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Abstract

Stochastically ordered random variables with given marginal distribu-

tions are combined into a joint distribution preserving the ordering and the

marginals using a maximum entropy formulation. A closed-form expression

is obtained. An application is in default estimation for different portfolio seg-

ments, where priors on the individual default probabilities are available and

the stochastic ordering is agreeable to separate experts. The ME formulation

allows an efficiency improvement over separate analyses.

Keywords: Bayesian analysis, stochastic dominance, joint distributions,

risk management, defaults, small probability estimation

1 Introduction

Consider random variables X and Y with marginal distributions F (x) and G(y)

and with the stochastic ordering restriction X ≥ Y a.s. We seek a joint distribu-

tion H(x, y) with marginals F (x) and G(y), with X ≥ Y a.s., and with minimal

additional information represented. The problem arises in risk management, where

X and Y might be random default rates for different portfolio segments with Y
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consisting of safer assets. In one application the distributions F and G are priors

for default rates for different portfolio segments. These are assessed from different

experts, but the experts can agree on the stochastic ordering. A maximum entropy

approach to obtaining a joint distribution is proposed. The motivation is that in-

formation on default rates in one of the portfolio segments is relevant for default

rates in the other, even if the defaults are independent, due to dependence in the

joint prior induced by the stochastic ordering. The experts are willing to accept

each other’s assessment of the marginal prior for the relevant portfolio segment -

perhaps due to an Aumann argument (each knows the other is an expert and is

willing to accept his processing of information), neither has good information about

the dependence, but they are in agreement on the ordering. The maximum en-

tropy approach specifies the joint distribution with the required margins and the

stochastic ordering and as little additional structure as possible.

2 Bivariate Distributions with Given Margins

A necessary and sufficient condition for the existence of a bivariate distribution

H(X, Y ) with marginal distributions F (X), G(Y ) and with X ≥ Y a.s. is that the

distribution function G first-order stochastically dominates F , i.e. G(z) ≥ F (z) ∀z.
The necessity is clear. For sufficiency, let y∗(x) = maxy{y|G(y) = F (x)} and let

H(X, Y ) =

{
G(Y ) forY < y∗(X)

G(y∗(X)) otherwise

}
.

This is not a very interesting distribution but it establishes existence of the required

joint distribution. This condition is well known, see Strassen (1965), Theorem 11,

or Kamae, Krengel, and O’Brien (1977), Theorem 1. We now assume strict first-

order stochastic dominance, i.e. G(z) > F (z) for z ∈ (0, 1). If equality holds in

an interval then the variables are functionally related in an interval and this is not

an interesting case. If necessary, the analysis could be carried out separately for

intervals in which strict dominance holds.
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3 The Maximum Entropy Joint Distribution

Let h(x, y) be the desired maximum-entropy (ME) joint density and let K con-

straints indexed by k be given by Eck(x, y) = 0. Entropy is a measure of uncer-

tainty, so we seek the distribution that satisfies the constraints but otherwise has

minimal information. See Jaynes (2003) for a discussion by an advocate of the ME

approach in many settings. The (differential) entropy constrained maximization

problem is

max
h
{−
∫
h(x, y) ln(h(x, y))dxdy}

s.t.

∫ ∫
h(x, y)ck(x, y)dxdy = 0 for k = 1, ..., K

and

∫ ∫
h(x, y)dxdy = 1

With Lagrange multipliers λk and µ the FOC is (differentiating purely formally

with respect to h(x, y))

− ln(h(x, y))− 1 +
∑

k

λkck(x, y) + µ = 0

and solving for the density at (x, y)

h(x, y) = exp{−1 +
∑

k

λkck(x, y) + µ}

This is a result associated with Boltzmann. In our setting the constraints on the

marginals are: ∫ 1

0

∫ x

0

(I(x ≤ α)− F (α))h(x, y)dydx = 0∫ 1

0

∫ x

0

(I(y ≤ β)−G(β))h(x, y)dydx = 0

With Lagrange multipliers (functions) λ(α) and η(β) the density takes the form

h(x, y) = c× I(x ≥ y) exp(

∫ 1

0

λ(α)I(x ≤ α)dα +

∫ 1

0

µ(β)I(y ≤ β)dβ) (1)

= c× I(x ≥ y)a(x)b(y)
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where

c−1 =

∫ 1

0

∫ x

0

exp(

∫ 1

0

λ(α)I(x ≤ α)dα +

∫ 1

0

µ(β)I(y ≤ β)dβ)dxdy

=

∫ 1

0

∫ x

0

a(x)b(y)dydx

incorporates the adding up constraint and absorbs the constants
∫ 1

0
λ(α)F (α)dα

and
∫ 1

0
µ(β)G(β)dβ. The key is that the density factors into a function of x and

a function of y. These functions must be such that the constraints are satisfied.

Let f(x), and g(y) be the required marginal densities. Rewrite the constraints,

dropping c from the notation - i.e., normalizing a(x)b(y),∫ 1

0

I(x ≥ y)a(x)b(y)dy = f(x)∫ 1

0

I(x ≥ y)a(x)b(y)dx = g(y)

we see that the number of unknowns (the function a(x)b(y)) is equal to the number

of nonredundant constraints due to the factorization of h(x, y) arising from the

ME specification. The functions a(x) and b(y) are only identified separately up to

scaling. From the discussion above we see that the constraints are inconsistent if

G(z) < F (z) for any z. The first constraint can be rewritten

a(x)

∫ x

0

b(y)dy = a(x)B(x) = f(x)

defining the function B(x), and similarly b(y)
∫ 1

y
a(x)dx = g(y) = b(y)A(y). Note

that a(x) = −A′(x) and b(x) = B′(x). Thus consider the differential equations

−A′(x)B(x) = f(x)

B′(x)A(x) = g(x)

Subtracting: A′(x)B(x) + B′(x)A(x) = g(x) − f(x). Integrating: A(x)B(x) =∫ x

0
(g(u)− f(u))du = G(x)−F (x) + k. Since A(x)B(x) = 0 for x ∈ {0, 1} it is clear

that k = 0. From B′(x)A(x) = g(x), divide through by A(x)B(x) for x ∈ (0, 1) to

obtain

B′(x)/B(x) = d lnB/dx = g(x)/(G(x)− F (x)).
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thus

lnB =

∫ x

1/2

g(u)/(G(u)− F (u))du+ k

Here the (different) integrating constant k will be determined by the normalization

and we are free to choose a convenient point from which to calculate the antideriva-

tive. Hence

B′(x) = g(x)/(G(x)− F (x)) exp(

∫ x

1/2

g(u)/(G(u)− F (u))du+ k)

and

A′(x) = −f(x)/(G(x)− F (x)) exp(−
∫ x

1/2

f(u)/(G(u)− F (u))du+ k)

Here k is a different integrating constant - both constants appear only in the nor-

malizing constant c and can be set to zero here. Applying equation 1

h(x, y) = c× I(x ≥ y)× a(x)b(y) (2)

=
c× I(x ≥ y)× f(x)g(y)

(G(x)− F (x))(G(y)− F (y))

exp(

∫ y

1/2

g(u)/(G(u)− F (u))du

−
∫ x

1/2

f(u)/(G(u)− F (u))du)

and c−1 =
∫ 1

0

∫ x

0
a(x)b(y)dydx. Thus we have a closed-form solution for the maximum-

entropy distribution with given marginal distributions and stochastically ordered

random variables.
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4 Examples

We first consider a simple example admitting explicit calculation: G(y) = y; F (x) =

x2. Applying equation (2)

h(x, y) = c× I(x ≥ y)(2x/((x− x2)(y − y2))

exp(

∫ y

1/2

1/(u− u2)du

−
∫ x

1/2

2u/(u− u2)du.

Integrating and simplifying

h(x, y) = c× I(x ≥ y)× 8× (x− 1)/(y − 1)2

and the normalization constant is

c−1 =

∫ 1

0

∫ x

0

8(1− x)/(1− y)2dxdy = 4

giving finally

h(x, y) = 2I(x ≥ y)(1− x)/(1− y)2

It is easy to verify that this joint density has the appropriate marginal densities.

The density has differential entropy (using nats) −1/2 − ln 2. In contrast the en-

tropy of the maximum-entropy joint distribution without the ordering constraint is

1/2− ln 2, so there is a substantial increase in information by using the constraint.

The correlation is ρxy = 0.82. Of course the correlation is 0 without the ordering

constraint. The probability that the ordering constraint is violated in the product

joint (corresponding to separate analyses) is 1/3.

The second and perhaps more relevant example uses Beta distributions. Let

G(y) be the Beta(1, 3) distribution with pdf g(y) = 3(1 − y)2 and F (x) be the

Beta(3, 3) distribution with pdf f(y) = 30(1 − x)2x2. This specification satisfies

the necessary and sufficient condition for existence of a joint with the stochastic
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ordering Y ≤ X a.s. Applying equation 2,

h(x, y) =
c× I(x ≥ y)(90(1− y)2(1− x)2x2)

(3x− 3x2 − 9x3 + 15x4 − 6x5)(3y − 3y2 − 9y3 + 15y4 − 6y5)

exp(

∫ y

1/2

3(1− u)2/(3u− 3u2 − 9u3 + 15u4 − 6u5)du

−
∫ x

1/2

30(1− u)2u2/(3u− 3u2 − 9u3 + 15u4 − 6u5)du.

After considerable calculation and using
∫ x

1/2
p(u)du = −

∫ 1/2

x
p(u)du to simplify

calculations for x < 1/2 and computing the integrating constant we have

h(x, y) =
I(x ≥ y)(30(x− 1)x((x− 1)2(1 + 2x))2/3(1− y)−1/3)

(y − 1)(1 + 2y)5/3
.

The correlation in the maximum entropy joint distribution is 0.55. The probability

that the constraint is violated when the product distribution is used for the joint

is 0.18. The entropy in the ME distribution is -1.06; in the product distribution is

-0.70, so the increase in information by imposing the stochastic ordering is again

substantial though less than with the previous example. Here, there is perhaps less

to gain from a joint analysis than in the previous example, because the marginals

are widely separated.

5 Application to Default Rates

Estimation of default probabilities (PD) and other parameters - but perhaps de-

fault rates are the most crucial - for portfolio segments consisting of reasonably

homogeneous assets is essential to prudent risk management. It is also crucial for

compliance with Basel II (B2) rules for banks using the Internal Ratings Based

approach to determine capital requirements (Basel Committee on Banking Super-

vision (2004)). This is the only approach approved in the US and is the approach

expected of large banks in countries adopting the B2 rules. Typically default rates

are estimated separately for different portfolio segments. The requirements demand

an annual default probability, estimated over a sample long enough to cover a full

cycle of economic conditions. It has been noted that for very safe assets, or for assets

new to the market, calculations based on historical data may ”not be sufficiently

reliable” (Basel Committee on Banking Supervision (2005)) to form a probability
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of default estimate, since so few defaults are observed. Kiefer (2008) has proposed

a Bayesian approach, relying on informative priors elicited from industry experts.

That paper considered a portfolio of loans to highly-rated, large, internationally

active and complex banks. The typical data set here would have perhaps 50 to

100 loans and no defaults. The approach was applied separately (Kiefer (2009)) to

a segment the middle of the risk profile of the portfolio. Although the risk is in

the middle of the asset mix, the probability of default is still ”small.” It is in fact

likely to be about 0.01; defaults, though seen, are rare. The bulk of a typical bank’s

commercial loans are concentrated in these segments (segments differ across banks).

Very low risk institutions are relatively few in number and they have access to cap-

ital through many avenues in addition to commercial loans. Very high risk loans

are largely avoided and when present are often due to the reclassification of a safer

loan as conditions change. To put this in perspective, the middle-quality loans are

approximately S&P Baa or Moody’s BBB. In practice the bulk of these loans are to

unrated companies and the bank has done its own rating to assign the loans to risk

”buckets.” This assignment already indicates the availability of nontrivial prior or

expert information. The elicitation method included a specification of the problem

and some specific questions over e-mail followed by a discussion including feedback

and revision. General discussions of the elicitation of prior distributions are given

by O’Hagan, Buck, Daneshkhah, Eiser, Garthwaite, Jenkinson, Oakley, and Rakow

(2006) and Kadane and Wolfson (1998); details on the elicitations underlying the

present application are given in the cited papers.

Typical data consist of a number of asset/years for a group of similar assets.

In each year there is either a default or not. This is a clear simplification of the

actual problem in which asset quality can improve or deteriorate and assets are

not completely homogeneous. Nevertheless, it is useful to model the problem as

one of independent Bernoulli sampling with unknown parameter θ. Let di indicate

whether the ith observation out of n was a default (di = 1) or not (di = 0), let

D = {di, i = 1, ..., n} denote the whole data set and r = r(D) =
∑

i di the count of

defaults. The statistic r(D) is sufficient and has distribution

p(r|θ) =
(

n
r

)
θr(1− θ)n−r (3)

The model can be elaborated but for illustration of the gains from a joint analysis

we will use the simple specification, noting that it is widely used in practice. The
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Figure 1: Posterior densities from separate analysis

prior information can also be refined, but for illustration we fit Beta distributions

to assessments given by the experts. For the mid-portfolio example with default

rate θ1 we have α = 6.8 and β = 647 corresponding to a prior mean of 0.010

and a prior standard deviation of 0.004. For the lowest-risk portfolio with default

rate θ2 we have .α = 2.3 and β = 545 corresponding to a prior mean of 0.0042

and a prior standard deviation of 0.0028. These distributions satisfy the necessary

and sufficient conditions for the existence of a joint distribution with the stochastic

ordering (stroke of luck here).

First, we report the posterior analysis for the two segments separately. For the

mid-portfolio segment we use a bucket of mid-portfolio corporate bonds of S&P-

rated firms in the KMV North American Non-Financial Dataset. Default rates

were computed for cohorts of firms starting in September 1993 and running through

September 2004. In total there are 2197 asset/years of data and 20 defaults, for an

overall empirical rate of 0.00913. Details on the data are given in Kiefer (2009).

The posterior distributions are shown in Figure 1.

The posterior summary statistics for the mid-portfolio segment are Eθ1 =0.0094

and sd(θ1) =0.0018 . For the low-default portfolio we report results with a typical
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Figure 2: Joint ME Prior Density
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dataset consisting of 100 asset/years and zero defaults. The posterior summary

statistics are Eθ2 =0.0035 and sd(θ2) =0.0023. This analysis is the same as a joint

analysis based on independent priors, so the joint is the product of these marginals.

The entropy of that joint prior distribution is -8.79. The posterior entropy is -9.70.

The prior distribution given by the elicited marginal distributions combined with

the stochastic ordering is shown in Figure 2.

Here the correlation is now 0.31 and the entropy is -8.93. The posterior density

is given in Figure 4.

The posterior entropy is -9.78. The moments are Eθ1 =0.0093, sd(θ1) =0.0018

and Eθ2 =0.0036, sd(θ2) =0.0023. The posterior correlation is 0.13. Here there is

very little gain in terms of location or precision from imposing the stochastic order-

ing of the default rates, due probably to the rather high precision of the marginal

prior distributions assessed from the experts. There is information on correlation,

not available in the standard analysis, which is a part of the characterization of the

posterior uncertainty about the default rates not available from the separate anal-
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Figure 3: Joint Posterior Density
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yses. This could be quite important for managing the risk in the overall portfolio.

6 Robustness: Less Confident Experts

In our application the priors are well separated and so there was little gain from

imposing the stochastic ordering. The posterior correlation may be important for

stress-testing as discussed in Basel Committee on Banking Supervision (2009). To

illustrate a case with more substantial gains from imposing the restriction, we con-

sider less-confident experts. That is, consider priors with the same means as the

assessed priors, but with larger variances. This can be considered a robustness or

sensitivity analysis. In the language of risk management, this might be a part of

model validation. To fix ideas, we consider here increasing the prior standard de-

viations by a factor of three. With this change the probability that the ordering

is violated in the product prior is 0.24. The correlation in the ME prior impos-

ing the ordering is 0.77. Using the same data, the posterior moments under the

product prior corresponding to separate analyses are Eθ1 =0.0091, sd(θ1) =0.0020

and Eθ2 =0.0016, sd(θ2) =0.0031. With the ME prior we have Eθ1 =0.0091,

sd(θ1) =0.0018 and Eθ2 =0.0021, sd(θ2) =0.0026 and the correlation is 0.15. This

exercise is informative about the value of the joint analysis. In the higher-default

portfolio segment with the larger sample size the prior and the data are in agree-

ment and there is little change in location under any analysis. For the low-default

portfolio segment, where a typical sample will have zero defaults, the data and the

prior disagree (to some extent). In the separate analysis, the data on the related

segment (related through the prior alone in this simple specification) do not af-

fect the inference on the default rate in the low-default portfolio segment. In the

joint analysis, the data are informative and the resulting posterior mean for the

low-default portfolio is substantially increased, from 0.0016 to 0.0021. For both

default rates, the posterior precision is increased by moving to the joint analysis.

The marginal posterior densities from both the separate and the ME analyis are

reported in Figure 4 (in the analysis above these are visually identical). This figure

clearly shows the substantial effect of the joint analysis on the uncertainty about

the lower default rate. As noted, the higher-default segment, with more data and

data in agreement with the prior, is little affected by the joint analysis.
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Figure 4: Posterior densities less certain experts

7 Conclusion

The maximum-entropy joint distribution for two stochastically-ordered random vari-

ables with given marginal distributions is obtained in closed form. An interpretation

is that this distribution could be used as a sensible joint prior distribution when

information is obtained from separate experts on related random variables, experts

who can agree on the stochastic ordering but have no further information on the de-

pendence. An application to default rates for different portfolio segments is given.

The method is clearly feasible and can be valuable in providing a way to com-

bine data information across portfolio segments, exploiting dependence introduced

through the prior due to the stochastic ordering restriction. The Bayesian approach

in the application is not necessary for the approach to be useful. For example, the

expert information could alternatively be based on previous analyses, separately

by segment, and the marginal distributions involved could potentially be sampling

distributions of previous estimators. This case is applicable to the credit-scoring

problem, which typically considers 20 segments separately. The potential gain from

a joint analysis here is clear and will be pursued in ongoing research.
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