rαh(α(eij′ − eij) + tj′ − tj) = h(0)
∂C(ej′ , tj′)

∂tj′

Our lemma implies that these equations cannot be satisfied unless eij = eij′ = e∗ for all
i = 1, ..., N and that tj = tj′ = t∗. The only pure-strategy equilibrium possible in our two
teacher contests is one where teachers invest the classroom instruction effort and common
level of tutoring that are socially optimal. �
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