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Abstract

We construct an axiomatic index of spatial concentration around a center or capital
point of interest, a concept with wide applicability from urban economics, economic ge-
ography and trade, to political economy and industrial organization. We propose basic
axioms (decomposability and monotonicity) and refinement axioms (order preservation,
convexity, and local monotonicity) for how the index should respond to changes in the
underlying distribution. We obtain a unique class of functions satisfying all these proper-
ties, defined over any n-dimensional Euclidian space: the sum of a decreasing, isoelastic
function of individual distances to the capital point of interest, with specific boundaries
for the elasticity coefficient that depend on n. We apply our index to measure the con-
centration of population around capital cities across countries and US states, and also in
US metropolitan areas. We show its advantages over alternative measures, and explore
its correlations with many economic and political variables of interest.
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1 Introduction

Spatial concentration is a very important concept in the social sciences, and in economics in

particular – both in the sense of geographical space, as studied by urban economics, economic

geography or international trade, and in more abstract settings (e.g. product or policy spaces)

that are studied in a number of different fields, from industrial organization to political economy.

As a result, a number of methods have been developed to measure this concept, from relatively

ad hoc measures such as the Herfindahl index to theoretically grounded approaches such as the

“dartboard” method of Ellison and Glaeser (1997), and also including the adaptation of indices

used to capture related concepts such as inequality (Gini coefficient, entropy measures). These

measures are well-suited to analyzing the concentration of a given variable over a “uniform”

space, in which no point is considered to be of particular importance in an ex ante sense.

In practice, however, it is often the case that some points are indeed more important than

others. In other words, we might be interested in measuring the concentration of a given

variable around a point (e.g. a city or a specific site), rather than its concentration over some

area (e.g. a region or country). Examples of circumstances in which there is specific ex ante

knowledge of the importance of a given point are not hard to come by. For instance, the

study of urban sprawl puts a lot of emphasis on the concentration of population and economic

activity around a geographical center (Glaeser and Kahn 2004). By the same token, it is often

the case that capital cities can be naturally thought of as being particularly important points:

Ades and Glaeser (1995, p. 198-199) observe that, for a number of reasons, “spatial proximity

to power increases political influence”, and hence proximity to the capital city is related to

political power.1 Gravity equations in trade, as theoretically formalized by Anderson and van

Wincoop (2003), also involves the concept of multilateral resistance, expressible as a measure

of how remote a particular country is from the ensemble of other countries. The geographical

concentration of the world around each country, in this sense, is theoretically expected and

empirically verified to affect trade flows in and out of that country.2 In yet another context, it

is often the case that the relevant concept of competition faced by a firm or producer depends

on how concentrated around it are its competitors, and in economic geography the concept

1In fact, the political importance of the capital city is vividly illustrated by the rich history of relocation
decisions, often with an important political component (Campante and Do 2007).

2In an earlier version of this paper, available upon request, we detail the surprisingly close connection between
our index and the formula of multilateral resistance.
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of “market potential” (see Fujita et al. 1999) provides an analogous example essential in

understanding the importance of a particular location on the whole distribution of individuals

across space.

The concept of spatial concentration around a point is also important in non-geographical

contexts. For instance, within a product space in which distances measure the likelihood

that a country might move from one type of product to another (Hidalgo et al. 2007), one

might be interested in how concentrated a country’s economy is around a specific industry,

say, oil production. In yet another non-geographical context, within a policy space it can be

the case that the status quo policy has special clout, as in Baron & Diermeier (2001), and

the concentration of preferences around that status quo point may be of particular interest.

Empirically, one could immediately connect to the voting records of politicians, or to the

collection of opinions from, say, the World Value Surveys.

The standard indices of concentration are not suited to capture this type of situation,

and more generally they leave aside plenty of information on actual spatial distributions. For

instance, if we are measuring the concentration of the US auto industry around Detroit, it

matters whether car plants are in nearby Ohio or in distant Georgia; however, a standard index

of concentration computed at the state level would stay unchanged if all the plants in Ohio

were moved to Georgia and vice-versa.

This paper presents an axiomatic method for generating a measure that is suited for such

situations – what we call a centered index of spatial concentration. We choose an axiomatic

approach because we want to build a common language that can codify the concept of spatial

concentration around a point across a broad range of applications – ultimately, the concentration

of any variable in any space of economic interest. This search for generality leads us to look for

basic properties that are robust across different contexts, as opposed to model-specific.

Following this principle, we start by designating two basic properties that such an index

ought to display. The first property is Decomposability, whereby the index can be decomposed

into the measures obtained for any regions into which the space can be partitioned. This

facilitates computation and interpretation, and will ensure that the index is founded at the

individual level (in the sense that the index is the sum of the impact of every individual

observation in the distribution it describes).3 The second property is Monotonicity, whereby

3Here we follow Echenique and Fryer’s (2007) approach to their axiomatically-based segregation index. As
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the index should increase when individual observations are moved closer to the point of interest

to which the index refers (henceforth the “capital point”, or simply the “capital”). We show that

these two properties already define a class of measures consisting of the sum of any decreasing,

integrable, real-valued function (which we call “impact function”) whose only argument is the

distance between individual observations and the capital.

We further refine the class of admissible CISC (Centered Index of Spatial Concentration) by

introducing three additional axioms. Order Preservation prescribes the very natural property

of invariance of ranking between different distributions of individuals when the unit, or scale, of

distance measure is arbitrarily changed – in other words, the ranking of two distributions should

not change based on whether distances are measured in miles, kilometers, or millimeters. We

show that this axiom implies that the impact function of an admissible CISC must be isoelastic

(constant relative risk aversion). The final two axioms impose boundaries on the elasticity

coefficient of the impact function. The axiom of Convexity in turn requires that the movement

of individual observations have a greater marginal impact on the measure of concentration the

closer the observations are to the capital – population movements in the outskirts of the capital

city should matter more for the concentration of population around the capital than the same

movements occurring in a distant corner of the country. Finally, Local Monotonicity specifies

that the index must not decrease when a uniform group of individuals move closer to each other.

We show that, in any n-dimensional Euclidian space, these two axioms imply that the elasticity

coefficient, Rh, must lie between 0 and n− 1. The limit case when Rh = n− 1 corresponds to a

particularly interesting index, dubbed Gravity-based CISC, that can be interpreted as eliciting

the “gravitational pull” of the capital separately from possible local impacts of other points.

The literature has grappled with the question of devising a centered measure of spatial

concentration. The simplest type of measure computes the share of observations that are within

a certain distance of the capital point of interest – for instance, Ades and Glaeser (1995) use the

share of a country’s population that lives in that country’s main city. These measures obviously

discard a lot of information, by attaching zero weight to all observations falling outside of the

designated boundary. Our measure, in contrast, incorporates that information while keeping

the flexibility of allowing for different weights according to the application, as parameterized

we will discuss later, this does not preclude interaction between individual observations in determining the
index.
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by the elasticity coefficient.

Other approaches have emerged, for instance in the literature on urban sprawl, which has

tried to measure the “centrality” of “mononuclear” urban areas – namely, the degree to which

development in urban areas is concentrated around a central business district. Galster et al.

(2001), for instance, measure this centrality by the inverse of the sum of the distances of each

observation to the center. Another example is Busch and Reinhardt (1999), who measure the

concentration of population around a geographical center by adding up a negative exponential

function of distance. While certainly useful, the approaches in the literature have been ad hoc,

and hence limited by what an intuitive grasp of the properties of a given space will provide. This

intuitive grasp quickly reaches its limits when we move away from specific, concrete applications.

Our axiomatic approach, in contrast, guarantees basic desirable properties for our index in any

n-dimensional Euclidian space, which ensures wide applicability, to any situation that can be

mapped onto such a space. It provides a solid framework to analyze the properties of any

centered measure of spatial concentration, and compare them to our index. In particular, we

can guarantee that any other measure will violate one or more of the desirable properties that

we have spelled out. We can also show how our index relates naturally to the literature on the

measurement of inequality, segregation (e.g. Echenique and Fryer 2007), polarization (Duclos

et al. 2004), and even riskiness (Aumann and Serrano 2008).

The second part of the paper provides an example of empirical implementation of our mea-

sure, by computing an index of population concentration around capital cities across countries.

Since we are working in a two-dimensional space, we consider the two polar cases of our class

of admissible CISC – where the elasticity coefficients take the values of zero (linear), which

we denote L-CISC, and one (logarithmic), which corresponds to the Gravity-based CISC, or

G-CISC. We show that our index provides a more sensible ranking of countries than currently

used ad hoc alternatives, and that it uncovers a negative correlation between the size of popu-

lation and its concentration around the capital city that is not detected by those alternatives.

Throughout our empirical implementation, we also show that the picture that would emerge

from using a non-centered measure of concentration such as the location Gini coefficient as a

proxy for the centered notion would in fact be very distorted.

In addition, motivated by the aforementioned idea that political influence diminishes with

distance to the capital, we consider the correlation between population concentration and a
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number of measures of quality of governance. We show that there is a positive correlation

between concentration and the checks that are faced by governments, and that this correlation

is present only in non-democratic countries.4 The statistical significance of this correlation is

substantially improved by using our index instead of the ad hoc alternatives.

We also illustrate how our index can shed light on the issue of the choice of where to

locate the capital city, which goes back at least to James Madison during the debates at the

US Constitutional Convention of 1787. We show that there is a pattern in which both very

autocratic and very democratic countries tend to have their capital cities in places with relatively

low concentration of population. Inspired by the Madisonian origins of this debate, we extend

our implementation by computing our index for US states, and finish it off by running the

computations for US metropolitan areas.

The remainder of the paper is organized as follows. Section 2 presents the axioms, charac-

terizes the unique class of indices satisfying them, and discusses other properties of the index,

as well as how it compares to alternative measures of concentration and to the measurement of

inequality, segregation, polarization, and riskiness. Section 3 contains the empirical implemen-

tation and correlation analysis, and Section 4 concludes.

2 The Centered Index of Spatial Concentration

2.1 Main definitions

We start by spelling out the definitions of the main mathematical objects and transformations

that are required in constructing our index. Since our main concern is the spatial concentration

of a variable – which can be thought of as population, economic activity, etc. – around a center,

we start with the definition of centered distributions and subdistributions in Euclidian spaces.

For mathematical convenience, we use smooth, positive, compact-support distributions in the

space Rn as an approximation of real world distributions (of population, economic activities,

preferences over policy, etc.).

Definition 1 (Centered distribution and subdistribution) A centered distribution is a

couple of (i) a positive integrable distribution µ of compact support on Rn, and (ii) one point

4This is consistent with Campante and Do (2007), who present a theory of revolutions and redistribution
where concentration is key in increasing the redistributive pressures faced by non-democratic governments.
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C in Rn. C is called the capital point of the distribution.5

A distribution µ is call normalized if
∫
dµ = 1.

A distribution ν is a subdistribution of the distribution µ if ν is positive, the support of ν is

a subset of the support of µ, and ν(A) ≤ µ(A) for every ν-measurable A. We denote ν ≺ µ.

In words, a subdistribution of the distribution µ is a distribution dominated and majored by

µ, or equivalently, ν ≺ µ if and only if ν is dominated by µ and both ν and µ− ν are positive

distributions.

This definition designates a special point of interest, the capital point (e.g. the capital

city). Note also that it defines a normalized distribution of unit size. This is because, generally

speaking, we want to be able to disentangle features of the distribution that are distinct from

concentration per se, and most importantly among these features is the size of the population

under consideration. We will see that it is always possible to normalize the distribution so that

it is re-scaled to a unit size, and we can focus without loss of generality on such normalized

distributions. This is what we will do in the remainder of the paper.

It is now straightforward to define the centered index of spatial concentration (henceforth

referred to as CISC), which is the object we are ultimately interested in:

Definition 2 (Centered Index of Spatial Concentration) A centered index of spatial con-

centration (CISC) I is a real, continuous function defined on the set of centered distributions,

denoted as I(µ,C).

Related to the concept of spatial concentration, we define the required transformations on

distributions, namely squeeze (homothety) and rotation. A squeeze brings observations from

parts of the distribution closer (when the scaling ratio is positive and less than one) to a center

point by the same proportion. A rotation turns parts of the distribution around the center

point by the same angle. These (along with reflection, unimportant for our purposes) are

fundamental similarity transformations, which preserve the “shape” of objects.

Definition 3 (Squeezes, or homothetic transformations) A squeeze of origin O ∈ Rn

and ratio ρ ∈ R, denoted S(O,ρ), brings any point X closer to O by a factor of ρ.

5We use the term “capital point”, and not “center”, to emphasize that said point need not be located at any
spatial concept of a center, such as a baricenter or the center of a circle.
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Definition 4 (Rotations, or orthogonal transformations) 6 A rotation of origin O ∈ Rn

and rotation matrix M ∈ Rn,n, denoted R(O,M), moves any point X to a point X′ such that:

X′ −O = M(X−O),

where M satisfies MM t = Idn (M is orthogonal). It preserves the distance to the origin O.

2.2 Basic Properties: Decomposability and Monotonicity

We start with two basic properties that we want our index to display: decomposability and

monotonicity (with respect to the capital point of interest). Decomposability is a convenient

property oftentimes sought in the literature of inequality indices (e.g. Bourguignon 1979). In

our case, the idea is that, if the space under consideration is partitioned into any number of

different regions, we are able to compute the index separately for each region, and from those

indices obtain the overall measure for the entire population. More precisely, our first axiom

establishes decomposability:

Axiom 1 (Decomposability) The concentration measure of the sum of two distributions with

disjoint supports is the sum of the concentration measures of each distribution.

Formally:

I(µ+ ν,C) = I(µ,C) + I(ν,C)∀µ, ν, Support(µ) ∩ Support(ν) = ∅. (1)

This axiom means that the measure of concentration of a distribution can be (additively) de-

composed into the measures of concentration of its subdistributions defined over non-overlapping

regions of the original space. Figure 1 depicts this for the two-dimensional case in which the

space is subdivided into three regions: The concentration index around point C is the sum of

the concentration measures of regions 1, 2, and 3 around that point. For instance, the concen-

tration of the US population around Washington, DC can be decomposed into the concentration

of the population of each state around that capital point.7

6More precisely, we define orthogonal transformations, of which rotations are a subset in two- and three-
dimensional spaces. Our use of the term “rotations” is meant to convey the intuition of what the transformation
achieves, but it does not apply, rigorously speaking, when the dimension is higher than three.

7An alternative, stronger formulation for the decomposability axiom would impose that the concentration
measure of the sum of two distributions is the sum of the concentration measures for each distribution for any
two distributions, and not only for those with non-overlapping domains. It would mean that when a population
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C

Region 2

Region 1

Region 3

Figure 1: Decomposability

Monotonicity is a very basic property that ought to be satisfied by any reasonable index of

concentration: the index should increase when population is moved closer to the capital point.

We now introduce the two fundamental axioms that will jointly deliver this property – Axioms

2 (squeeze monotonicity) and 3 (direction invariance, or isotropy):

Axiom 2 (Squeeze Monotonicity) Squeezing a distribution closer to the capital point in-

creases its measure of concentration.

Formally:

I(µ,C) < I
(
S(C,ρ)(µ),C

)
∀µ, ρ < 1.

Axiom 3 (Direction Invariance) Rotating a distribution around the capital point does not

change its measure of concentration.

can be split into groups A, B, and C – say, along ethnic lines, income, or any other arbitrary criterion – we
can compute the index separately for each group, and from those three indices be able to obtain the overall
index for the entire population. (For instance, the concentration of the US auto industry around Detroit can
be decomposed into the concentration of American auto makers and that of their foreign counterparts; the
concentration of the population of Belgium around Brussels can be decomposed into the concentration of the
Flemish and that of the Walloons; and so on.) This approach would lead us to the same class of indices, but
it rules out from the start the possibility of interaction between individual observations. The weaker version
of the axiom, in contrast, allows for local interactions between individuals, as individuals living in the same
location may experience economies or diseconomies of scale in terms of their influence towards the capital. In
other words, we need not impose from the start that the impact of each individual observation is independent
from that of its neighbors.
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Formally:

I(µ,C) = I
(
R(O,θ)(µ),C

)
∀µ.

To illustrate the implications of these axioms, let us consider the population of a country

and how it is distributed over the country’s territory. Axiom 2 implies that, if the entire

population moves closer to the capital by a given proportion, say one half, then concentration

must increase. However, it applies only to moves along the respective rays going through the

capital and the original locations. (This is depicted, in two dimensions, in Figure 2.) Axiom

3, on the other hand, means that if the entire population of a country moves 20 miles to the

right, while keeping everyone’s initial distance to the capital unchanged, then concentration

must remain constant. In other words, the direction from the capital city to each location

is irrelevant to concentration. (This is depicted in Figure 3.)8 Taken together, these two

axioms mean that a movement that brings the population closer to the capital point, along any

direction, must increase concentration, while it must decrease concentration if the population

is moved farther away from the capital city. In other words, they deliver monotonicity with

respect to the capital.

Note that here the convenience of the decomposability property delivered by Axiom 1 comes

to the forefront: it means that Axioms 2 and 3 can be understood in terms of the movements

of individuals in the population, which can enhance the intuition behind them. Axiom 2 means

that, if we take a specific individual in the population who lives, say, 200 miles away from the

capital city, then if she moves to live some 10 miles towards the capital city, concentration

should increase. Axiom 3 in turn guarantees that, if that individual moves to another place

of equal distance (200 miles) to the capital city, then concentration should not change, or in

other words, the direction from the capital city to each individual’s location is irrelevant to

concentration. The two axioms together mean that if an individual moves closer to the capital,

along any direction, then concentration must increase.

These three basic axioms already have a powerful implication, as shown in Proposition

1. To understand this proposition, let us first introduce some notation for the impact of an

8In certain realistic cases, one could argue that not all directions are equal – say, because of the presence of a
road that makes it easier to move in some direction, or of a mountain that makes it harder to move in another.
However, this concern does not invalidate our framework, as one could rescale the dimensions accordingly.
Further discussion on such conditions will follow later in the text, but this highlights the advantages of working
with general and abstract Euclidian spaces.
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Figure 2: Squeeze Monotonicity

C

Figure 3: Rotation Invariance
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individual at location x on the capital C, by defining the impact function h of the locations x,

C. Proposition 1 then states that the CISC must be the (integral) sum of the impacts of each

individual observation, and that the impact of each individual must be expressed as a function

of solely the distance to the capital point of interest, i.e. h(|x − C|). In addition, it must be

the case that h(d) is decreasing in d. More formally:

Proposition 1 Axioms 1, 2 and 3 define the following class of population concentration in-

dices:

I(µ,C) =

∫
h(|x−C|)dµ, (2)

with h(d) being a decreasing function on R+ so that the right hand side’s integrand is integrable

on Rn.

Proof of Proposition 1. See Appendix.

This proposition establishes two separate properties. The first is additivity : the CISC is the

sum of the impacts of individual observations. The proof of the proposition shows that this is

directly related to Axiom 1. The second property, that the impact function is a (decreasing)

function of distance only, is clearly related to the property of monotonicity that is delivered by

Axioms 2 and 3.9 Finally, Proposition 1 also makes clear that normalization, or multiplication

of the population distribution µ of a factor k will change the CISC by exactly the same factor.

This enables us to disentangle concentration from population size; in other words, it justifies

our focus on normalized distributions, i.e. µ such that
∫
µ = 1, without loss of generality.

2.3 Refinement: Order Preservation, Convexity and Local Mono-
tonicity

Proposition 1 shows that the first three axioms impose non-trivial restrictions on the class of

admissible indices. However, it still leaves us with a fairly large class. After all, any decreasing

function of the distance between individual points and the center C would be an admissible

impact function h(d): a few obvious suggestions of standard functional forms include a step

function, and logarithmic, exponential or polynomial (including linear) functions, among others.

9The three axioms interact closely in implying that the impact function, which from Axiom 1 alone could be
defined in general as a function of the locations x, C, and also the local population density µ(x), can be defined
simply as a function h(x,C).
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In this section we will introduce three natural properties that would drastically restrict this

class of indices into a very manipulable set of measures.

2.3.1 Order Preservation: Isoelasticity

Let us start by considering a property that has to do with what happens when we change the

units in which distances are measured. Suppose we have two distributions, (µ,C), and (ν,C),

and the distances between points are measured in miles. If µ is deemed to be more concentrated

around C than ν, it stands to reason that this relative ranking should not change if distances

were instead measured in kilometers. In other words, changing the unit of distance measure

should not change the ordering of distributions by the CISC. This change in units is isomorphic

to a squeeze of the distribution around the capital point of interest by a factor of ρ, where ρ > 0

gives us the conversion rate between the different units. (Obviously, a “squeeze” in which ρ > 1

is actually an expansion around the capital point.) As a result, our property affirms that the

relative order of different distributions remains unchanged when they are squeezed or expanded

around the capital.

Axiom 4 (Order Preservation) The ordering of two distributions of equal population by

their CISC is not changed after re-scaling measures of distance.

Formally: Given two distributions µ and ν of the same total mass (
∫
dµ =

∫
dν), if I(µ,C) ≥

I(ν,C), then I(S(C,ρ)(µ),C) ≥ I(S(C,ρ)(ν),C),∀ρ > 0.

As it turns out, adding this very natural axiom to the previous three has powerful implica-

tions in terms of pinning down a class of admissible CISCs. More precisely, Axiom 4 defines

a specific subclass of impact functions within the class defined by Proposition 1 – it is that of

isoelastic impact functions, as stated in the following Proposition:

Proposition 2 (Isoelasticity) Axiom 4 and Proposition 1 imply that the impact function

must be isoelastic (constant relative risk aversion), i.e. that it is h(d) ≡ αdγ + β or h(d) ≡

α log(d) + β.

Proof of Proposition 2. See Appendix.

In other words, if we define Rh(d)
def
≡ −h′′(d)d

h′(d)
, the elasticity of the marginal impact function

with respect to distance10 – or alternatively, the “coefficient of relative risk aversion” of the

10Technically, Proposition 2 also affirms the infinite differentiability of the impact function h, so the expression
of Rh(d) is meaningful.

12



impact function – then Proposition 2 establishes that our class of admissible CISCs must have

Rh(d) = Rh, a constant. (Obviously, we have Rh = 1− γ, and the log function is the limit case

when γ → 0.)

2.3.2 Convexity and Local Monotonicity: Boundary Restrictions

The class of admissible indices is further restricted by considering two additional properties

that a CISC should display. The first property takes a movement akin to the one considered in

Axiom 2, bringing an individual observation closer to the capital along the ray going through

her initial location, and asks what happens when we vary the initial point of this movement.

In other words, if we move an individual 10 miles closer to the capital, does it matter whether

she started 20 or 200 miles away? Or, to take a concrete example, if we want to measure the

concentration of Russia’s population around Moscow, should a given movement of individuals

matter more or less whether it happens in the outskirts of Moscow or in Vladivostok in the

far east corner of the country? It seems natural to assume that the former case should matter

more than the latter. We thus posit that the marginal movement is (at least weakly) more

important when the individual is close to the capital than when she is far away – that is to say,

as an individual moves towards the center, not only her level of impact, but also her marginal

impact on concentration is not decreasing. This requirement can be written as follows:

Axiom 5 (Convexity) The marginal change in the impact of an individual is not increasing

in his distance to the center.

Formally:

h′′(d) ≥ 0.

We also impose restrictions on how the index behaves with respect to any other point in the

space, besides the capital. Our next property has to do with changes of the index in response

to squeezes of the distribution around any arbitrary point in the space, not restricted to the

capital. Consider individual observations that are uniformly distributed around a given point

T . Similar to Axiom 2, we posit that our index of concentration should not decrease when those

individual observations are squeezed together around a given point T , as depicted in Figure

4. The intuitive idea is that, if individuals move closer to each other, we would expect that

13



T C

Figure 4: Local Monotonicity

concentration will not go down as a result. Formally, this can be captured as follows.11

Axiom 6 (Local Monotonicity) For any point T, the centered index of spatial concentration

does not decrease when a uniform subdistribution over a circumference centered on T is squeezed

around that point.

Formally:

I(η,C) ≤ I(S(T,ρ)(η),C)∀ρ < 1,∀η evenly-distributed circle distribution of center T.12

It turns out that adding these two axioms to our previous set of basic axioms has quite

powerful implications in terms of further restricting the class of admissible CISCs. These

implications are immediately apparent in the simple case of the real line R. Axiom 6 would

then amount to saying that when two individuals at distances d1 < d2 on the same side of

the center C come closer to each other, our index of concentration should not decrease, or

11There are two noteworthy points in this axiom. First, one could not relax the requirement of the uniform
subdistribution: the counterexample is that a squeeze of a singleton towards point T but away from the capital
C would violate the previous Axiom 2. Second, in the case where the circle (the support of the subdistribution
η) that is squeezed around T also contain C in its interior, Axioms 2 and 3 automatically lead to Axiom 6
because all individuals on the circle are moving closer to C, so the last axiom adds nothing to the specification.
The new axiom only imposes further restrictions on the class of admissible impact functions in the case where
that circle does not contain C.

12In the general case of Rn, the “circle” actually means a sphere of center T.
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equivalently, that 0 ≥ h′(d1) ≥ h′(d2). Yet Axiom 5 implies that h′(d1) ≤ h′(d2) ≤ 0. Thus

h′(d) is constant, i.e. the impact function h must be linear: h(d) = αd + β, α < 0. We have

thus pinned down a unique class of admissible CISC, with a linear impact function, for the

special case of the real line.

Our axiomatic approach enables us to be much more general. Quite remarkably, we can

show (using harmonic function theory) that the basic intuition of the one-dimensional case

extends to any n-dimensional Euclidian space, as our Axioms 5 and 6 define a specific subclass

of impact functions within the class defined by Proposition 1:

Proposition 3 (Boundary Restrictions) Within the class of centered indices of spatial con-

centration on Rn defined in Proposition 1, Axioms 5 and 6 determine the following subclass of

indices:

I(µ,C) =

∫
h(|x−C|)dµ, (3)

with h(d) being a decreasing function of distance and 0 ≤ Rh(d) ≤ n−1, where Rh(d)
def
≡ −h′′(d)d

h′(d)
.

Furthermore, when Rh(d) = n− 1, the inequality in Axiom 6 becomes an equality.

Proof of Proposition 3. We sketch the two steps of the proof, leaving the mathematically

rigorous proof to the appendix. First, we show that Axiom 6 is equivalent to a special condition:

the impact function needs to satisfy the Laplace inequality, namely that the sum of all second-

order partial derivatives must be non-positive:

4f def
=

∂2f

∂x2
1

+
∂2f

∂x2
2

+ . . .+
∂2f

∂x2
n

≤ 0. (4)

Second, we show that the solution of (4), combined with Axiom 5, are equivalent to the results

of Proposition 3.

Proposition 3 then specifies that Axioms 5-6 set the boundaries for the impact function based

on its elasticity coefficient. These boundaries are especially tight when the dimensionality of

the space under consideration is relatively low, i.e. when n − 1 is small. In particular, on the

line R, since n − 1 = 0, Axioms 5-6 allow only for linear impact functions, as we had argued

above. On the plane R2 the boundaries are linear (where Rh = 0) and logarithmic functions

(where Rh = 1).
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2.4 Characterization of the Class of Admissible CISCs

We are now ready to characterize our class of admissible CISCs. Proposition 1 establishes that

an index that satisfies decomposability and monotonicity has to be represented by the sum of

the impacts of individual observations, which are in turn captured by an impact function that

is a (decreasing) function of the distance to the capital point of interest only. Propositions 2

and 3 then establish that the key element of that impact function is Rh(d), which describes the

elasticity of the marginal impact of individual observations with respect to their distance from

the capital point. An index that satisfies order preservation must have a constant elasticity

(Proposition 2), and an index that satisfies convexity and local monotonicity must have that

elasticity bounded between zero and an upper limit dependent on the dimensionality of the space

under consideration (Proposition 3). When we combine the three propositions, we immediately

obtain the following Characterization Theorem:

Characterization Theorem (Class of Centered Index of Spatial Concentration) Axioms

1 to 6 define the class of Centered Index of Spatial Concentration as:

I(µ,C) =

∫
h(|x−C|)dµ,

h(d) being a decreasing function of distance with a constant coefficient of relative risk aversion

Rh(d)
def
≡ −h′′(d)d

h′(d)
≡ Rh such that 0 ≤ Rh ≤ n − 1. In other words, h(d) = αdγ + β for

γ ∈ [2− n, 1] or h(d) = α log(d) + β (in case n ≥ 2).

Particularly, in the plane R2 the admissible CISCs are of the form I(µ,C) =
∫

(α|x −

C|γ + β)dµ(x), γ ∈ [0, 1], α < 0 or I(µ,C) =
∫

(α log(|x − C|) + β)dµ(x), α < 0. The log

impact function is the limit case when the coefficient Rh = 1. It exhibits additional properties

considered in the next subsection.

2.4.1 Choice of Rh and a special case: the Gravity-based CISC

The practical implementation of the CISC requires a choice of Rh, the (constant) coefficient

of relative risk aversion of the impact function h. The natural focal points are the extremes

of the admissible range of coefficients, Rh = 0 and Rh = n − 1, on which we will concentrate

our empirical implementation. The latter corresponds to the case of equality in Axiom 6.13 In

13We are focusing on the case in which the squeezed circle does not contain the center C in its interior.
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other words, any local force of concentration at an arbitrary point T that moves people situated

evenly on a circle around T towards it does not affect the global measure of concentration

around C. The index thus measures the “gravitational pull” exerted by the capital point, while

disentangling from the data any impact of the presence of other local forces. It is invariant

to changes in the degree of attraction, or “gravity”, of any other points. An analogy comes

from the gravitational pull of the Sun over the Earth, which is measured focusing only on the

distance between the two bodies and their characteristics (mass), leaving aside the influence of

all other planets.14 We define this “Gravity-based CISC” (G-CISC) as follows.

Property 1 (Gravity) For any point T, the CISC does not change when a uniform subdis-

tribution over a circumference centered on T is squeezed around that point.

Proposition 4 (The Gravity-based CISC) Axioms 1-3 and Property 1 pin down the Gravity-

based CISC, or G-CISC, with the following impact function:

h(d) =

 αd+ β ∀d > 0, α < 0 if n = 1
α log d+ β ∀d > 0, α < 0 if n = 2
αd2−n + β ∀d > 0, α > 0 if n ≥ 3

.

Proof of Proposition 4. Immediately follows from the Characterizaton Theorem.

Robustness to Measurement Errors The G-CISC brings an additional property that

is very convenient in applications. In practice, the information used to compute the index

typically comes in a grid format, where we only know the aggregate information of each cell.

This introduces a source of measurement error. The G-CISC is orthogonal to such measurement

error, thanks to the Property of Gravity. Indeed, if the population is symmetrically distributed

within each cell, the Property of Gravity implies that we could replace that population with

one mass point at the center.

14The analogy with gravity is actually deeper than what might seem at first sight: there is a connection
between the G-CISC and the concept of potential in physics, which refers to the potential energy stored within
a physical system – e.g. gravitational potential is the stored energy that results in forces that could move objects
in space. In fact, our G-CISC can be interpreted, roughly speaking, as a measure of the potential associated with
the capital point of interest. This is because the G-CISC is the index that satisfies the Laplace equation, which
is stated as an inequality in the proof of Proposition 3, and potential is defined by a solution to that equation –
those readers familiar with the physics of the concept will have noticed the connection from the use of harmonic
function theory. To see this connection more clearly, note that in the “real life” three-dimensional space of
Newtonian mechanics, the potential of a point with respect to a mass is the sum of inverse distances from that
point to each location in the mass – and since the gravity force is the derivative of potential, it is proportional
to the inverse of the squared distance, as one may recall from the classical Newtonian representation. Our
G-CISC in three-dimensional space is also the weighted sum of the inverse of distance, and thus coincides with
the concept of potential in physics.
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2.5 Normalization

A crucial feature of the CISC defined in the Characterization Theorem is its flexibility: as long

as it is applied to a distribution µ that is defined over a Euclidian space of any dimension,

its desirable properties are ensured. This flexibility means that in any application it will be

possible to shape the index in order to make it most suitable to the specific goals of the analysis.

This can be done both by conveniently redefining the distribution under analysis, as we had

indicated by focusing on normalized, unit-size distributions in our theoretical discussion, and

by making use of the degrees of freedom afforded by the Characterization Theorem with regard

to the choice of parameters α and β.

In order to see this more clearly, and motivated by our empirical implementation, let us fix

ideas by focusing on a situation where our index is applied to the concentration of the population

of a given geographic unit of analysis (e.g. a country) around a point of interest (e.g. the capital

city), in two dimensions. Furthermore, we start by focusing our interest on the special case

of the G-CISC – which means that the impact function is given by h(d) = α log(d) + β. (It

is straightforward to extend the following analysis to other contexts.) In this context, we can

think of any given country as a centered distribution (µ,C). The first thing to note is that

there is often other information, in addition to population size, that we may want to disentangle

from population concentration per se, e.g. the geographical size of the country. In addition,

we would like to have an easily interpretable scale. A convenient way would be to restrict the

index to the [0, 1] interval, with 0 and 1 representing situations of minimum and maximum

concentration, respectively. The latter can be defined simply as a situation in which the entire

population is located in the center of interest; the former is a case in which it is located as far

from the center as possible, where “as far as possible” is suitably defined.

For these purposes, we want a normalized G-CISC. Indeed, we can proceed with this normal-

ization in two steps: (1) further normalize the distribution µ, transforming it into a distribution

µ
′

that contains only the information we are interested in; and (2) set the parameters α and β.

The specifics of each of these steps will depend on how the scale is defined, and in what follows

we discuss a few benchmark examples:

Maximum distance across units of analysis A first approach is to set the minimum

concentration based on the maximum possible distance between a point and the capital city in
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any of the countries for which the index is to be computed. In this case, the index is evaluated

at zero if the entire population lives as far away from the center as it is possible to live in any

country.15 (As a result, only one country, the one where this maximum distance is registered,

could conceivably display an index equal to zero.) This will be appropriate if we want to

compare each country’s concentration against a single benchmark.

In order to achieve this, the two steps are:

1. The standard normalization of the distribution to separate population size from concen-

tration is sufficient here: Normalize the distribution by dividing µ by population size,∫
d
µ, which means that we will be taking each country to have a population of size one.

2. Set:

(α, β) =

(
− 1

log(d)
, 1

)
where d ≡ maxxi,i |xi −Ci| is the maximum distance between a point and the center in

any country. This means that we take the (logarithm of the) largest distance between a

point and the capital in any country to equal to one.

Maximum distance within unit of analysis Another possibility is to evaluate the index

at zero for a given country if its entire population lives as far away from the capital as it

is possible to be in that particular country. This is appropriate if we want to compare each

country’s actual concentration to what its own conceivably lowest level would be.

With that in mind, the two steps are now:

1. Besides the standard normalization by population size,
∫
d
µ, normalize by log(di), where

di ≡ maxx |x−Ci| is the maximum distance between a point in country i and that

country’s capital. This means that we not only take each country’s population to be of

size one, but also that we take the (logarithm of the) largest distance between a point

and the capital of that country to be one as well.

2. Set:

(α, β) = (−1, 1) .

15For instance, in the cross-country implementation later in the paper, the largest recorded distance from the
capital city within any country is between the Midway Islands and Washington, DC, in the United States.
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Our empirical implementation will illustrate both cases of normalization and their different

interpretations.

2.6 Comparison with Other Indices

Comparison with other Centered Indices The first obvious comparison is to other cen-

tered indices of spatial concentration used in the literature. Some widely used measures of

spatial concentration discard a lot of information, by attaching zero weight to observations

located at more than a certain distance from the capital point. One such example of partic-

ularly stark nature is the share of individual observations that is right on the capital point; a

typical application of such a measure is the share of population of a country that lives in the

capital city, or in the main city in that country, as in Ades and Glaeser (1995). The obvious

advantage of our approach is that it incorporates all of that information, with enough flexibility

to allow for different weights according to the application – as parameterized by the elasticity

of the marginal impact function with respect to distance (as in Proposition 2): the greater that

elasticity, the less weight is attached to observations that are farther away from the capital

point.

However, other widely used measures also incorporate that information. For instance, Gal-

ster et al. (2001) use the inverse of the sum of the distances of each observation to the center

as a measure of “centrality” in the context of studying urban sprawl. This measure is related

to a limit case in our framework where Rh = 0, i.e. the impact function h is linear, though the

inverse operation used by Galster et al. erases the nice properties of additivity and decompos-

ability. While certainly useful, such ad hoc approaches are limited by what an intuitive grasp

of the properties of a given space will provide. This intuitive grasp quickly reaches its limits

when we move away from specific, concrete applications. Our axiomatic approach, in contrast,

guarantees basic desirable properties for our index in any n-dimensional Euclidian space, which

ensures wide applicability, to any situation that can be mapped onto such a space. Our ap-

proach thus provides a single “language” to codify the concept of spatial concentration around

a capital point. In that sense, our CISC is analogous to the Gini coefficient as a measure of

inequality: it might be less suited than some other measure within a given specific application,

but it has robust properties that make it a good measure across a wide variety of applications,

and as such it provides a universal language to talk about the concept at hand. On the other
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hand, it still retains considerable flexibility – in that it allows for different coefficients Rh and

different normalization procedures, as described in the previous subsection – that can help us

tailor the index to specific applications, without losing the desirable general properties.

Comparison with Non-Centered Indices of Concentration Besides the obvious distinc-

tion that our index is built on the concept of a particular “center”, it also contains considerably

more spatial information than non-centered indices. For instance, let us consider the many in-

dices of concentration that are based on measures first designed to deal with inequality – such

as the location Gini coefficient calculated on a distribution of cells.16 Such measures do not

take into account the actual spatial distribution. Indeed, consider a thought experiment where

half of the cells contain exactly one individual observation, and the other half contain zero

observations. Such indices do not make any distinction between a situation in which the former

cells are all in the East and all the latter cells are in the West, and another situation in which

both types are completely mingled together in a chess-board pattern. Generally speaking, this

type of measure fails to take into account the relative positions between the cells, which can

be highly problematic in many circumstances.17 In addition, these measures are also highly

non-linear with respect to individuals, because they contain a function of the cell distribution.

In that sense, they are not grounded at the individual level in the way our CISC is.

These differences are highlighted by the fact that we can actually derive a non-centered index

from our centered measure. We can do so by averaging the centric index over all possible centers

(i.e. all points) within the support of the distribution, a feasible task in most applications. On R

(say, applied to individual income distributions), this aggregative, non-centered index coincides

with the much familiar Gini index of inequality. For now, we leave further explorations on this

subject for future work. In any case it is not possible to follow the reverse path and obtain

a centered index from a given non-centered measure. This underscores the versatility of our

approach.

16For instance, the location Gini is used, inter alia, in the context of economic geography (Krugman 1991,
Jensen and Kletzer 2005), studies of migration (Rogers and Sweeney 1998), political economy (Collier and
Hoeffler 2004).

17The same can be said of cruder measures of concentration, such as population density. A related index that
does use spatial information is the measure of compactness developed by Fryer and Holden (2007).
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Comparison with Related Indices: Inequality, Segregation, Polarization, Riskiness

Finally, it is worth noting the links between our index and other indices designed to measure

other aspects of distributions, be they spatial or not. The connection with inequality measures

has already emerged from the very fact that such measures are used to capture spatial concen-

tration, and we have noted that a natural extension of our approach to a non-centered setting

highlights an interesting connection with the Gini coefficient. The connection can be pushed

further when we realize that a Lorenz-curve-type concentration curve could be formed from

spatial distributions: taking the example of population, we can sort individuals according to

the distance from the center within which they are located. These curves could be ranked when

one dominates another, which can be seen along the lines of Proposition 1: if one distribution

“Lorenz”-dominates another, the former’s corresponding index would be higher than the lat-

ter’s, for any functional form of the impact function satisfying the specification of Proposition

1. It is well-known, however, that this order is not complete. In that regard, our index im-

plies a population-weighted measure for a complete ranking of concentration curves, which in

two-dimensional space is based on the log-scale of distance. This connection is exactly akin

to the one emphasized by Echenique and Fryer (2007) with respect to their segregation index:

any index that intends to rank distributions that are not in a Lorenz-dominance relationship

implies choosing a weighting system, and our axioms give us a well-founded reason to prefer one

system to other alternatives. Another analogy could be drawn with the work on polarization

by Duclos, Esteban and Ray (2004) who also provide a particular order of the Lorenz curves

that emphasizes concentration around several “poles” rather than around one unique capital.

Another interesting connection is with the measurement of riskiness. A desirable property

of a measure of riskiness, as spelled out by Aumann and Serrano (2008) is that it respects first-

and second-order stochastic dominance. If we take our distribution to represent the probability

that some individual observation is randomly located at a certain point relative to the capital

point of interest (not unlike the “dartboard” approach in Ellison and Glaeser 1997), we can

take Axioms 2 and 3 to imply that the index respects FOSD. In other words, we can say that a

distribution FOSDs another distribution if, for any distance x from the capital point C, there is

a greater probability of an individual observation locating closer to C than x under the former

than under the latter; Axioms 2 and 3 guarantee that the former distribution will be measured

by the CISC as having greater concentration. We can even go further and state that our Axiom
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6 captures a generalization of SOSD for Euclidian spaces with dimension greater than 1; it is

clearly equivalent for the case of a unidimensional space.

3 Application: Population Concentration around Capi-

tal Cities

Having established our CISC and discussed its properties, we now move on to illustrate its

applicability in practice. We focus on the distribution of population around capital points of

interest – capital cities across countries and across US states, and the political center (e.g. the

location of city halls) in US metropolitan areas. We will discuss descriptive statistics and basic

correlations with variables of interest, and also how the index can be used to shed light on

competing theories, using as an example the determinants of the location of capital cities.

3.1 Cross-country implementation

In our first application, we calculate population concentration around capital cities across coun-

tries in the world. We use the database Gridded Population of the World (GPW), Version 3

from the Socio-Economic Data Center (SEDC) at Columbia University. This dataset, published

in 2005, contains the information for the years 1990, 1995 and 2000, and is arguably the most

detailed world population map available. Over the course of more than 10 years, these data are

gathered from national censuses and transformed into a global grid of 2.5 arc-minute side cells

(approximately 5km), with data on population for each of the cells in this grid. 18

We present the two limit cases of our CISC in two-dimensional space. The first case, Rh = 1,

is the G-CISC, with the logarithmic impact function, and we compute two different normalized

versions of it. The first version (GCISC1) is normalized by the maximum distance across

countries, and the second version (GCISC2) is normalized by the maximum distance within

the country, both as described in section 2.5: the former captures concentration relative to

what it could possibly be in any country, while the latter captures concentration relative to

what it could possibly be in that specific country.19 The second case, Rh = 0, is the linear

18We limit our analysis to countries with more than one million inhabitants, since most of the examples with
extremely high levels of concentration come from small countries and islands. The results with the full sample
are very much similar, however, and are available upon request.

19While the non-normalized measure may present some interest in itself, we do not report it because of its
extremely high correlation with population size, which prevents us from disentangling any independent effect.
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impact function, which as a short-hand we will call L-CISC. In the interest of brevity, we will

only compute the version normalized by the maximum distance across countries, LCISC1.

We will compare our indices with two alternative measures of concentration. The first

alternative is the location Gini coefficient (“Gini Pop”), a non-centered measure that is often

used in the literature, and the second one is the share of the population living in the capital city

(“Capital Primacy”), which provides a benchmark for comparison with another very simple

centered index.20

3.1.1 Descriptive Statistics

Table 1 shows the basic descriptive statistics for the different measures, for the three years in

the sample, and Table 2 presents their correlation. The first remarkable fact is that there is

very little variation over that span of time: the autocorrelation is extremely high, and almost all

variation comes from the cross-country dimension. This suggests that the pattern of population

distribution is fairly constant within each country, and that a period of 10 years may be too

short to see important changes in that pattern. For this reason, we choose to focus on one of

the years; we choose 1990 because it is the one that has the highest quality of data, as judged

by the SEDC.21

[TABLES 1 AND 2 HERE]

Let us start by comparing the basic properties of our indices with those of the comparison

measures, noting that the appropriate benchmark for comparison in the case of G-CISC is

GCISC1, and not GCISC2, since both location Gini and Capital Primacy do not normalize

by the geographical size of each country. The striking fact that immediately jumps from Table 2

is that our index captures a very different concept from what the location Gini is capturing: they

are negatively correlated, both in the case of G-CISC and L-CISC. This underscores the point

that typical measures of concentration are ill-suited for getting at the idea of concentration

around a given point. This point becomes even more striking when we compare the list of

20We could have included other measures, notably the inverse of the average distance, as used for instance by
Galster et al. (2001). We do not do so in the interest of brevity, but it is worth noting that the inverse of the
average distance is extremely highly correlated with L-CISC, by construction, since the latter also uses average
distances. In this sense, we can essentially reproduce any results to be obtained with such a measure, but with
the nice properties attached to the CISC.

21Our results are very similar when we use the other two years.
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countries with very high and very low levels of concentration, which are displayed in Table

3. We can see that the list of the countries whose population is least concentrated around

their capital cities accords very well with what was to be expected: these are by-and-large

countries where the capital city is not the largest city. (The exceptions are Russia, on which

we will elaborate later, and the Democratic Republic of the Congo, formerly Zaire, whose

capital is located on the far west corner of the country.) By the same token, the list of highly

concentrated countries is quite intuitive as well, with Singapore leading the way. The same list

for the location Gini, in contrast, surely helps us understand why the correlation between the

two is negative. It ranks very highly countries that have big territories and unevenly distributed

populations. While this concept of concentration may of course be useful for many applications,

it is quite apparent that using non-centered measures of concentration can be very misleading

if the application calls for a centered notion of concentration.22

[TABLE 3 HERE]

In the case of the alternative centered measure of concentration, Capital Primacy, Table 2

shows that the correlation is positive, though not overwhelming.23 Table 3 shows, however, that

the ranking of countries that emerges from this measure is completely different from the ones

generated by both CISCs.24 This is not surprising, in light of the amount of information that is

being discarded by Capital Primacy, but another crucial problem with such a coarse measure

is clearly apparent from the table: its arbitrariness. Note that Kuwait, which is one of the

most concentrated countries in the world according to both CISCs, shows up as one of the least

concentrated ones as judged by Capital Primacy. This is so because the population of what

is officially considered as Kuwait City, the capital, is just over 30,000, while the population of

the metropolitan area is over two million. This difference of two orders of magnitude is simply

due to an arbitrary delimitation of what counts as the capital city. This clearly illustrates the

dramatic distortions that can result from discarding relevant information.

22It is also worth noting that a measure such as location Gini is quite sensitive to how “coarse” the grid that
is being used to compute the index is: the fewer cells there are, the lower the location Gini will tend to be. Our
index, on the other hand, has the “unbiasedness” feature that we have already discussed.

23Note also that the maximum value of Capital Primacy is greater than one. This is due to the fact that the
data for capital city population and total population, used to compute the share, come from different sources;
that data point corresponds to Singapore, which should obviously be thought of as having a measure of 1.

24Note that here we use the measure of Capital Primacy as computed for 1995. This is because there are
many fewer missing values for 1995 than there are for 1990.
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We can also compare the two versions of our index, L-CISC and G-CISC, in order to

understand the consequences of changes in the elasticity coefficient. Table 2 shows that the

correlation between GCISC1 and LCISC1 is positive and quite high, which is reassuring since

they both purport to measure the same concept. Nevertheless, there are important empirical

differences between the two. The first such difference can be seen from Figure 5, which plots

histograms of both indices. We can see from the figure that the distribution of LCISC1 is

very skewed, whereas GCISC1 has a more compelling bell-shaped distribution. This implies

that the latter is generally less sensitive to extreme observations. Another way to illustrate

this difference is to consider a specific comparison, between Brazil and Russia. Russia’s capital,

Moscow, is the country’s largest city, and is located at about 600km (slightly less than 400 miles)

from the country’s second largest city, St Petersburg. In contrast, Brazil’s capital, Braśılia, is

now the country’s sixth largest city, and is around 900km (more than 550 miles) away from

the country’s largest cities, São Paulo and Rio de Janeiro, whose combined metropolitan area

population is about ten times as large as Braśılia’s.25 Table 3 shows that Brazil is ranked to

have lower concentration than Russia with GCISC1, but not with LCISC1. This is because

LCISC1 gives a larger weight to people who are very far from the capital point of interest;

roughly speaking, it gives a relatively large weight to people who are in Vladivostok. This

example drives home the point that different choices of the elasticity coefficient lead to different

characterizations, thus illustrating the flexibility of our approach.

Finally, we also note an interesting pattern emerging from Table 3, regarding the “size-

normalized” version of our G-CISC, GCISC2: the countries with the most concentrated popu-

lations seem to be fairly small ones (in terms of territory). This does not arise from “mechanical”

reasons, first of all because the measure is normalized for size – the pattern suggests that the

population of relatively small countries is more concentrated than that of large ones, relative

to what it could be. In addition, while the measure for these countries may be less precise

because of the small size, and consequent smaller number of grids, we know that our index is

unbiased to classical measurement error. We will explore this pattern more systematically in

our regression results. We can also note that GCISC1 is typically much higher than GCISC2:

a country will have a more concentrated population relative to the maximum distance across

25According to official data, the metro area population of São Paulo, Rio de Janeiro, and Braśılia is around
19 million, 12 million, and 3 million, respectively.
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Figure 5: G-CISC and L-CISC

countries than to the maximum distance within the country itself.

3.1.2 Regression analysis

We can also investigate the correlation patterns of our indices with several variables of interest.

We will stop short of providing a discussion of causal inference, as it falls outside the scope of

this paper, but we can nevertheless provide some interesting results that can be built upon by

future research.

Economic variables We start by regressing G-CISC and L-CISC on a number of economic

variables of interest.26 The results are described in Table 4. The first thing to note is that

there is a negative correlation between land area and concentration around the capital city:

countries with larger territories have populations that are less concentrated around the capital.

This correlation is robust to the inclusion of a number of controls. It is also worth noting that

the correlation between land area and concentration is positive when the latter is measured by

the Gini coefficient, which is not surprising in light of Table 3, but nevertheless underscores

the point that using Gini as a proxy for concentration of population around the capital city is

26All of the variables that are time-variant are measured with a 5-year lag in our main specifications. Exper-
imenting with other lags did not affect the results. All control variables are described in the Appendix.
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deeply misleading.

[TABLE 4 HERE]

It is not that surprising that the measures that are not normalized for size will indicate a

negative correlation with territorial size. However, our GCISC2 index, which is normalized,

also displays a very significant and robust negative correlation, as anticipated from Table 3,

which suggests that such correlation is more than a mechanical artifact of the construction of

the indices.

The second robust correlation pattern displayed by the different versions of our CISC is as

follows: there is a negative correlation between the size of population, and how concentrated

it is around the capital. In other words, the smaller the country’s population is, the more

concentrated it is around the capital. One can speculate over the reasons behind this negative

correlation; perhaps countries with larger populations are more likely to have other centers of

attraction that lead to the equilibrium distribution of population being more dispersed around

the capital city. (We should note, however, that in the case of G-CISC the Property of Gravity,

which isolates the attraction exerted by the capital point of interest, ensures that the existence

of other centers of attraction will not be mechanically built into the index.) It is worth noting

that the relationship is weaker for GCISC2, where concentration is normalized by the territorial

size of the country. These patterns can and should be the subject of future research.27

Governance variables We have argued elsewhere (Campante and Do 2007) that population

concentration is an important determinant of redistributive pressures, particularly so in non-

democratic countries. The basic idea, as expressed in Ades and Glaeser (1995), is that proximity

to the capital city increases an individual’s political influence. This is particularly the case

with regard to “non-institutional” channels like demonstrations, insurgencies and revolutions,

as opposed to democratic elections. As such, a more concentrated population is more capable

of keeping a non-democratic government in check. With that idea in the background, we study

the correlation between our measures of concentration and a number of measures of the quality

27One tentative way of probing deeper into this link with population size is to consider the effects of openness.
Introducing openness into the regression reduces the coefficient and significance of population size, which may
indicate that part of the negative relationship is indeed linked to the relative attraction of the capital city, which
may be more pronounced in a more open, outward-oriented economy. The high correlation between openness
and population makes it hard to disentangle their effects, however.
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of governance, compiled by Kaufman, Kraay and Mastruzzi (2006). These results are featured

in Table 5.

[TABLE 5 HERE]

The first panel, for the full sample, suggests that there is a positive correlation between

population concentration and governance (with the exception of political stability). The more

striking pattern emerges, however, when we split the sample between democracies and non-

democracies: it is clear that this relationship is present only in non-democratic countries. In this

sub-sample, a higher degree of concentration around the capital city predicts higher governance

quality as measured by five of the six variables – control of corruption, voice and accountability,

government effectiveness, rule of law, and quality of regulation – with an increase of around

30% of standard deviation for an increase of one standard deviation in G-CISC. Essentially no

effect is verified for more democratic countries. This is precisely in line with the idea that the

concentration of population represents a check on non-democratic governments.

The fact that political stability is the one measure of quality of governance that does not

seem to be positively correlated with population concentration is interesting in and of itself. In

fact, if we include the other governance variables as controls in a regression with stability as the

dependent variable, we see that population concentration has a negative and typically significant

correlation with stability – both for G-CISC and L-CISC. Moreover, this result is once again

verified only for non-democratic countries. This is consistent with the idea that, controlling for

the quality of governance in non-democratic polities, the concentration of population around

the capital city imposes checks on the incumbent government.28

Table 5 already shows that the significance of the coefficients is generally improved with

G-CISC, as opposed to L-CISC. This is not too surprising, in light of the more well-behaved

distribution displayed by the former. In fact, we can further establish this comparison, while

also considering how our measures of concentration fare when compared to the alternative

measures we have been using as benchmarks. For that purpose, we run a “horse race” in which

the measures are jointly included, as shown in Table 6 – for brevity, we only present one of the

28These results, which are available upon request, are verified both when stability is measured by the Kaufman,
Kraay and Mastruzzi (2006) index, and also when it is measured by the average length of tenure experienced
by incumbent executives or parties in the previous twenty years. For details on this measure, see Campante,
Chor, and Do (2009).
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governance measures, namely control of corruption, and focus on the sample of non-democratic

countries. It is clear that both G-CISC and L-CISC dominate the alternative measures, and

that G-CISC seems to provide the clearest picture of the correlations linking the concentration

of population around the capital city and governance.29

[TABLE 6 HERE]

3.1.3 Where to Locate the Capital?

The idea that the capital city is a particularly important point from a political standpoint, and

the correlation between the concentration of population around the capital and the extent of the

checks on the government suggest that governments – and non-democratic ones in particular

– would have an incentive to pick suitable locations for their capital. This draws attention to

the endogeneity of the location of the capital city: not only is the concentration of population

a variable that is determined in equilibrium, but the concentration patterns can also influence

the choice of where to locate the capital. This is another idea that this application of our index

enables us to address.

While a full treatment of the different avenues of causality is beyond the scope of this paper,

we can nevertheless illustrate how our index can shed light on this topic. More generally, we can

illustrate how our index helps approach the issue of the choice of the capital point of interest.

Consider a country with a given spatial distribution of its population, and let us think of the

problem faced by a ruler with respect to where to locate the country’s capital.30 There are

centripetal forces that would lead the ruler to consider spots where the concentration would

be very high – economies of agglomeration, broadly speaking. But there are other centrifugal

forces, such as the aforementioned checks on his power, that would lead him to place the capital

in a low-concentration spot. The question is, which of these forces will prevail under which

circumstances?

Our index can provide an avenue for answering this question, which we illustrate using

G-CISC. For every country, we compute the concentration of population around every single

point in that country.31 We then specify the point where this concentration reaches its maxi-

29One can once again note that the location Gini goes in the opposite direction of the centered measures.
30The history of changes in the location of capital cities, considered at some length in Campante and Do

(2007), is proof that this problem is very often explicitly considered.
31More precisely, every single cell in the grid that covers the country.
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mum value. Interestingly, for three fourths of the countries (in the year 1990) this maximum-

concentration location lies right within the capital city. This high rate is explained in part by

the choice to put the capital in a central location, and in part by the fact that being the capital

increases the location’s attractiveness to migrants and to economic activity in general. More

broadly, the maximum-concentration location is often at the largest city.32

We can then measure the gap between this site and the actual capital, as an indicator

of how far a country’s actual choice of capital is from the point that would maximize the

“agglomeration economies”. We regress this distance, normalized by the greatest distance

to any point in the country, on a set of political variables using OLS and Tobit regressions.

The results are presented in Table 7. When we limit ourselves to non-democratic countries,

we see that a higher level of autocracy predicts a greater distance between the capital city

and the concentration-maximizing location. Then when we limit ourselves to non-autocratic

countries, then a higher level of democracy also predicts a greater distance. When combined

together, both variables of autocracy and democracy predict a greater distance: this shows a

type of U-shaped relationship, in which the centrifugal forces are strongest in both extremes

of autocracy and democracy. This pattern is very robust to the inclusion of many dummy

variables, including regional dummies and legal origin dummies. We can speculate that, on the

autocratic side, more autocratic governments have greater incentive and/or ability to insulate

themselves from popular pressure by locating their capital cities in low-concentration spots.

On the democratic side, it is perhaps the case that additional democratic openness will lead to

greater decentralization, and a lower level of attraction exerted by the capital. We are far from

having a theory to fully account for that at this point, but the stylized fact is quite interesting

nonetheless, and we also leave it to future research.

[TABLE 7 HERE]

3.2 US State-level Implementation

Building on the previous section’s discussion on the location of the capital city, there is no

better country in which to take our empirical implementation to the regional level than the

32The exceptions are often illustrative. In China, it is close to Zhengzhou, the largest city in the province of
Henan, which is the country’s most populous; in India, similarly, it is in the state of Uttar Pradesh, which is also
the most populous. In the US, it is Columbus, OH, right in the middle of the large population concentrations
of the East Coast and the Midwest.
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United States, with its long tradition of dealing with the issue. Most famously, James Madison

elaborated at length on the choice of the site of the capital city, during the 1789 Constitutional

convention, arguing that one should “place the government in that spot which will be least

removed from every part of the empire,” and that “regard was also to be paid to the centre [sic]

of population.” He also pointed out that state capitals had sometimes been placed in “eccentric

places,” and that in those cases “we have seen the people struggling to place it where it ought

to be.”33

The force identified by Madison have been very much at play in the case of US states, and

our index enables us to get a snapshot of what the outcome has been. Regarding concentration

normalized by the size of the territory (GCISC2), shown in Table 8, Illinois is less concentrated

around its capital Springfield than any country in the world. Even with country size, its level

of concentration is still comparable with Canada, ranking 10 in the world. Not only for Illinois,

but many US States where the capital is not the largest city have the level of concentration

comparable to the least concentrated countries in the world. On the other hand, the amount of

variation is comparable to that of the cross-country implementation, as states such as Rhode

Island and Hawaii have levels of concentration that on a par with some of the most concentrated

countries in the world. In general, the broad lessons obtained at the cross-country level persist:

GCISC1 and LCISC1 generate similar rankings, and the Gini captures a completely different

concept.

[TABLE 8 HERE]

3.3 US Metropolitan Area Implementation

Finally, for the sake of completeness, we implement our indices in the context of US metropolitan

areas. There is a large literature discussing and measuring urban sprawl in this context, to which

we obviously will not do justice. In any event, the concept of sprawl is multidimensional, and

many different measures have been used to capture these multiple elements (Galster et al. 2001,

Glaeser and Kahn 2003). Our measure of spatial concentration captures what Galster et al.

(2001) call “centrality”, and following that paper we compute our indices taking city hall as

our capital point of interest. The results for 24 major metropolitan areas are in Table 9.

33These quotations were obtained from the website The Founders’ Constitution (on Article 1, Section 8,
Clause 17), available at http://press-pubs.uchicago.edu/founders/.
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[TABLE 9 HERE]

Some of the results are expected – the high levels of concentration in places such as Boston

and New York – while others may be somewhat more surprising to the naked eye – such as

the middling levels of concentration in Los Angeles, a city that is synonymous with urban

sprawl, or perhaps the extremely low level of concentration in San Francisco.34 From a broader

perspective, perhaps the most notable feature is how closely linked are the rankings for the

three versions of CISC, and how numerically close are GCISC1 and GCISC2 compared to the

country- and state-level contexts. The message is simple: when distances are relatively small,

as they are bound to be for cities when compared to countries or states, differences in elasticity

coefficients or normalization procedures are less important.35

4 Concluding Remarks

We have presented a general, axiomatic approach to building a centered measure of spatial

concentration. We show that requiring a few basic properties, meant to be robust across a

variety of applications, enables us to pin down a specific class of measures, defined over any

Euclidian space. We then go on to illustrate the empirical implementation of the measure,

and how this implementation highlights some of the advantages of our index over alternative

approaches.

We emphasize that our approach is a very general one, and unapologetically so. Our idea

was to build an index that is not model-specific, so that it can provide a common language to

operationalize the concept of centered spatial concentration over a broad scope of applications,

in geographical and also in more abstract spaces. We certainly hope that it can be widely

applied. Empirically, our illustrative implementation also opens up avenues for future research,

as the correlations that we are able to point out between our index and a number of variables

of interest can be exploited further, with particular attention to issues of causality that are left

outside the scope of this paper. An extension of our framework to an aggregate, non-centered

measure of concentration is left to future promising research.

34Both results are very much consistent with the findings in Galster et al. (2001).
35It is important to keep in mind that we are talking about relative distances, and not their numerical value:

scale does not matter for the CISC!
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A Appendix: Proofs

A.1 Proofs of Propositions 1-2

Before proceeding with the proofs, we state and prove the following Lemma regarding Cauchy’s
functional equation:

Lemma 1 A function f on R satisfying Cauchy’s functional equation f(x) + f(y) = f(x+ y)
for all x, y is called additive. Any continuous additive function must have the form f(x) = ax
for some constant a.

Proof of Lemma 1. It is easy to verify that f(0) = 0, and by induction, that f(mx) = mf(x)
for any natural number m, which implies f(m

n
) = m

n
f(1) ∀m,n ∈ N. Since the set of all rational

numbers Q is dense in R, the continuity of f implies that f(x) = xf(1) for all real number x.

Proof of Proposition 1.
In steps 1-3 of our five-step proof, we first prove that under Axiom 1 the CISC must have an

integral form as expressed in Proposition 1; since these steps do not concern the capital point
C we simplify notation by denoting the CISC as I(µ). In step 4, we then show that Axioms 2-3
imply the properties of the impact function, before verifying in step 5 that the formula stated
in Proposition 1 satisfies all three Axioms.

Step 1: I is linear if µ is multiplied by a constant. Take any distribution µ, we prove
that I(λµ) = λI(µ) for any λ ∈ R+. This follows directly from Lemma 1 and the assumption
of continuity of I.36

Step 2: Define the impact function h. We consider a grid of small square “cells” in Rn,
each cell is of size ε. For each cell D, denote µD the normalized uniform distribution whose
support is D. Now for each point x ∈ Rn define hε(x) as I(µD) with the grid cell D of size ε
that contains x. By continuity of I, we can define the limit of hε(x) when ε → 0, which we
denote h(x).37

Step 3: I is the integral of h. Define a step distribution of resolution ε any positive
distribution with compact support on Rn such that its restriction on each cell D of size ε is
a constant (i.e. a multiple of µD). A step distribution µS of resolution ε hence has the form∑

D∈J λDµD, where J is the family of all grid cells of size ε. From measure theory, we see that
any positive distribution µ could be approximated by a sequence of step distributions.

From Step 1 and the additivity of I, we infer that I(µS) =
∑

D∈J λDI(µD) =
∑

D∈J λDhε(xD)
for a certain collection {xD : xD ∈ D}J of points in each cell. As we consider the sequence of
step distributions µS → µ when ε→ 0, the right hand side converges to the integral of h(x):

I(µ) =

∫
h(x)dµ.

Notice that until this step, only Axiom 1 has been used.

36We find that the continuity of I is an easily acceptable assumption in economics, as it supposes that no
small change in the distribution µ could result in an abrupt drop or surge in concentration. We could also show
that under additivity, continuity is equivalent to boundedness of I over all normalized distributions.

37This claim is not as simple as it sounds, and a rigorous proof would require using generalized functions.
Since the intuition is clear enough, we abstain from further complications.
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Step 4: h depends only on the distance to C. Now consider two points x and x′

within the same distance from C. There exists a rotation R(C,M) that maps x to x′. Take a
distribution µx in a neighborhood of x: its image through R(C,θ) is a neighborhood of x′, and
is denoted µx′ . The Axiom of Direction Invariance implies that I(µx,C) = I(µx′ ,C). When
we let the distribution µx tend towards a mass point distribution at x, I(µx,C) → h(x) and
I(µx′ ,C)→ h(x′). The impact function h must therefore be rotation-invariant as well: it could
be then renamed as a function of the distance from each point x to C, i.e. h(|x−C|).

A similar consideration of a neighborhood of x shows that in order to satisfy the Axiom
Squeeze Monotonicity, h(|x− C|) ≤ h(ρ|x− C|)∀0 ≤ ρ ≤ 1. It follows that h(d) needs to be a
decreasing function.

Step 5: Check that the CISC satisfies Axioms 1-3. This final step is straightforward,
as for all positive distributions µ,

∫
h(|x−C|)dµ clearly satisfies additivity with respect to the

distribution µ, monotonicity when µ is squeezed towards C, and invariance when µ is rotated
around C.

Proof of Proposition 2.
We proceed to prove that Axiom 4 imposes the functional forms stated in Proposition 2

in four steps, before verifying that the converse is true. As stated in Proposition 1, h(r) is
integrable and decreasing in r; we do not need to assume that h is continuous, or reaches finite
limits at r → 0 and r → ∞. In what follows, we consider the case of population distributions
on the real line R, noticing that the proof is identical for higher dimensions. Since we will not
touch on the position of the capital point C, we will once again simplify the notation of the
CISC as I(µ).

Step 1: Find a particular property of h. First, order preservation means that for any
two equal size distributions µ and ν (i.e.

∫
dµ =

∫
dν) if I(µ) = I(ν), then for all ρ positive:

I(S(C,ρ)(µ)) = I(S(C,ρ)(ν)). (This comes from the observation that I(µ) ≥ I(ν) and I(µ) ≤ I(ν)
at the same time.)

For any numbers x > 1 > y, consider two population distributions µ and ν such that∫
dµ =

∫
dν and I(µ) = I(ν). µ consists of two blocks: µx on the range r ∈ [x − ε, x + ε] of

density µx(r) = Mε, and µy on the range r ∈ [y−ε, y+ε] of density µy(r) = 1−Mε: µ = µx+µy.
ν consists of one single block on the range r ∈ [1−ε, 1+ε] of density ν(r) = 1. It is easy to verify
that

∫
dµ =

∫
dν. For the equality I(µ) = I(ν) one only needs to choose an appropriate Mε so

that MεI(µx) + (1 −Mε)I(µy) = I(ν). Notice that when ε → 0, the ratios I(µi)/I(ν), i = x, y
tend to h(i)/h(1), i = x, y, also implying that there is a finite limit limε→0Mε = M. We could
then rewrite the equality I(µ) = I(ν) at the limit when ε→ 0 as follows:

Mh(x) + (1−M)h(y) = h(1).

Now thanks to Axiom 4, by rescaling both µ and ν by a factor k > 0 we obtain a similar
equality: Mh(kx) + (1 −M)h(ky) = h(k). Combining the two equalities and eliminating M ,
we obtain:

h(kx)− h(ky)

h(x)− h(y)
=
h(ky)− h(k)

h(y)− h(1)
.

In other words, the left hand side does not depend on x. Given the symmetric roles that x and
y play, it is immediate that the left hand side term does not depend on y either. It thus is a
function of only k:

h(kx)− h(ky)

h(x)− h(y)
= g(k). (5)
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This equation also holds for x, y > 1 or 0 < x, y < 1, since if a
b

= c
d

then a
b

= c
d

= a+c
b+d

. Equation
(5) concludes Step 1.

Step 2: Solve for g(k). Further investigation of equation (5) shows that: g(k)g(l) =
g(kl) ∀k, l > 0. We also notice that since h is decreasing on [0,∞), the set of x’s where h
is discontinuous must be at most countable, thus we could find at least two points x and y
where h is continuous. Then, by studying the neighborhood of any point k with the replace-
ment (x, y) by (x/k, y/k) in equation 5, we reach the conclusion that g(k) is a continuous
function of k.

Using Lemma 1 while noting that the function γ(x)
def
≡ log(g(ex)) is well-defined on R,

additive and continuous, we conclude that g must be of the form g(k) = kα.

Step 3: Show that h(x) is differentiable. We replace (x, y) in equation (5) by (knx, kn−1x), n =
1, 2, . . . and rearrange the terms to deduce by induction that:

h(knx)− h(kn−1x) = kα(h(kn−1x)− h(kn−2x)) = . . . = kα(n−1)(h(kx)− h(x)),

from which we obtain by adding up all the differences:

h(knx)− h(x) =
kαn − 1

kα − 1
(h(kx)− h(x)) . (6)

We reason by absurd: suppose that h(x) is not differentiable at x, i.e. there exist two

sequences (1xi) and (2xi) both converging to x, but producing two different limits of f(xi)−f(x)
xi−x :

these two series would also produce two different limits of f(xi)−f(x)
xαi −x

def
≡ Dα(xi, x) ≤ 0, namely

Dα1 and Dα2. Suppose Dα1 − Dα2 = ε > 0. For convenience, we only consider the case
where members of both sequences are greater than x (the other case is identical, by a change
of variable). Given any δ > 0, there exist k1 and k2 in the interval (1, 1 + δ) such that
k1x ∈ (1xi) and k2x ∈ (2xi). For any η > 0, we could find natural numbers m and n such
that knα2 + η ≥ kmα1 ≥ knα2 (by choosing a rational number m

n
bigger than, yet as close to

log k2
log k1

as possible). From equation (6), we obtain: h(km1 x) = Dα(k1x, x)(kαm1 − 1) + h(x) and

h(kn2x) = Dα(k2x, x)(kαn2 − 1) + h(x).
Here we could choose δ small enough so that Dα(k1x, x) and Dα(k2x, x) are very close to

Dα1 and Dα2, such that Dα(k1x, x)−Dα(k2x, x) > 1
2
ε > 0. It follows that:

0 > Dα(k1x, x)(kαm1 − 1) > Dα(k2x, x)(kαn2 + η − 1) +
1

2
ε(kαn2 + η − 1)

= Dα(k2x, x)(kαn2 − 1) +
1

2
ε(kαn2 + η − 1) +Dα(k2x, x)η

> Dα(k2x, x)(kαn2 − 1),

when we choose η to be very small compared to kαn2 . The last inequality implies that h(km1 x) >
h(kn2x), in contradiction with km1 > kn2 and h being a decreasing function. We have thus proved
by absurd that h is differentiable everywhere.

Step 4: Solve for h. This last step is straightforward: from equation (5), by fixing y = 1
and bringing x towards 1 we obtain: h′(k) = kα−1h′(1). Consequently, the function h must have
the form: h(r) = arα + b or h(r) = a log r + b in case α = 0, with constants a, b (a < 0).
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Step 5: Check that the CISC satisfies Axiom 4. In case h(r) = arα a squeeze of two
normalized distributions µ and ν towards C by a factor ρ would change the CISC of both by
the same factor. In case h(r) = a log r such a squeeze would add the same term to the CISC of
both. Finally, the conclusion remains valid when one adds a constant to h(r).

A.2 Digression on Harmonic Function Theory

Before proving Proposition 3, we present a digression on harmonic function theory.

Definition 5 (Harmonic Function) A real function f(x1, x2, . . . , xn) is said to be harmonic
on an open domain D of Rn if it satisfies the Laplace equation over that domain (provided the
partial derivatives are well defined):

4f def
=

∂2f

∂x2
1

+
∂2f

∂x2
2

+ . . .+
∂2f

∂x2
n

≡ 0.

We can also define super- and sub-harmonic functions: the Laplace equation, when consid-
ered as an inequality, further refines the space C2 into the subspaces of super- and sub-harmonic
functions. More precisely:

Definition 6 (Super-/Sub-harmonic functions) Given f(x1, x2, . . . , xn) a regular real-valued
function on an open domain D of Rn. It is said to be super-harmonic on D if 4f ≤ 0. It is
said to be sub-harmonic if −f is super-harmonic.

Axler et al. (2001) covers the basics of harmonic function theory. In particular, a harmonic
function transformed through a summation, scalar multiplication, translation, squeeze, rotation
or partial/directional differentiation is still a harmonic function. The essential property of
harmonic functions is its Mean Value Property, stated as follows:

Mean Value Property Given a ball B(T, r) within the open domain D ⊂ Rn, its sphere
S(T, r) = ∂B(T, r), and a harmonic function f on D. The mean of f on the sphere is equal
to the value of f at the center of the sphere:

MS(T,r)(f)
def
≡ 1

σS(S)

∫
S

f(x)dσS = f(T), (7)

where σS is the uniform surface measure on the sphere S. Conversely, a function f satisfying
this property over D must be harmonic on D.

In order to prove this property we will use Green’s identity, stated in the following lemma:

Lemma 2 (Green’s identity) Given a regular open domain Ω ⊂ Rn with regular boundary
∂Ω, and regular functions u and v, as well as volume measure dν and surface measure dσ:∫

Ω

(u4v − v4u)dν =

∫
∂Ω

(uDnv − vDnu)dσ,

where Dn is the Gateaux-derivative with respect to the normal vector that points outward of the
domain Ω.

Proof of Lemma 2. The divergence theorem intuitively states that the change in volume of
a vector field within a domain is equal to the net flow in into that domain:∫

Ω

∇ ·wdν =

∫
∂Ω

w · ndσ,

where ∇ ·w =
∑

i
∂w
∂xi

. Replace the field w by u∇v − v∇u, noting that u∇v · n = uDnv and

∇ · (u∇v) = u4v and we obtain Green’s identity.

Proof of the Mean Value Property.
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Step 1: Proof of (7) for harmonic functions. First consider a C2 function f on the
domain D containing B(T, r), and apply Green’s identity with u = f and v = 1 on any ball
B(T, t) with 0 < t ≤ r to obtain:∫

B(T,t)

4fdν =

∫
S(T,t)

Dnfdσ

The right hand side integral is converted to an integral on the unit sphere S(T, 1):∫
S(T,t)

Dnfdσ = tn−1

∫
S(T,1)

∂

∂t
f(T + tE)dσ(E) = tn−1 d

dt

∫
S(T,1)

f(T + tE)dσ(E)

(the differentiation under the integral sign is possible in this case), while the left hand side is:∫
B(T,t)

4fdν = tn
∫

B(T,1)

4f(T + tE)dν(E).

Put together these equalities, noting that σ(S(T, 1)) = nν(B(T, 1)) we obtain:

tMB(T,t)(4f) = n
d

dt
MS(T,t)(f), (8)

where M denotes the mean of a function on a domain. From equation (8), when the function
f is harmonic (4f ≡ 0) MB(T,t)(f) is constant on t ∈ (0, r], thus by continuity is equal to its
value at t = 0:

MS(T,r)(f) = f(T).

Step 2: Proof of the converse. Notice that the mean value property implies that the
function f must be of class C∞(D) (a formal proof could be found in Armitage and Gardiner
(2001)). Therefore we obtain equation (8), which when integrated over t implies:

n(MS(T,r)(f)− f(T)) =

∫ r

0

tMB(T,t)(4f)dt.

As MB(T,t)(4f) → 4f(T) when t → 0+, the right hand side is approximated by 1
2
r24f(T)

when r → 0+. We deduce:

4f(T) = 2 lim
r→0+

r−2(MS(T,r)(f)− f(T)). (9)

When f satisfies the Mean Value Property, the expression under the limit sign is 0, implying
that 4f = 0 at all T, i.e. f is harmonic.

The Mean Value Property and its converse are adapted to the case of super-and sub-
harmonic functions as inequalities of the Mean Value, stated as follow:

Mean Value Inequality Given a sphere S(T, r) whose ball B(T, r) lies completely within
the open domain D ⊂ Rn, and a super-harmonic (sub-harmonic) function f on D. The mean
of f on the sphere is less (greater) than or equal to the value of f at the center of the sphere,
namely:

MS(T,r)(f) ≤ (≥)f(T), (10)

Conversely, if f satisfies the mean value inequality in (10) with a ≤ (≥) sign, then f is super-
harmonic (sub-harmonic) on D.
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Proof of the Mean Value Inequality. We present the proof for the super-harmonic case.
For sub-harmonic functions the proof is almost identical.38

First, given a smooth super-harmonic function f on D. Equation (8) and the condition
4f ≤ 0 implies that theMS(T,t)(f) is decreasing in t for t ≥ 0. Since its limit when t→ 0+ is
f(T), it follows that MS(T,r)(f) ≤ f(T).

Conversely, when the Mean Value Inequality is satisfied, equation (9) implies that 4f ≤ 0
at any point T, i.e. f is super-harmonic.

Intuitively, real-valued super- and sub-harmonic functions on Rn could be viewed as more
“demanding” versions of concave and convex functions. As we will show, under the assumption
of directional invariance these concepts provide a strong refinement of the class of real functions
on the plane, compared to the concepts of concavity and convexity.39

A.3 Proof of Proposition 3

Proof of Proposition 3. In steps 1-3 we prove that Axioms 5 and 6 are equivalent to the
boundary restrictions on Rh(d), and in the last step we show when the inequality in Axiom 6
becomes an equality.

Step 1: Lower bound of Rh(d). The lower bound comes directly from Axiom 5, and the
claim from Proposition 1 that h′ < 0.

Before proceeding to Step 2, we need the following result:

Lemma 3 For a smooth function h(|x−C|) in Rn\{C}, we have:

4h(|x−C|) = h′′(|x−C|) +
(n− 1)

|x−C|
h′(|x−C|).

Proof of Lemma 3. Straightforward algebra shows Lemma 3:

4h(|x−C|) =
n∑
1

∂2h(|x−C|)
∂x2

i

=
n∑
1

∂
(
h′ · xi

|x−C|

)
∂xi

=
n∑
1

(
h′′ · x2

i

|x−C|2
+ h′ ·

(
1

|x−C|
− x2

i

|x−C|3

))
= h′′(|x−C|) +

(n− 1)

|x−C|
h′(|x−C|).

Step 2: Upper bound of Rh(d). Given Proposition 1, Axiom 6 implies that for all T, the
following inequality holds:∫

S(T,r)

h(|x−C|)dη ≤
∫

S(T,ρr)

h(|x−C|)dS(T,ρ)(η). (11)

38The proof presented here applies to sufficiently smooth functions. A more general proof for upper/lower-
semicontinuous functions could be found in Ransford (1995).

39For isotropic functions on Rn concavity and convexity is of little interest, since these concepts are respectively
equivalent to the function being increasing (decreasing) in the distance to center. Besides, an isotropic function
that is both concave and convex on Rn must be constant.
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Letting ρ → 0, this inequality becomes the Mean Value Inequality in (10) for all points T
within the domain Rn\{C}. Thus the impact function h(|x−C|) must be super-harmonic on
Rn\{C}, implying 4h(|x−C|) ≤ 0. By Lemma 3, it follows that:

Rh(|x−C|) = −|x−C|h′′(|x−C|)
h′(|x−C|)

≤ n− 1.

Step 3: Converse. Given a super-harmonic impact function h on Rn\{C}, equation (8)
shows that the mean value of h over the sphere S(T, ρr) is decreasing in ρ, implying inequality
(11) on that domain. It follows that the inequality in Axiom 6 is satisfied for all circumference of
center T and radius r such that the ball B(T, r) ⊂ Rn\{C}. The converse proof is completed
with the remark that when B(T, r) 6⊂ Rn\{C}, it means that C ∈ B(T, r), so squeezing a
uniform distribution on that circumference will automatically bring every point closer to C,
thus by Axiom 2 the CISC will increase.

Step 4: When Rh(d) attains its upper bound. Rh(d) attains its upper bound if and only
if 4h(|x −C|) = 0, i.e. when h(|x −C|) is harmonic on Rn {C}. The Mean Value Property
then holds, implying that the inequality in Axiom 6 becomes an equality.
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B Appendix: Data Description

Population Concentration Index: The measures G − CISC’s and L − CISC’s are cal-
culated and normalized as explained in the text, using original gridded population maps
from the database Gridded Population of the World (GPW), Version 3 from the Socio-
Economic Data Center, Columbia University (2005), containing maps in 1990, 1995 and
2000 of a global grid of 2.5 arc-minute side cells (approximately 5km).

Alternative Indices of Concentration: The alternative indices of concentration are also
produced from the same dataset. The location Gini (noted in the Tables as “Gini Pop”) is
calculated as the Gini coefficient of inequality of a special sample, in which each “individ-
ual” corresponds to a gridded cell on the map, and each individual’s “income” corresponds
to the size of the population living within that cell. “Cap Prim” (Capital city primacy)
is calculated as the share of the capital city population over the total population. “Share
Largest Point” and “Share Largest Urban Extent” are calculated as the ratio of respec-
tively the largest settlement point and the largest urban extent over the total population.
These population figures come directly from the SEDC.

Gap to concentration maximizing location: This variable is calculated for each country
by measuring the distance between the actual site of the capital city, and the site of the
capital that would maximize the G-CISC. The maximization is done with Matlab’s large
scale search method (with analytical gradient matrix), from a grid of 50 initial guesses
evenly distributed on the country’s map for large countries.

Kaufmann, Kraay and Mastruzzi (KKM): From KKM’s (2006) indices, including Voice
and Accountability, Control of Corruption, Rule of Law, Government Effectiveness, Polit-
ical Stability, and Regulation Quality, themselves a composite of different agency ratings
aggregated by an unobserved components methodology. On a scale of −2.5 to 2.5. Data
are available for 1996-2002 at two-year intervals, and thereafter for 2002-2005 on an annual
basis. We use the data in 1996 for our measure of population concentration in 1990. KKM
data available at: http://info.worldbank.org/governance/kkz2005/pdf/2005kkdata.xls

Real GDP per capita: From the World Bank World Development Indicators (WDI). Real
PPP-adjusted GDP per capita (in constant 2000 international dollars).

Population by year: From the World Bank World Development Indicators (WDI).

Democracy: Polity IV democracy score, on a scale of 0 to 10.

Autocracy: Polity IV autocracy score, on a scale of 0 to 10.

Polity: Polity IV composite score as Democracy minus Autocracy, on a scale of -10 to 10.

The reference date for the annual observations in the Polity IV dataset is 31 December of
each year. We match these to the data corresponding to 1 January of the following year for
consistency with the DPI. Data available at: http://www.cidcm.umd.edu/inscr/polity/

Ethno-Linguistic Fractionalization: From Alesina et al. (2003). percentage of total
merchandize exports.

a percentage of total merchandize exports.

Openness and Trade variables: From the WDI. Openness measure equals the sum of
imports and exports as a share of GDP.
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Government Expenditure: From the WDI. Total government consumption expenditure as
a share of GDP.

Legal Origin: From La Porta et al. (1999). Dummy variables for British, French, Scandina-
vian, German, and socialist legal origin.

Region dummies: Following the World Bank’s classifications, dummy variables for: East
Asia and the Pacific; East Europe and Central Asia; Middle East and North America;
South Asia; West Europe; North America; Sub-Saharan Africa; Latin America and the
Caribbean.
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TABLE 1 
Cross Country Summary Statistics 

      

Variable Observations Mean 
Standard 
Deviation Min Max 

      
GCISC 1 90 156 0.4639 0.0971 0.2455 0.7641 
GCISC 1 95 156 0.4644 0.0971 0.2439 0.7641 
GCISC 1 00 156 0.4648 0.0971 0.2418 0.7641 
GCISC 2 90 156 0.2527 0.0737 0.1047 0.5820 
GCISC 2 95 156 0.2534 0.0736 0.1004 0.5820 
GCISC 2 00 156 0.2540 0.0737 0.0973 0.5820 
LCISC1 90 156 0.9678 0.0295 0.8347 0.9989 
LCISC195 156 0.9679 0.0295 0.8326 0.9989 
LCISC1 00 156 0.9679 0.0295 0.8301 0.9989 
Gini Pop 90 156 0.6496 0.1588 0.1388 0.9869 
Gini Pop 95 156 0.6515 0.1580 0.1244 0.9872 
Gini Pop 00 156 0.6538 0.1569 0.1097 0.9877 
Capital Primacy 90 110 0.1226 0.1268 0.0016 1.0337 
Capital Primacy 95 156 0.1174 0.1182 0.0011 1.1016 
Capital Primacy 00 156 0.1210 0.1153 0.0011 1.0241 
GCISC 1 Growth 90-95 156 0.0005 0.0026 -0.0129 0.0109 
GCISC 1 Growth 95-00 
 

156 
 

0.0004 
 

0.0023 
 

-0.0069 
 

0.0116 
 

 



 
TABLE 2 

Cross Country Correlation 
               

  
GCISC 1 

90 
GCISC 1 

95 
GCISC 1 

00 
GCISC 2 

90 
GCISC 2 

95 
GCISC 2 

00 
LCISC1 

90 
LCISC1 

95 
LCISC1 

00 
Gini 

Pop 90 
Gini 

Pop 95 
Gini 

Pop 00 
Cap 

Prim 90 
Cap 

Prim 95 
GCISC 1 90 1                          
GCISC 1 95 0.9997  1                     

                   
               

             
           

         
         

     
         
     
     

         

  
GCISC 1 00 0.999  0.9997  1   
GCISC 2 90 0.6326  0.6314  0.6298  1   
GCISC 2 95 0.6352  0.6351  0.6346  0.9988 1   
GCISC 2 00 0.636  0.6369  0.6375  0.9953 0.9988 1   
LCISC1 90 0.8453  0.845  0.8442  0.3548 0.3573 0.3584 1   
LCISC1 95 0.846  0.846  0.8454  0.3547 0.3576 0.3591 0.9998 1   
LCISC1 00 0.8463  0.8465  0.8461  0.3542 0.3575 0.3595 0.9993 0.9998  1   
Gini Pop 90 ‐0.2678 ‐0.2718 ‐0.2754  0.3652 0.3555 0.3455 ‐0.4054 ‐0.408 ‐0.4099 1   
Gini Pop 95 ‐0.2699 ‐0.2732 ‐0.276  0.3662 0.3581 0.3499 ‐0.4072 ‐0.4096 ‐0.4114 0.9987 1     
Gini Pop 00 ‐0.2708 ‐0.2733 ‐0.2753  0.3663 0.3601 0.3537 ‐0.4074 ‐0.4096 ‐0.4112 0.9942 0.9984 1   
Cap Prim 90 0.4807  0.4792  0.4775  0.3814 0.3787 0.3749 0.3081 0.309  0.3096 ‐0.073 ‐0.0748 ‐0.0773 1  

Cap Prim 95 0.4751  0.4739  0.4724  0.3733 0.371 0.3677 0.2995 0.3004  0.301 ‐0.0807 ‐0.0825 ‐0.0848 0.9979 1 

Cap Prim 00 0.4746  0.4736  0.4724  0.3855 0.3837 0.3809 0.3033 0.3044  0.3052 ‐0.0754 ‐0.0765 ‐0.0782 0.9961 0.9979 

 
 



 
Table 3: Ranking by GCISC1 90 

 

Code Country 
GCISC1 

90 

Rank  
GCISC1 

90 
GCISC2 

90 

Rank  
GCISC2 

90 
LCISC1 

90 

Rank 
LCISC1  

90 
Gini  

Pop 90 

Rank  
Gini 

Pop 90 

Capital 
Primacy 

95 

Rank 
Capital 
Primacy 

95 
USA  United States  0.2455  1  0.2455  74  0.8347  1  0.9139  149  0.0022  4 
BRA  Brazil  0.2467  2  0.1471  12  0.8809  6  0.8518  140  0.0116  12 
CHN  China  0.2511  3  0.1688  21  0.8760  4  0.7507  113  0.0085  9 
ZAF(b)  South Africa (Cape Town)  0.2631  4  0.1047  1  0.8774  5  0.9230  150  0.0522  45 
RUS  Russian  0.2691  5  0.2501  77  0.8388  2  0.9298  153  0.0636  52 
IND  India  0.2704  6  0.1708  22  0.8895  7  0.5405  39  0.0097  10 
MOZ  Mozambique  0.2900  7  0.1449  11  0.8918  8  0.6613  88  0.0524  47 
KAZ  Kazakhstan  0.2983  8  0.1487  14  0.9165  11  0.7502  112  0.0190  18 
ZAR  Congo Kinshasa (DR)  0.2985  9  0.1563  15  0.8928  9  0.6063  58  0.0822  73 
CAN  Canada  0.3014  10  0.2435  72  0.8726  3  0.9869  156  0.0264  25 
                       

                       

PRI  Puerto Rico  0.6215  147  0.3541  146  0.9948  150  0.4932  21  0.1063  91 
SLV  El Salvador  0.6283  148  0.3446  142  0.9946  148  0.5312  37  0.0794  69 
CRI  Costa Rica  0.6315  149  0.3919  152  0.9939  145  0.6543  86  0.0752  62 
ARM  Armenia  0.6446  150  0.4040  154  0.9948  151  0.5645  50  0.3317  153 
TTO  Trinidad and Tobago  0.6478  151  0.3458  144  0.9962  154  0.6136  62  0.0367  31 
LBN  Lebanon  0.6484  152  0.3283  137  0.9954  152  0.5957  56  0.3259  151 
JOR  Jordan  0.6520  153  0.4501  155  0.9947  149  0.8840  147  0.2411  141 
KWT  Kuwait  0.6653  154  0.3841  149  0.9963  155  0.7319  104  0.0170  15 
MUS  Mauritius  0.7038  155  0.5820  156  0.9961  153  0.6268  70  0.1082  93 
SGP  Singapore  0.7641  156  0.3529  145  0.9989  156  0.5162  28  1.1016  156 

 



 
Table 4: Predictors of Population Concentration 

         
  (1) (2)  (3) (4)  (5) (6)  (7) (8)
         
 GCISC1 GCISC2 LCISC1 Gini Pop 
         
Log Population -0.00831** -0.00951** -0.008 -0.00989* -0.00456*** -0.00620*** -0.0186* -0.002 
 [0.00393] [0.00385] [0.00610] [0.00582] [0.00159] [0.00156] [0.0102] [0.0127] 
Log Land Area -0.0476*** -0.0465*** -0.0145*** -0.0147** -0.0118*** -0.00884*** 0.0587*** 0.0446***
 [0.00262] [0.00264] [0.00531] [0.00573] [0.00153] [0.00104] [0.00844] [0.00940]
Log GDP per capita 0.003 0.005 0.0121** 0.010 -0.002 -0.00526* 0.0566*** 0.0750***
 [0.00354] [0.00871] [0.00591] [0.0131] [0.00186] [0.00309] [0.0104] [0.0240] 
Polity Score  -0.001  0.001  0.000  0.004 
  [0.000732]  [0.00144]  [0.000261]  [0.00234]
Ethno-Linguistic Frac -0.024  -0.038  -0.004  0.129* 
  [0.0201]  [0.0325]  [0.00630]  [0.0654] 
Region FE  YES  YES  YES  YES 
Legal Origin FE  YES  YES  YES  YES 
         
Observations 113 108  113 108  113 108  113 108 
R-squared 0.817 0.868  0.222 0.462  0.657 0.783  0.421 0.578 
*** p<0.01, ** p<0.05, * p<0.1        
Intercepts omitted. Robust standard errors in brackets. All independent variables are taken with a 5-year lag.  
G-CISC and L-CISC are both for 1990.   
See Appendix for description of variables and sources.      
  



 
Table 5: Governance and Population Concentration 

                           
  (1) (2) (3) (4) (5) (6)  (7) (8) (9) (10) (11) (12) 

 Control of 
Corruption 

Voice & 
Accountability 

Government 
Effectiveness

Rule of 
Law 

Regulation 
Quality 

Political 
Stability  Control of 

Corruption 
Voice & 

Accountability
Government 
Effectiveness

Rule of 
Law 

Regulation 
Quality 

Political 
Stability 

 A. Full Sample 
              
GCISC 0.837 0.776* 1.369** 1.026* 1.798** -0.378        
 [0.763] [0.404] [0.590] [0.529] [0.737] [0.825]        
LCISC        1.338 2.006 2.807 2.558* 5.499*** -1.305 
        [2.057] [1.464] [1.984] [1.525] [1.888] [2.874] 
               
Obs 128 134 134 134 134 134  128 134 134 134 134 134 
R2 0.81 0.862 0.866 0.698 0.864 0.541  0.808 0.86 0.864 0.692 0.859 0.541 
              
 B. More Democratic Countries 
              
GCISC -0.966 -0.0186 0.685 0.426 0.625 0.148        
 [0.951] [0.646] [0.767] [0.644] [0.863] [1.134]        
LCISC        -3.807 -1.781 0.224 0.684 3.521 -0.441 
        [2.555] [1.994] [2.428] [2.065] [2.269] [3.730] 
               
Obs 78 80 80 80 80 80  78 80 80 80 80 80 
R2 0.84 0.813 0.891 0.888 0.682 0.675  0.841 0.815 0.889 0.888 0.686 0.675 
              
 C. Less Democratic Countries 
GCISC 3.553*** 2.370*** 2.034* 1.512* 1.846 -1.083        
 [0.888] [0.683] [1.059] [0.849] [1.147] [1.461]        
LCISC        11.02*** 7.426** 4.052 3.434 3.608 3.274 
        [3.777] [3.474] [3.959] [2.674] [3.607] [6.168] 
              
Obs 50 54 54 54 54 54  50 54 54 54 54 54 
R2 0.697 0.617 0.7 0.765 0.598 0.387  0.677 0.597 0.676 0.754 0.582 0.385 
              
Intercept omitted. Robust standard errors in brackets. All regressions include Log GDP per capita, Log Population, Polity, and Ethno-Linguistic Fractionalization, plus 
Region and Legal Origin FEs. Panel B consists of countries with polity score larger than 5, Panel C consists of countries with polity score less than or equal to 5. GCISC 
and LCISC are both for 1990. Independent variables are taken with lag. *** p<0.01, ** p<0.05, * p<0.1 



 
 
 
 
 

Table 6: Control of Corruption and Population Concentration in Less Democratic Countries 
 

  (1) (2) (3) (4) (5) 

GCISC1 90 2.739** 3.908*** 3.270***   

 [1.186] [0.918] [0.958]   

LCISC1 90 4.387   10.89*** 10.46*** 

 [4.272]   [3.883] [3.691] 

Gini Pop 90  -0.784  -0.255  

  [0.541]  [0.536]  

Cap Prim 95   0.325  0.818 

   [0.500]  [0.488] 

      

Observations 50 50 50 50 50 

R-squared 0.703 0.713 0.7 0.678 0.696 
*** p<0.01, ** p<0.05, * p<0.1     
Intercepts omitted. Robust standard errors in brackets. All regressions include Log GDP per capita, Log Population, Polity, and Ethno-Linguistic  
Fractionalization, plus Region and Legal Origin Fes. All independent variables are taken with a 5-year lag.  
See Appendix for description of variables and sources.       

 



 
 
 
 

Table 7: Capital City and gap to the PCI-maximizing location 
                    
Dependent variable: 
Gap Distance (1990) (1) (2)   (3) (4)   (5) (6) (7) 

          
 A. Democratic Countries  B. Autocratic Countries  C. Full Sample 
 Tobit OLS  Tobit OLS  Tobit OLS OLS 
          
Autocracy 0.137*** 0.025**    0.165*** 0.038*** 0.040***
 [0.048] [0.010]    [0.040] [0.012] [0.012] 
Democracy   0.159* 0.022**  0.143*** 0.023*** 0.032***
   [0.094] [0.0088]  [0.038] [0.011] [0.012] 
Log(Population) 0.044 0.0297** 0.100** 0.012  0.079*** 0.032*** 0.033* 
 [0.045] [0.013] [0.045] [0.024]  [0.029] [0.012] [0.019] 
Log(GDP per Capita) -0.092 0.041 -0.098 -0.039  -0.082 -0.002 0.001 
 [0.092] [0.050] [0.076] [0.055]  [0.056] [0.032] [0.038] 
Regional Fixed Effect  YES   YES   YES YES 
Legal Origin Fixed Effect YES   YES   YES YES 
Other controls         YES 
                  
Observations 58 58  54 54  113 113 100 
R-squared . 0.26   . 0.25   . 0.22 0.26 

*** p<0.01, ** p<0.05, * p<0.1. Intercept omitted. Robust standard errors in brackets. Panel A consists of countries with autocracy score 
less than 2, Panel B consists of countries with democracy score les than 2. Dependent variable is calculated as the distance between the 
actual and the hypothetical capital city that maximizes PCI. Other control variables include Log Land Area, Landlock, Island, Coastshare 
(coastal line as proportion of total boundary). Independent variables are taken with lag 5. Tobit regressions' standard errors are 
bootstrapped with 500-replications.  
          



                   
Table 8: Population Concentration in US States 

 

State  Code  GCISC_1 
Rank 

GCISC_1 GCISC_2 
Rank 

GCISC_2 LCISC 
Rank 
LCISC  Gini Pop 

Rank  
Gini Pop 

Illinois  IL  0.3029  6  0.0793  1  0.8916  8  0.3066  43 
South Dakota  SD  0.3042  7  0.0943  2  0.8901  7  0.2945  36 
Florida  FL  0.2309  2  0.0998  3  0.8068  2  0.3867  50 
Nevada  NV  0.2801  4  0.1445  4  0.8182  4  0.3311  47 
Missouri  MO  0.3447  10  0.1452  5  0.9215  15  0.2880  29 
Alaska  AK  0.1465  1  0.1465  6  0.5801  1  0.2683  20 
Delaware  DE  0.5101  43  0.1530  7  0.9759  46  0.2883  30 
New York  NY  0.3171  8  0.1530  8  0.9007  9  0.3025  40 
Alabama  AL  0.3625  12  0.1542  9  0.9230  16  0.3088  44 
California  CA  0.2590  3  0.1617  10  0.8076  3  0.3089  45 
South Carolina  SC  0.4137  28  0.1669  11  0.9463  34  0.3007  39 
Pennsylvania  PA  0.3661  13  0.1706  12  0.9272  18  0.2713  21 
Ohio  OH  0.3891  20  0.1769  13  0.9357  24  0.2739  22 
North Dakota  ND  0.3725  16  0.1775  14  0.9087  12  0.2786  25 
New Jersey  NJ  0.4723  38  0.1838  15  0.9699  44  0.2790  26 
Iowa  IA  0.3999  25  0.1962  16  0.9323  21  0.2325  3 
Mississippi  MS  0.3891  19  0.1962  17  0.9276  19  0.2518  9 
Texas  TX  0.2941  5  0.1976  18  0.8688  5  0.3179  46 
Arkansas  AR  0.4147  30  0.1990  19  0.9396  28  0.2553  13 
Tennessee  TN  0.3721  15  0.2110  20  0.9136  13  0.2890  31 
Indiana  IN  0.4285  32  0.2126  21  0.9448  33  0.3034  41 
Vermont  VT  0.4762  39  0.2176  22  0.9684  43  0.2317  2 
Montana  MT  0.3439  9  0.2180  23  0.9032  10  0.2931  34 
Wyoming  WY  0.3510  11  0.2191  24  0.8708  6  0.2348  5 
New Mexico  NM  0.3715  14  0.2248  25  0.9157  14  0.2947  37 
Louisiana  LA  0.4032  27  0.2300  26  0.9368  26  0.2775  24 
Wisconsin  WI  0.3893  21  0.2342  27  0.9343  22  0.2411  6 
West Virginia  WV  0.4159  31  0.2356  28  0.9408  30  0.2332  4 
North Carolina  NC  0.3811  17  0.2387  29  0.9286  20  0.2938  35 
Kentucky  KY  0.3951  23  0.2392  30  0.9395  27  0.2525  11 
Connecticut  CT  0.5334  46  0.2470  31  0.9778  48  0.2484  7 
Washington  WA  0.4012  26  0.2496  32  0.9365  25  0.2527  12 
Kansas  KS  0.3844  18  0.2584  33  0.9260  17  0.2575  14 
Virginia  VA  0.3934  22  0.2610  34  0.9352  23  0.2964  38 
Maine  ME  0.4437  35  0.2720  35  0.9577  38  0.2507  8 
Michigan  MI  0.3957  24  0.2871  36  0.9432  31  0.2605  16 
Idaho  ID  0.4138  29  0.2925  37  0.9048  11  0.2898  32 
Oklahoma  OK  0.4382  34  0.2993  38  0.9445  32  0.2618  17 
New Hampshire  NH  0.5134  44  0.3025  39  0.9773  47  0.2772  23 



Georgia  GA  0.4537  37  0.3072  40  0.9469  36  0.3547  49 
Oregon  OR  0.4327  33  0.3081  41  0.9467  35  0.2805  27 
Maryland  MD  0.5010  41  0.3114  42  0.9749  45  0.2922  33 
Nebraska  NE  0.4454  36  0.3377  43  0.9406  29  0.2041  1 
Massachusetts  MA  0.5548  48  0.3526  44  0.9779  49  0.2596  15 
Minnesota  MN  0.4978  40  0.3830  45  0.9569  37  0.2519  10 
Arizona  AZ  0.5088  42  0.3830  46  0.9580  39  0.3477  48 
Colorado  CO  0.5261  45  0.3997  47  0.9642  40  0.2863  28 
Utah  UT  0.5411  47  0.4238  48  0.9674  42  0.2656  18 
Rhode Island  RI  0.6907  50  0.4465  49  0.9926  50  0.2674  19 
Hawaii  HI  0.5855  49  0.4606  50  0.9663  41  0.3049  42 
 



 

Table 9: Population Concentration in US Metropolitan Statistical Areas 
                   

city_id  City  GCISC_1 
Rank 

GCISC_1  GCISC_2 
Rank 

GCISC_2  LCISC 
Rank 
LCISC  Gini Pop 

Rank 
Gini Pop 

20  San Francisco   0.2169  1  0.1847  1  0.6626  1  0.3089  15 
19  San Diego   0.2212  2  0.2212  2  0.6876  2  0.3089  16 
10  Houston   0.2571  3  0.2485  3  0.7351  3  0.3179  19 
8  Dallas   0.2607  4  0.2336  4  0.7422  4  0.3179  20 
17  Pittsburgh   0.2724  5  0.1585  5  0.7792  7  0.2713  5 
12  Miami   0.2764  6  0.2479  6  0.7637  6  0.3867  23 
18  Riverside   0.2785  7  0.2665  7  0.7630  5  0.3089  17 
5  Cincinnati   0.2795  8  0.1680  8  0.8103  9  0.2739  7 
23  Tampa   0.2901  9  0.2112  9  0.8246  10  0.3867  24 
11  Los Angeles   0.3282  10  0.3125  10  0.7909  8  0.3089  18 
7  Cleveland   0.3319  11  0.2000  11  0.8587  13  0.2739  8 
22  St. Louis   0.3368  12  0.2458  12  0.8332  11  0.2880  10 
15  Philadelphia   0.3541  13  0.2635  13  0.8433  12  0.2713  6 
6  Detroit  0.4016  14  0.3624  14  0.8944  15  0.2605  4 
1  Atlanta   0.4075  15  0.3070  15  0.9035  16  0.3547  22 
21  Seattle   0.4286  16  0.3338  16  0.9078  18  0.2527  2 
4  Chicago   0.4420  17  0.3750  17  0.9057  17  0.3066  14 
14  New York   0.4491  18  0.3732  18  0.8887  14  0.3025  12 
16  Phoenix   0.4621  19  0.3789  19  0.9238  19  0.3477  21 
13  Minneapolis   0.4664  20  0.3940  20  0.9240  20  0.2519  1 
9  Denver   0.4857  21  0.3992  21  0.9347  21  0.2863  9 
2  Baltimore   0.5130  22  0.3734  22  0.9610  23  0.2922  11 
3  Boston   0.5144  23  0.3509  23  0.9589  22  0.2596  3 
24  Washington DC  0.7397  24  0.3609  24  0.9937  24  0.3041  13 
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