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Abstract

We show that the asymptotic mean of the log-likelihood ratio in a misspecified model is

a differential geometric quantity that is related to the exponential curvature of Efron (1978),

Amari (1982), and the preferred point geometry of Critchley et al. (1993, 1994). The mean is

invariant with respect to reparametrization, which leads to the differential geometrical approach

where coordinate-system invariant quantities like statistical curvatures play an important role.

When models are misspecified, the likelihood ratios do not have the chi-squared asymptotic

limit, and the asymptotic mean of the likelihood ratio depends on two geometric factors, the

departure of models from exponential families (i.e. the exponential curvature) and the depar-

ture of embedding spaces from being totally flat in the sense of Critchley et al. (1994). As a

special case, the mean becomes the mean of the usual chi-squared limit (i.e. the half of the

degrees of freedom) when these two curvatures vanish. The effect of curvatures is shown in

the non-nested hypothesis testing approach of Vuong (1989), and we correct the numerator of

the test statistic with an estimated asymptotic mean of the log-likelihood ratio to improve the

asymptotic approximation to the sampling distribution of the test statistic.
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1 Introduction

The differential geometrical approach in statistics gives geometrical intuition to the higher order
asymptotics in estimation and inference. We show the differential geometrical method is useful in
the first order asymptotics for misspecified models.

When a model is misspecified, the first order chi-squared approximation is no longer valid
and the departure from the chi-squared distribution appears in the first order term. The first
order asymptotic mean of the log-likelihood ratio under the misspecification has the form of the
trace of a matrix. Noting the invariance property of the log-likelihood ratio still holds for the
misspecified models, we show that the first order asymptotic mean of the log-likelihood ratio of a
misspecified model is in fact a geometrical quantity like the Bartlett correction (Bartlett (1937),
McCullagh and Cox (1986), DiCiccio et al. (1991)). It is shown that the first order asymptotic
mean has two geometrical components. One part is related to the degree of misspecification, and
the other is generated by the exponential curvature of the misspecified model. The former is related
to the total flatness in the preferred point geometry of Critchley et al. (1993, 1994), and the latter
is related to the embedding exponential curvature of Efron (1975, 1978) and Amari (1982). When
both curvatures vanish, the mean coincides with the mean of the usual chi-squared limit of correctly
specified log-likelihood ratios.

We apply our results to the non-nested hypothesis testing framework of Vuong (1989). The
test uses the null hypothesis that competing misspecified models are equidistant from an unknown
true distribution with respect to the Kullback-Leibler Information criterion (KLIC, relative en-
tropy, Kullback and Leibler (1951)). The numerator of Vuong’s test statistic is written in terms
of the log-likelihood ratios, and we propose a geometrically motivated mean correction to improve
the asymptotic approximation to the sampling distribution of the test statistic. A simple mean
correction based on parameter dimensions is sometimes used, but the simple correction is valid
under a correct model specification which violates Vuong’s conditions. The proposed mean correc-
tion is valid under misspecification. We provide a Monte Carlo experiment to show the effect of
the curvatures on the mean and the improvement of the mean correction. Our results also give
the geometrical (flatness) conditions under which the proposed mean correction is the same as the
simple correction even in a misspecified case.

Throughout the paper we will consider i.i.d. samples and assume the regularity conditions in
Section 8 of Kent (1982).
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2 Differential Geometry for Log-Likelihood Ratios

2.1 Likelihood Ratios in Misspecified Models

Let y = (y1, . . . , yn) be i.i.d. data drawn from a distribution p0 ≡ p0(y). Consider a parametric
family of distributions p(y|θ) =

∏n
i=1 p(yi|θ) with a parameter vector θ ∈ R

k. Denote p(y|θ) as p(θ)
and p(yi|θ) as pi(θ) for simplicity. The model p(θ) =

∏n
i=1 pi(θ) is misspecified in the sense that

KLIC(p0, p(θ)) > 0 for all θ, and the maximum likelihood estimator θ̂ = argmaxθ p(θ) is assumed
to converge in probability to a pseudo-true value θ∗.

Let li(θ) = log pi(θ) be the log-likelihood function on one observation and l(θ) =
∑n

i=1 li(θ)
the log-likelihood on n observations. The dependence on n will not be indicated explicitly. Denote
the score and Hessian functions as s(θ) =

∑n
i=1 si(θ) and h(θ) =

∑n
i=1 hi(θ) respectively. Let

E0 be the expectation with respect to p0, and define the expected Hessian H̄(θ) = E0hi(θ) and
H(θ) = E0h(θ) = nH̄(θ). Noting E0si(θ∗) = 0, let J̄(θ∗) = E0{si(θ∗)si(θ∗)T } and J(θ∗) =
E0{s(θ∗)s(θ∗)T } = nJ̄(θ∗) be the variance of the score at θ∗. We analyze the asymptotics of the
log-likelihood ratio

l(θ̂) − l(θ∗), (2.1)

using the differential geometrical approach when the true distribution p0 is not equal to p(θ) for
any θ ∈ R

k.
From the Taylor expansion

l(θ̂) − l(θ∗) = −1
2
tr{H̄(θ∗)−1s(θ∗)s(θ∗)T } + op(1), (2.2)

of the log-likelihood function l(θ̂) around θ∗, the mean of the likelihood ratio is

E0(l(θ̂) − l(θ∗)) = −1
2
tr{H̄(θ∗)−1J̄(θ∗)} + o(1) (2.3)

= −λ(θ∗)
2

+ o(1), (2.4)

where λ(θ∗) is defined by
λ(θ∗) = tr{H̄(θ∗)−1J̄(θ∗)}. (2.5)

When p(θ) is correctly specified, we have p(θ∗) = p0, and the Fisher’s identity J̄(θ∗) = −H̄(θ∗)
holds. Then −λ(θ∗)/2 simply becomes k/2, where k is the dimension of θ and is irrelevant to the
curvature of the model. In this case, the statistical curvatures appear in the higher order terms. In
this paper, we show that when p(θ) is misspecified, the quantity λ(θ∗), which is generally a function
of θ∗ (or of p0), is also related to the statistical curvature. We also give flatness conditions under
which λ(θ∗) = −k is a constant. This provides geometrical intuitions to the first order asymptotic
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mean of the likelihood ratio for misspecified models.
It is well known that λ(θ∗) is a tensor. Moreover it is reparameterization invariant therefore a

geometric object. Specifically, let θ be the original parameterization and ξ(θ) be a locally one-to-one
reparameterization of θ with ξ∗ = ξ(θ∗). Then

tr{H̄(θ∗)−1J̄(θ∗)} = tr{H̃(ξ∗)−1J̃(ξ∗)}, (2.6)

where H̃(ξ) and J̃(ξ) are defined for the new parameterization ξ as H̄(θ) and J̄(θ) for θ respectively.
This implies that we can use any convenient parameterization for the calculation of λ(θ∗). We use
a locally affine parameterization in which the Fisher information becomes an identity matrix at the
pseudo-true distribution p(θ∗), i.e.

Ep(θ∗){si(θ∗)si(θ∗)T } = Ik, (2.7)

where Ik is a (k × k) identity matrix. A globally affine parameterization in which the information
matrix is an identity matrix for all θ does not generally exist except in one-dimensional parameter
models. When such a global reparameterization exists, the model makes a Euclidean (or 0-flat)
manifold. See Amari (1985) for details.

In the next section, we give an interpretation of λ(θ∗) using differential geometrical quantities for
the exponential families and show how to extend the approach to general families of distributions.

2.2 Geometry of Log-Likelihood Ratios

A curved exponential family (CEF) is an embedded sub-manifold of an exponential family. It is
obtained from an exponential family by reducing the parameter dimension through restrictions.

Let p(y|η) = exp
[
n

{
ȳT η − ψ(η)

}]
f(y) be a density function of an exponential family of i.i.d.

observations y = (y1, y2, . . . , yn) with an m-dimensional parameter vector η, a vector ȳ of suffi-
cient statistics, and a cumulant generating function ψ(η). The Fisher information matrix of one
observation with respect to the natural parameterization is ψ′′(η). A CEF is obtained by a lower
dimensional reparameterization θ of η,

p(y|θ) ≡ p(y|η(θ)) = exp
[
n

{
ȳT η(θ) − ψ(η(θ))

}]
f(y), (2.8)

where θ is a k < m dimensional parameter vector. If η(θ) is affine, p(y|θ) becomes a lower dimen-
sional (full) exponential family.

Let ηab(θ) = ∂2η(θ)/∂θa∂θb, where θa (a = 1, 2, ..., k) is the ath parameter, and iab(θ) =
(∂η(θ)/∂θa)T

g(η(θ)) (∂η(θ)/∂θb) , where g(η(θ)) is the Fisher information at η(θ). Suppose η = φ

gives the true distribution p(φ) and denote μ = Ep(φ)ȳ. Then we can calculate λ(θ∗) = tr{H̄(θ∗)−1J̄(θ∗)}
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from
J̄(θ∗) = η′(θ∗)T g(φ)η′(θ∗)), (2.9)

and H̄(θ∗) with the (a, b) element given by (μ − ψ′(η(θ∗)))T ηab(θ∗) − iab(θ∗).
To represent λ(θ∗) in geometrical quantities, we define the differentials

∂a =
∂l(θ)
∂θa

, ∂ab =
∂2l(θ)
∂θa∂θb

. (2.10)

Using Einstein’s summation convention, where the repeating upper and lower indices imply sum-
mation over that index, the score function ∂a can be represented as

∂a = Bi
a∂i, (2.11)

where Bi
a = ∂ηi/∂θa and ∂i is the ith element of the score vector ∂l(η)/∂η = n(ȳ − ψ′(η)) of the

natural parameterization η.

The (embedding) m-dimensional full exponential family can be reparameterized with the m− k

dimensional parameter ν in addition to the m-dimensional parameter vector θ. Thus (θ, ν) is a
new diffeomorphic reparameterization of η. Moreover we can choose the parameterization (θ, ν)
such that the score functions ∂γ , where γ are indices of ν, are locally orthonormal to ∂a. Then
the coefficients of the Euler-Schouten curvature tensor or the embedding curvature with respect
to 1-connection (exponential curvature, 1-curvature. See Amari (1982)) of the CEF in the full
exponential family is given by

Habγ(θ) = Ep(θ)

{
(∂ab − Ep(θ)∂ab)∂γ

}
. (2.12)

We can decompose (∂ab − Ep(θ)∂ab) with the tangential component and the normal component to
the space spanned by the scores ∂a of θ. Then the tangential and the normal components can be
represented with the orthonormal bases (∂κ, ∂γ) for (θ, ν) respectively. Using the relationship

∂ab − Ep(θ)∂ab = n(ȳ − ψ′(η(θ)))T ηab(θ), (2.13)

we have the decomposition

n(ȳ − ψ′(η(θ)))T ηab(θ) = Γκ
ab∂κ + Hγ

ab∂γ (2.14)

= Γκ
abB

i
κ∂i + Hγ

abB
i
γ∂i, (2.15)

where Γκ
ab and Hγ

ab are the coefficients of the projected component onto the space spanned by the
basis vectors ∂κ and ∂γ respectively. The last equality is from equation (2.11). Note that we have
Hγ

ab = Habγ since the bases (∂κ, ∂γ) are orthonormal.
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Lemma 2.1 Consider Ep(φ)(∂ab − Ep(θ∗)∂ab) = n(μ − ψ′(η(θ∗)))T ηab(θ∗), where Ep(φ) is the ex-
pectation with respect to a true distribution p(φ).
(a) We have

Ep(φ)(∂ab − Ep(θ∗)∂ab) = AiB
i
γHγ

ab, (2.16)

where Ai is the ith element of (μ − ψ′(η(θ∗))), and the quantities Bi
γ and Hγ

ab are defined in eq.
(2.11) and (2.14) respectively.
(b) If the model has zero embedding curvature with respect to 1-connection at θ∗, then

Ep(φ)(∂ab − Ep(θ∗)∂ab) = 0. (2.17)

Proof. For (a), let ∂i be the ith element of the score function with respect to the mean parame-
terization. The score functions of mean and natural parameterizations have the relationship

∂i = gij∂j , (2.18)

where gij is the (i, j) element of g(η(θ))−1. Then we have

Ep(φ)(∂ab − Ep(θ∗)∂ab) (2.19)

= n(μ − ψ′(η(θ∗)))T ηab(θ∗) (2.20)

= Ep(θ∗){(μ − ψ′(η(θ∗)))T g(η(θ∗))−1n(ȳ − ψ′(η(θ∗)))}{n(ȳ − ψ′(η(θ∗)))T ηab(θ∗)} (2.21)

= Ep(θ∗){Ai∂
i}{Γκ

abB
i
κ∂i + Hγ

abB
i
γ∂i} (2.22)

= Ep(θ∗){Ai∂
i}

(
Hγ

abB
i
γ∂i

)
(2.23)

= AiB
i
γHγ

ab. (2.24)

The fourth equality is from the zero expected score,

(μ − ψ′(η(θ∗)))T η′(θ∗) = 0. (2.25)

The result for (b) is obvious since Hγ
ab = 0 if the exponential curvature of the embedding model

vanishes at θ∗.

Definition 2.2 (Critchley et al. (1994)) For a fixed (true) distribution φ, define

μφ(η) = Eφ(s(η)), (2.26)

gφ(η) = V arφ(s(η)), (2.27)

where s(η) is the score function and the expectations are taken with respect to the fixed model η = φ,
then the preferred point geometry, (M, μφ(η), gφ(η)) is gφ-flat if there exits a coordinate system η
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for which gφ is constant for all η. The η coordinates are called gφ-affine. M is totally flat, if there
exists a coordinate system η for which gφ is a constant for all η and μφ is a linear function of η−φ.

When an exponential family is totally flat, the natural parameterization is α-affine for all real α

in the sense of Amari (1982). The total flatness assumption is quite restrictive. An example would
be a normal model with a known variance matrix. Therefore the total flatness is not a condition
to expect to hold in general, but a reference or a benchmark for a real problem. Of course, the
condition would look more reasonable as a sample size grows, since we consider the local structure
of a model asymptotically.

Theorem 2.3 For a k-dimensional CEF embedded in an exponential family,

λ(θ∗) = tr{H̄(θ∗)−1J̄(θ∗)} (2.28)

is calculated from
J̄(θ∗) = η′(θ∗)T g(φ)η(θ∗), (2.29)

H̄(θ∗) with the (a, b) element H̄ab(θ∗) = AiB
i
γHγ

ab − δb
a, and δb

a = 1 for (a = b) and δb
a = 0 for

(a �= b). When the model has a locally vanishing embedding curvature with respect to 1-connection
(exponential curvature) at θ∗, we have

λ(θ∗) = −tr(η′(θ∗)T g(φ)η(θ∗)), (2.30)

and if the embedding exponential family is totally flat as well, we have

λ(θ∗) = −k. (2.31)

Proof. Since λ(θ∗) is invariant with respect to a reparameterization, we use the locally 0-affine
parameterization such that the Fisher information

i(θ∗) = η′(θ∗)T g(η(θ∗))η(θ∗) (2.32)

becomes a (k×k)-dimensional identity matrix without loss of generality. The existence of such local
parameterization at the pseudo-true distribution is sufficient for our results. Therefore we have

H̄ab(θ∗) = AiB
i
γHγ

ab − δb
a (2.33)

using Lemma 2.1 (a). If the CEF has a vanishing exponential curvature, from Lemma 2.1 (b) we
get the second result,

λ(θ∗) = −tr(η′(θ∗)T g(φ)η(θ∗)). (2.34)
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Also, when the embedding exponential family is totally flat as well, g(η) is constant, i.e. g(φ) =
g(η(θ)) for all θ (Theorem 4 in Critchley et al. (1994)). Therefore we have

λ(θ∗) = −tr(η′(θ∗)T g(η(θ∗))η(θ∗)) (2.35)

= −tr(i(θ∗)) = −k (2.36)

from g(φ) = g(η(θ∗)).
As discussed earlier, for a general k-dimensional model (k > 1), there does not exist a reparam-

eterization that makes the Fisher information matrix an identity matrix for all θ, but there always
exists a local parameterization (locally 0-affine) that makes the information matrix an identity
matrix at a particular point.

2.3 Summary and Extension

For a curved exponential family embedded in the full exponential family, λ(θ∗) = tr{H(θ∗)−1J(θ∗)}
is related to two factors, total flatness and the exponential curvature at θ∗. Using an 0-affine
parameterization, we showed, if the embedding exponential family is totally flat in the sense of
Critchley et al. (1994), we have J(θ∗) = Ik, where Ik is a (k × k) identity matrix where k is the
dimension of the parameter vector. If the embedded CEF has a vanishing exponential curvature at
θ∗, we also have H(θ∗) = −Ik.

We consider the extension of the results to general parametric families by approximating the
model with a curved exponential model around the pseudo-true distribution. The approximat-
ing CEF is expanded to include a true distribution by the exponential link. The exponential
link between two distributions q1 and q2 defines a one dimensional exponential family log q(α) =
c(α){log q1 + (1 − α) log q2} with a parameter α and a normalizing constant c(α). Note that the
exponential link is only an example of connecting two distributions. It is a convenient way of
representing our geometrical idea, since it creates an embedding exponential family.

Let l0 = log p0 where p0 is the true distribution. We first consider the curved exponential
approximation l̃(θ) of Efron (1975) for a general log-likelihood function l(θ), then we include the
true distribution. The approximating log-likelihood function l̃(θ) around θ∗ is a one-dimensional
curved exponential family embedded in the (m + 1)-dimensional exponential family l̃(η) with η =
(η0, η1, η2, . . . , ηm), and is given by

l̃(θ) = l̃(η(θ)) = η0(l0 − l(θ∗)) + l(θ∗) +
m∑

r=1

ηrl
(r)(θ∗) − ψ(η), (2.37)
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where

η(θ) = (η0, η1(θ), η2(θ), . . . , ηm(θ)) =
(

0, (θ − θ∗),
1
2
(θ − θ∗)2, · · · ,

1
m!

(θ − θ∗)m

)
, (2.38)

l(r)(θ∗) =
∂r

∂θr
l(θ)

∣∣∣∣
θ=θ∗

, (2.39)

and ψ(η) is a normalizing constant. The true distribution in the embedding family l̃(η) is given by

(η0, η1, η2, . . . , ηm) = (1, 0, 0, . . . , 0) . (2.40)

With the approximating CEF and its embedding exponential family, we can apply our geometrical
interpretation directly.

3 Non-nested Hypothesis Testing

3.1 Application to Vuong’s Test

Non-nested hypothesis testing considers two separate parametric families of distributions. Unlike
nested hypothesis testing, where a smaller (restricted) model is typically a natural candidate for a
null model, defining a null hypothesis or a true model is a subtle issue in non-nested testing.

Vuong (1989) proposed to test the null hypothesis that competing models are equidistant in
KLIC from an unknown true distribution. The test is based on the difference in KLIC for candidate
models 1 and 2, given by

KLIC1 − KLIC2 = E0(l0 − l1) − E0(l0 − l2) (3.1)

= E0(l2 − l1), (3.2)

where l0, l1, and l2 are the log likelihood functions of the true distribution and the pseudo-true
distributions of the competing models 1 and 2 respectively. Under the null that E0(l2 − l1) = 0,

Vuong (1989) proposed a normalized sample mean version of equation (3.2) for the test statistic.
The test statistic tn is given by

tn =
n−1/2(l2(θ̂2) − l1(θ̂1))√

V̂n

, (3.3)
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where θ̂1 and θ̂2 are the maximum likelihood estimators (MLEs), and denoting

lj(θj) =
n∑

i=1

lji(θj), (3.4)

l̄j(θj) =
1
n

n∑
i=1

lji(θj) (3.5)

for j = 1, 2, the variance of the numerator Vn is estimated by

V̂n =
1
n

n∑
i=1

{
(l2i(θ̂2) − l̄2(θ̂2)) − (l1i(θ̂1) − l̄1(θ̂1))

}2

. (3.6)

This test statistic requires that no model contains the true distribution, i.e. they are misspecified.
If it does, the test statistic degenerates. See Vuong (1989) for a test for the degenerating variance.
Under Vuong’s null hypothesis (with i.i.d. data), the test statistic tn is asymptotically standard
normal. Our results indicate that the numerator of the test statistic has a mean that depends on the
curvatures, thus the standard normal approximation is expected to deteriorate when the curvature
is large.

The finite sample properties of this test statistic are not studied comprehensively. Vuong’s test
is extended for stationary time series data by Rivers and Vuong (2002) and Choi and Kiefer (2008).
Choi and Kiefer (2008) also studied the finite sample properties of the test statistic for dynamic
models and proposed to use the new asymptotic approximation, called the fixed-b asymptotics,
developed by Kiefer and Vogelsang (2002) and Kiefer and Vogelsang (2005). The fixed-b asymp-
totics improves the approximation of the denominator when the heteroskedasticity autocorrelation
consistent (HAC) estimator was used. They compared the performance of the fixed-b asymptotic
approximation with bootstrap approaches. That approach uses a different asymptotic approxima-
tion and allows quite general autocorrelation.

In this paper, we propose to correct the mean in the test statistic rather than changing the
approximating distribution to get better finite sample performance. We use the first order mean
discussed in the previous sections to correct the numerator. Under the null, the mean correction
becomes of order O(1/

√
n) because of the normalization in Vuong’s test statistic. The proposed

mean correction term can be estimated consistently. We study the magnitude of the asymptotic
mean with nonlinear regression models and demonstrate the improvements in the asymptotic ap-
proximation of the sampling distribution of the mean corrected test statistic.

3.2 Misspecified Nonlinear Regressions

Consider a linear model
yi = α + βxi + ui (i = 1, . . . , n), (3.7)
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where xi ∼ i.i.d. N(0, 1) and ui ∼ i.i.d. N(0, σ2). The true DGP is (α, β, σ2) = (0, 0, 0.04), and
two competing misspecified models M1 and M2 are given by two nonlinear restrictions (half circles),

M1 : (α + 2)2 + β2 = 1 with α ≥ −2, (3.8)

M2 : (α + 1)2 + β2 = 4 with α ≥ −1. (3.9)

The pseudo-true distributions are θ∗1 = (α∗, β∗) = (−1, 0) for M1, and θ∗2 = (α∗, β∗) = (1, 0) for
M2. The estimated asymptotic mean b̂ is calculated from

b̂ = −1
2

(
tr{Ĥ2(θ̂2)−1Ĵ2(θ̂2)} − tr{Ĥ1(θ̂1)−1Ĵ1(θ̂1)}

)
. (3.10)

The mean adjusted test statistic t2 is given by

t2 =
n−1/2(l1(θ̂1) − l2(θ̂2) − b̂)√

V̂n

, (3.11)

where

V̂n =
1
4n

n∑
i=1

v2
i , (3.12)

vi = û2
1i/σ̂2

1 − û2
2i/σ̂2

2 , (3.13)

and {ûji}n
i=1 are residuals using MLEs (β̂j , σ̂

2
j ) from model j = 1, 2. See Lien and Vuong (1987)

p.10 for the details of approximating the variance of the numerator using vi.

We set n = 20, and the number of simulation repetition is 3, 000. The nonparametric kernel
density estimator of simulated t2 is compared with the density estimate of Vuong’s original test
statistic in Figure 1. The sample mean of simulated Vuong’s test statistics is 0.340, whereas the
simulated values of t2 have the sample mean of 0.029.

4 Conclusion

When a model is misspecified, the first order chi-squared asymptotic approximation to the log-
likelihood ratio is no longer valid and the mean of the limit of the likelihood ratio depends on
the pseudo-true values of parameters. We showed that the mean has a differential geometrical
interpretation and its value is determined by the exponential curvature of the model and the total
flatness of the embedding family. When both the curvatures vanish, the mean becomes a trivial
constant and the chi-squared approximation becomes valid.

As an example, the effect of the curvatures on the asymptotic approximation of the non-nested
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Figure 1: Comparison of kernel density estimators (Gassian kernel, bandwidth 0.3) for simulated
Vuong’s test statistics (“Vuong”) and the mean adjusted statistics (“Mean Adj”). The mean of the
test statistic is reduced to 0.029 from 0.340.

hypothesis test of Vuong (1989) was presented. The numerator of the test statistic was modified with
a higher order mean correction term calculated by plugging in the MLEs. The results showed that
the improvement of the asymptotic approximation from the mean correction could be significant
when the curvatures are large.
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