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Abstract

We generalize permissibility (Brandenburger, 1992) to allow for any suitably defined
model of preference and definition of possibility. We also prove that the generalized
solution concept characterizes rationality, caution, and common “belief” of rationality
and caution.

JEL classification: C72; D81

1 Introduction

The expected utility model of Savage (1954) is the standard theory of decision under uncer-
tainty. An important property underlying the model is, in Machina and Schmeidler’s (1992)
terminology, probabilistic sophistication. A decision maker is probabilistically sophisticated
if his preference reflects probabilistic beliefs, in the sense that events are distinguished only
by (subjective) probabilities assigned to them.

Savage’s axiomatization of expected utility includes a preference-based definition of pos-
sibility. The definition, when adapted to any finite state space, says that a state is nonnull
if the decision maker is ever concerned about his consequence at that state. Nonnullity fits
into the traditional recipes of defining possible states in terms of believed events or possible
events.

However, the concept of nonnullity is arguably too loose. For non-probabilistically so-
phisticated preferences, there are motivations (especially in game theory) to develop stronger
definitions, so that a nonnull state is not necessarily classified as possible. Inspired by Mor-
ris (1997), Ryan (2002), and Lo (2005a), who formulate definitions targeting specific models
of preference, Lo (2005b) proposes a general recipe, which can be easily used to formulate
desired preference-based definitions of possibility. His recipe includes the traditional recipes
as special cases.

In this paper, we adopt a more comprehensive version of Lo’s recipe, and derive how
possible states in the “grand world” are related to possible states in every “small world.”
Roughly speaking, every possible state in every small world contains a possible state in the
grand world; but unless the recipe collapses to the traditional ones, a small-world state may
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not be possible, even though the small-world state contains a possible grand-world state.
These results are relevant for defining—with foundations—solution concepts in games with
non-probabilistically sophisticated players. The focus of this paper is permissibility, which
was formulated by Brandenburger (1992) in terms of lexicographic expected utility.1 We
generalize permissibility to allow for any suitably defined model of preference and defini-
tion of possibility. We also use the results to prove that the generalized solution concept
characterizes rationality, caution, and common “belief” of rationality and caution.

The following (notational) conventions will be adopted throughout the paper. The set of
consequences is always R, but various state spaces (which are all assumed to be finite) will
arise. For any set Z of states, use F(Z) to denote the set of acts (i.e., functions) from Z to R.
As is customary, for any c ∈ R, c also denotes the constant act that yields the consequence c
in every state z ∈ Z; for any c, d ∈ R, and any ζ ⊆ Z, cζd denotes the binary act that yields
c if the event ζ happens, and yields d if Z \ ζ happens.2 For any preference (i.e., complete
and transitive) relation �Z on F(Z), use �Z to denote the asymmetric part of �Z . Any
preference relation considered in this paper is also assumed to be weakly monotonic (i.e., for
all f, f ′ ∈ F(Z), if f(z) ≥ f ′(z) for all z ∈ Z, then f �Z f ′) and non-trivial (i.e., there exist
f, f ′ ∈ F(Z) such that f �Z f ′).

2 Defining possibility in grand and small worlds

Fix a set T of states; call it the grand world. Call any partition S of T a small world. (For
notational simplicity, T also denotes the finest small world, namely, the small world in which
every partitional element is a singleton). It is convenient to think of a grand-world state as a
completely detailed description of the world, leaving no relevant aspect undescribed. While
a small-world state (which is virtually a grand-world event) is in general not completely
detailed, it may still be—in the context of a certain decision problem—sufficiently detailed,
leaving no payoff-relevant aspect undescribed. A simple example (which will be carefully
considered in Section 4) is as follows. Alice is playing a strategic game with Bob. From the
perspective of Alice, T is the set of types, and S is the set of strategies, of Bob. In this
context, a grand-world state completely specifies Bob’s strategy as well as state of mind; it is
much more detailed than a small-world state, which is just a specification of Bob’s strategy.

For any small world S, and any grand-world state t ∈ T , let s(t) ∈ S be the small-world
state such that t ∈ s(t); in other words, s(t) is the partitional element containing t. Given
any preference relation � on the set F(T ) of acts over T , let �S be the preference relation
on the set F(S) of acts over S, which is derived from � as follows: For all f, f ′ ∈ F(S),

f �S f ′ if f̃ � f̃ ′, (1)

where f̃(t) = f(s(t)) and f̃ ′(t) = f ′(s(t)) for all t ∈ T . In essence, �S is virtually the
restriction of � to acts which are measurable with respect to S. (So, when S is the finest
small world, it is understandable to identify �S with �.) We emphasize that �S may not
be an expected utility preference relation.

1See also Börgers (1994) and Dekel and Fudenberg (1990).
2In this paper, we use the symbol ⊆ for subset, ⊂ for proper subset, and Z \ ζ for the complement of ζ.
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For any small world S, and any σ ⊆ S, say that σ is a �S-nonnull event if there exist acts
f, f ′ ∈ F(S) such that f(s) = f ′(s) for all s ∈ S \ σ, and f �S f ′; otherwise σ is a �S-null
event. Intuitively, σ is �S-nonnull if the decision maker (with preference represented by �S)
is ever concerned about what he will receive at states lying inside σ. For any s ∈ S, say that
s is a �S-nonnull state if {s} is a �S-nonnull event; similarly, s is a �S-null state if {s} is a
�S-null event. Given the finite nature of S, an event is �S-nonnull if and only if it contains
a �S-nonnull state. Weak monotonicity and non-triviality imply that S is �S-nonnull, and
so there must be a �S-nonnull state.

A definition of likely events L specifies, for every small world S, a collection L(�S) of
events satisfying

L1 For all σ′ ⊆ σ ⊆ S, if σ′ ∈ L(�S), then σ ∈ L(�S).

L2 For all σ ⊆ S, if σ ∈ L(�S), then σ is �S-nonnull.

L3 For all σ ⊆ S and all s ∈ S, if σ ∈ L(�S) and s is �S-null, then σ \ {s} ∈ L(�S).

L4 S ∈ L(�S).

L5 For all σ ⊆ S, σ ∈ L(�S) if and only if s−1(σ) ≡ {t ∈ T |s(t) ∈ σ} ∈ L(�).

Properties L1 through L5 can be described as follows. L1: Any superset of a likely event
is a likely event; L2: An event is likely only if it is nonnull; L3: A likely event with any null
state removed is still a likely event; L4: The world is a likely event; L5: An event is likely if
and only if the same event in the grand-world is likely.3

Given L(�S), a possible state is defined as follows.

Definition 1. A state s ∈ S is L(�S)-possible if there exists σ ⊆ S such that σ 6∈ L(�S)
and {s} ∪ σ ∈ L(�S).

To elaborate, a state s is L(�S)-possible if there exists an event σ such that s has the
following impact on σ: σ is not a likely event, but σ with {s} attached becomes a likely
event. Let

minL(�S) = {σ ∈ L(�S)|For all σ′ ⊂ σ, σ′ 6∈ L(�S)}

be the collection of minimal likely events. Properties L1–L4 imply that L(�S)-possible states
in every world are well behaved in the following sense (cf. Lo, 2005b, Propositions 1 and 2).

Proposition 1. A state is L(�S)-possible only if it is �S-nonnull. A state is L(�S)-possible
if and only if it is contained in ∪σ∈minL(�S)σ. There exists at least one L(�S)-possible state.

In addition, L1–L4 also imply the following relationship between likely events and possible
states: Any event containing all L(�S)-possible states is a likely event, and any likely event
contains at least one L(�S)-possible state.

The remainder of this section is an example illustrating the above concepts. Let a : 2T \
{∅} → [0, 1] be a function satisfying

∑
τ∈2T \{∅} a(τ) = 1; Shafer (1976) calls this a basic

probability assignment on T . For each τ ∈ 2T \ {∅}, the basic probability number a(τ) can

3As Lo (2005b) focuses on only one world, he is not explicit about L5.
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be interpreted as the weight of evidence that the event τ has happened. Let u : R→ R be a
continuous strictly increasing von Neuman Morgenstern (vNM) index. Let

U(f̃) =
∑

τ∈2T \{∅}

a(τ) min
t∈τ

u(f̃(t)) (2)

be the “expected minimum utility” of a typical grand-world act f̃ ∈ F(T ). Clearly, expected
utility is a special case of Eq. (2), in the sense that a(τ) > 0 only if τ is a singleton. Eq. (2)
is in turn an important special case of two influential models: Choquet expected utility and
maxmin expected utility (cf. Gilboa and Schmeidler, 1994). For any small world S, and any
small-world act f ∈ F(S), if we let f̃(t) = f(s(t)) for all t ∈ T , then for each τ ∈ 2T \ {∅},

min
t∈τ

u(f̃(t)) = min
s∈σ

u(f(s)), (3)

where σ ∈ 2S \ {∅} is the smallest event such that τ ⊆ s−1(σ). Suppose the preference
relation � on F(T ) is represented by Eq. (2). Then it follows from Eq. (3) that the induced
preference relation �S as defined in Eq. (1) can be represented by, for every f ∈ F(S),

US(f) =
∑

σ∈2S\{∅}

b(σ) min
s∈σ

u(f(s)), (4)

where
b(σ) =

∑
{τ⊆s−1(σ)|For all σ′⊂σ,τ 6⊆s−1(σ′)}

a(τ). (5)

The function b : 2S \ {∅} → [0, 1] in Eq. (5) is a basic probability assignment on S. (Clearly,
if S is the finest small world, then b = a.) Call

supp b = {σ ∈ 2S \ {∅}|b(σ) > 0} (6)

the support of b. It is immediate from Eq. (4) that

{s ∈ S|s is �S-nonnull} =
⋃

σ∈supp b

σ. (7)

In words, a state is �S-nonnull if and only if it is covered by the support of b.
For every small world S, define

L(�S) = {σ ⊆ S|cσd �S dσc′ for all c′, c, d ∈ R such that c′ > c > d}. (8)

Eq. (8) says that σ ∈ L(�S) if the event σ is infinitely more likely than its complement S \σ,
in the sense that the decision maker strictly prefers to bet on σ rather than on S \ σ, no
matter how much better is the consequence for winning the S \ σ bet than that for winning
the σ bet (cf. Lo, 1999). It is easy to check that this L satisfies L1–L5 (for any weakly
monotonic and non-trivial preference), and therefore it is indeed a definition of likely events.
Given that �S is represented by Eq. (4), we have

{s ∈ S|s is L(�S)-possible} =
⋃

σ∈min supp b

σ, (9)
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where
min supp b = {σ ∈ 2S \ {∅}|b(σ) > 0, and for all σ′ ⊂ σ, b(σ′) = 0} (10)

is called the minimal support of b. In words, a state is L(�S)-possible if and only if it is
covered by the minimal support of b.4 Eqs. (7) and (9) imply that every L(�S)-possible state
is �S-nonnull (but the converse does not hold); Eqs. (9) and (10) imply that there exists at
least one L(�S)-possible state.

3 Relating possibility in grand and small worlds

In Section 2, we imposed L5, which determines likely events in a small world from likely
events in the grand world. We now derive the relationship of possible states in the grand
world and possible states in a small world. Proposition 2 below says that every possible
state in every small world contains at least one possible state in the grand world.5

Proposition 2. For every small world S, and every small-world state s ∈ S, if s is L(�S)-
possible, then there exists a grand-world state t ∈ s−1(s) ≡ {t′ ∈ T |s(t′) = s} such that t is
L(�)-possible.

Before asking the natural question of whether the converse of Proposition 2 holds, let
us present the traditional recipes of defining possible states as special cases of the one in
Section 2. Say that a definition of likely events L is also a definition of believed events if for
every small world S, L(�S) also satisfies

B1 For all σ, σ′ ⊆ S, if σ ∈ L(�S) and σ′ ∈ L(�S), then σ ∩ σ′ ∈ L(�S).

Obviously, B1 holds if and only if minL(�S) is a singleton. By Proposition 1, minL(�S) is
a singleton if and only if

minL(�S) = {{s|s is L(�S)-possible}}. (11)

In other words, L is a definition of believed events if and only if for every small world S, any
likely event contains all L(�S)-possible states.

Along the same line, say that a definition of likely events L is also a definition of possible
events if for every small world S, L(�S) also satisfies

P1 For all σ ⊆ S, if σ ∈ L(�S), then there exists s ∈ σ such that {s} ∈ L(�S).

4According to Lo (2006), for any �S representable by Eq. (4), the set of L(�S)-possible states derived
from Eq. (8) is the same as that derived from

L(�S) = {σ ⊆ S|cσd �S d for all c, d ∈ R such that c > d}.

In terms of this L(�S), it is straightforward that σ ∈ L(�S) if and only if there exists σ′ ⊆ σ such that
σ′ ∈ supp b; so σ ∈ minL(�S) if and only if σ ∈ min supp b. Recall that the set of L(�S)-possible states is
the union of all minimal likely events; Eq. (9) follows.

5Proof of Propositions 2–5 can be found in the Appendix.
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Obviously, P1 holds if and only if every event in minL(�S) is a singleton; or equivalently,
by Proposition 1,

minL(�S) = {{s}|s is L(�S)-possible}. (12)

So L is a definition of possible events if and only if for every small world S, any event
containing at least one L(�S)-possible state is a likely event.

It is well known that nonnull states can be derived from either a definition of believed
events or a definition of possible events. For example,

L(�S) = {σ|S \ σ is �S-null} (13)

is a collection of events satisfying B1, whereas

L(�S) = {σ|σ is �S-nonnull} (14)

is a collection of events satisfying P1. Given L(�S) as defined in either Eq. (13) or Eq. (14),
a state is L(�S)-possible if and only if it is �S-nonnull.6

It is difficult to come up with a preference-based collection L(�S) satisfying B1/P1, such
that not every �S-nonnull state is L(�S)-possible; without the constraint of B1/P1, such a
L(�S) can be easily formulated (cf. Lo, 2005b, 2006). Proposition 3 below reveals that the
converse of Proposition 2 is equivalent to adding B1/P1 to L.

Proposition 3. The following two statements are equivalent:

(i) For every small world S, and every small-world state s ∈ S, if there exists a grand-world
state t ∈ s−1(s) such that t is L(�)-possible, then s is L(�S)-possible.

(ii) The definition of likely events L is also a definition of believed events, or a definition
of possible events.

Let us use a story to heuristically illustrate both Propositions 2 and 3. As in Ellsberg
(1961), suppose the decision maker is informed that an urn contains 90 balls, identical except
in color; 30 of the balls are red, and each of the remaining balls is either green or yellow,
but the relative proportions are unknown. One ball has been drawn from the urn, and the
decision maker is interested in whether the color of that ball is red, green, or yellow. Let
T = {tr, tg, ty} be the grand world (where tr, tg, and ty are the states in which the color
of the ball is red, green, and yellow, respectively). Since tr has probability 1/3, it should
be possible. However, tr should not be the only possible state. After all, {tg, ty} is twice
as probable as {tr}. Since tg and ty are (informationally) symmetric, if any one of them
is possible, then the other one should be as well. This intuition suggests that the decision
maker may regard every state in T as possible. Now consider the small world S = {srg, sy},
where srg = {tr, tg} and sy = {ty}. Intuitively, since there could be no yellow ball in the
urn, srg is “infinitely more likely than” sy. So the decision maker may regard srg as the only
possible state (while sy is still nonnull) in S.

6More generally, for any definition of believed (possible, respectively) events, there is a definition of
possible (believed, respectively) events generating the same set of possible states in every world. In this
sense, the two concepts are equivalent.
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The expected minimum utility example of Section 2 can be consistent with the above
story. Let the basic probability assignment associated with Eq. (2) be

a(τ) =


1
3

if τ = {tr}
2
3

if τ = {tg, ty}
0 otherwise.

(15)

By Eq. (5),

b(σ) =


1
3

if σ = {srg}
2
3

if σ = S

0 otherwise.

(16)

Eqs. (9), (10), (15), and (16) imply that the set of L(�)-possible states is T , and the set
of L(�S)-possible states is {srg}. The L(�S)-possible state srg contains the L(�)-possible
states tr and tg. The state sy is not L(�S)-possible, even though it contains the L(�)-possible
state ty. This is because, for non-probabilistically sophisticated preferences in general, likely
events as defined in Eq. (8) are neither believed events nor possible events.

4 Generalizing permissibility in games

We now apply the decision theory of Sections 2 and 3 to game theory. Suppose that there are
two players, 1 and 2.7 They are playing a strategic game (S1, S2, g1, g2), where Si is player i’s
finite set of strategies, and gi : Si×Sj → R specifies i’s consequence for each strategy profile.8

Since player i may not know the strategy choice of player j, we suppose that player i views
the set Sj as a small world. Fix a definition of likely events L. So, if i’s preference relation
on F(Sj) is �i, we use L(�i) ⊆ 2Sj to denote the collection of likely events (satisfying L1–L4
of Section 2, with �i in place of �S). Let M be a model of preference; for our purpose, M
specifies, for every i, a set M(Sj) of preference relations on F(Sj) with the property: For
every nonempty σj ⊆ Sj, there exists �i∈ M(Sj) such that sj is �i-nonnull for all sj ∈ Sj,
but sj is L(�i)-possible only if sj ∈ σj.

9 Every strategy si ∈ Si can be interpreted as an
element of F(Sj), in the sense that for each sj ∈ Sj, si delivers the consequence gi(si, sj);
under this interpretation, condition (i) of Definition 2 is meaningful.

Definition 2. A set P1× P2 ⊆ S1× S2 of strategy profiles is a 〈L,M〉-permissible set if for
each si ∈ Pi, there exists �i∈M(Sj) such that the following three conditions are satisfied:

(i) si �i s′i for all s′i ∈ Si.

(ii) sj is �i-nonnull for all sj ∈ Sj.

(iii) sj is L(�i)-possible only if sj ∈ Pj.
7Our analysis can be extended in a straightforward manner to games with more than two players.
8Unless emphasis is desired, it is understood that i and j vary over {1, 2} and i 6= j.
9This property immediately implies the existence of �i satisfying conditions (ii) and (iii) of Definition 2

below.
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The three conditions in Definition 2 say that (i) �i justifies si; (ii) �i does not completely
rule out any sj; (iii) for every sj that is L(�i)-possible, there exists �j∈ M(Si) such that
�j justifies sj, �j does not completely rule out any s′i, and so on. By definition, 〈L,M〉-
permissible sets are closed under union; so the largest 〈L,M〉-permissible set exists. Let
P 0
i = Si, and recursively define, for each positive integer n,

P n
i = {si ∈ Si|∃ �i∈M(Sj) such that

si �i s′i for all s′i ∈ Si,
sj is �i-nonnull for all sj ∈ Sj,
sj is L(�i)-possible only if sj ∈ P n−1

j }.

(17)

This iterative procedure delivers (in a finite number of rounds, due to the finiteness of Si)
the largest 〈L,M〉-permissible set.

Proposition 4. The largest 〈L,M〉-permissible set P ∗1 × P ∗2 is nonempty, and is given by
P ∗1 × P ∗2 = ∩∞n=0P

n
1 × ∩∞n=0P

n
2 .

Permissibility (Brandenburger, 1992, Definition 2, p. 286) can be seen as an instance of
〈L,M〉-permissibility as follows. Parallel to Eq. (8), for any �i∈M(Sj), let

L(�i) = {σj ⊆ Sj|cσjd �i dσjc′ for all c′, c, d ∈ R such that c′ > c > d} (18)

be the collection of likely events in Sj. Let M(Sj) be the set of all lexicographic expected
utility preference relations, with an identical continuous strictly increasing vNM index. Then
〈L,M〉-permissibility is permissibility. The Dekel-Fudenburg procedure (namely, elimination
of inadmissible strategies, followed by iterated elimination of strictly dominated strategies)
delivers the largest permissible set (Brandenburger, Proposition 2, p. 287).

Another example of 〈L,M〉-permissibility is as follows.10 Parallel to Eq. (4) of Section
2, suppose that M(Sj) is the set of all preference relations representable by

USj
(f) =

∑
σj∈2Sj \{∅}

bi(σj) min
sj∈σj

ui(f(sj)) ∀f ∈ F(Sj), (19)

where the vNM index ui is fixed, but the basic probability assignment bi is variable. Parallel
to Eq. (6), for any bi, define

supp bi = {σj ∈ 2Sj \ {∅}|bi(σj) > 0}.

By Eq. (7), for any �i∈M(Sj) with corresponding bi, sj is �i-nonnull for all sj ∈ Sj if and
only if

⋃
σj∈supp bi

σj = Sj. Parallel to Eq. (10), define

min supp bi = {σj ∈ 2Sj \ {∅}|bi(σj) > 0, and for all σ′j ⊂ σj, bi(σ
′
j) = 0}.

Suppose we also adopt Eq. (18) as the collection of likely events in Sj. Then Eq. (9) tells
us that the set of L(�i)-possible states in Sj is equal to

⋃
σj∈min supp bi

σj. Finally, for any

10Similar to this example, Mukerji’s (1995) solution concept for the ε-contamination model, as simplified
in Epstein (1997, footnote 5, p. 15), can also be stated as a special case of 〈L,M〉-permissibility.
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si ∈ Si, and any nonempty Σj ⊆ 2Sj \ {∅}, say that si is weakly dominated given Σj if there
exists a probability measure pi on Si such that for every σj ∈ Σj,∑

s′i∈Si

pi(s
′
i) min
sj∈σj

ui(gi(s
′
i, sj)) ≥ min

sj∈σj

ui(gi(si, sj)),

and for at least one σj ∈ Σj,∑
s′i∈Si

pi(s
′
i) min
sj∈σj

ui(gi(s
′
i, sj)) > min

sj∈σj

ui(gi(si, sj)).

Pearce’s (1984, p. 1049) Lemma 4 can be easily modified to establish the equivalence of
the following two statements: (i) si is not weakly dominated given Σj; (ii) there exists
�i∈ M(Sj) with corresponding bi such that supp bi = Σj, and si �i s′i for all s′i ∈ Si.
Putting everything together, Eq. (17) becomes

P n
i = {si ∈ Si|∃Σj ⊆ 2Sj \ {∅} such that

si is not weakly dominated given Σj,

∪σj∈Σj
σj = Sj,

∪σj∈min Σj
σj ⊆ P n−1

j },

(20)

where
min Σj ≡ {σj ∈ Σj|For all σ′j ⊂ σj, σ

′
j 6∈ Σj}

is the collection of minimal events in Σj. Eq. (20) says that for every positive integer n, si
belongs to P n

i if there exists Σj such that the following three conditions are satisfied: (i) si
is not weakly dominated given Σj; (ii) Σj is a covering of Sj; (iii) min Σj is a covering of at
most P n−1

j . Note that (ii) and (iii) do not run into conflict precisely because events in Σj

can have cardinality bigger than one, so that min Σj can be a proper subset of Σj. To stress
the significance of this flexibility, let R0

i = Si, and for each positive integer n, let

Rn
i = {si ∈ Si|∃Σj ⊆ {{sj}}sj∈Sj

such that

si is not weakly dominated given Σj,

∪σj∈min Σj
σj ⊆ Rn−1

j }.
(21)

By Pearce’s (1984, p. 1048) Lemma 3, Rn
i is the set of strategies surviving n rounds of

iterated elimination of strictly dominated strategies. Note that every event in Σj is required
to be a singleton, and hence the condition “∪σj∈Σj

σj = Sj” cannot be included in Eq. (21).
We illustrate Eq. (20) using the games depicted in Figs. 1 and 2. (In both figures, player

1 chooses the row, and player 2 chooses the column; payoffs are in terms of vNM utilities.)
Let us first consider Fig. 1. It is obvious that D is weakly dominated given any covering of
S2; but neither U nor M is weakly dominated given the covering Σ2 = {{L}, S2}. As for
player 2’s strategies, R is weakly dominated given any covering of S1; but L is not weakly
dominated given the covering Σ1 = {{U,M}, S1}. So P 1

1 × P 1
2 = {U,M} × {L}. Note that

the unique event {U,M} in min Σ1 just covers P 1
1 , and the unique event {L} in min Σ2 just
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covers P 1
2 . Hence the iterative procedure stops, with P ∗1 ×P ∗2 = P 1

1 ×P 1
2 = {U,M}× {L}.11

L R

U 2, 2 2, 2

M 3, 1 0, 1

D −1, 0 −1,−1

Figure 1: A strategic game

Turn to the game in Figure 2. Neither U nor D is weakly dominated given the covering
{{L}, {C}, {R}} of S2. Obviously, L is not, but both C and R are, weakly dominated given
any covering of S1. So P 1

1 ×P 1
2 = {U,D}× {L}, and in the next round, we are only allowed

to consider any covering Σ2 of S2 with the property that min Σ2 contains only {L}; but U
is weakly dominated given any such covering. Hence P ∗1 × P ∗2 = P 2

1 × P 2
2 = {D} × {L}.12

L C R

U 0, 1 1, 0 −2, 0

D 0, 1 0, 0 4, 0

Figure 2: A strategic game

Our final task is to establish the foundation of 〈L,M〉-permissibility. Let T1 × T2 be a
finite type space, with typical type profile (t1, t2). For convenience, we will frequently refer
to player i with type ti as “player ti.” Player ti knows his own actual type; however, since he
may not know player j’s type, he regards Tj as the grand world. Let �ti be ti’s preference
relation on F(Tj), and si(ti) ∈ Si be the strategy chosen by ti in the game. His preference
relation �tiSj

on F(Sj) is derived from �ti along the line of Eq. (1); to be precise, for all

f, f ′ ∈ F(Sj),
f �tiSj

f ′ if f̃ �ti f̃ ′, (22)

where f̃(tj) = f(sj(tj)) and f̃ ′(tj) = f ′(sj(tj)) for all tj ∈ Tj. Assume that �tiSj
∈ M(Sj) for

all ti ∈ Ti; in words, �tiSj
conforms to the model of preference M.

Recall that any strategy si ∈ Si can be interpreted as an element of F(Sj). Similarly,
si can also be interpreted as an element of F(Tj) in the following sense: For each tj ∈ Tj,

11Iterated strict dominance delivers {U,M}×{L,R}. Both iterated admissibility and the Dekel-Fudenburg
procedure deliver {M} × {L}, which is also the only self-admissible set (in the sense of Brandenburger et
al., 2008, Definition 3.3, p. 320).

12Iterated strict dominance, iterated admissibility, and the Dekel-Fudenburg procedure all deliver {U,D}×
{L}, which is also the largest self-admissible set.
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si specifies the consequence gi(si, sj(tj)). So it is meaningful to say that ti is rational if
si(ti) �ti si for all si ∈ Si; in words, ti is rational if he chooses an optimal strategy.

Intuitively, player ti is cautious if he does not completely rule out any strategy of his
opponent. Formally, say that ti is cautious if for each sj ∈ Sj, s−1

j (sj) ≡ {tj ∈ Tj|sj(tj) = sj}
is a �ti-nonnull event. Clearly, if ti is cautious, then s−1

j (sj) is nonempty for all sj ∈ Sj, and

{s−1
j (sj)}sj∈Sj

is a partition of Tj; consequently, Sj is in effect a small world induced from
Tj.

Given L, L(�ti) ⊆ 2Tj is the collection of likely events (satisfying L1–L4 of Section 2,
with �ti in place of �S). For any event τj ⊆ Tj, say that player ti L(�ti)-believes τj if every
L(�ti)-possible state is contained in τj.

13 Define

T 1
i = {ti ∈ Ti|ti is rational and cautious}, (23)

and recursively define, for every positive integer n,

T n+1
i =

{
ti ∈ T ni |ti L(�ti)-believes T nj

}
. (24)

Define T∞i = ∩∞n=1T
n
i . Eqs. (23) and (24) justify the interpretation of T∞1 × T∞2 as the set

of all rational and cautious types, who also commonly L(�ti)-believe that they are rational
and cautious. So

Si(T
∞
i ) ≡ {si ∈ Si|There exists ti ∈ T∞i such that si(ti) = si} (25)

is the set of player i’s strategies that are consistent with rationality, caution, and com-
mon L(�ti)-belief of rationality and caution. Combining this interpretation of Si(T

∞
i ) with

Proposition 5 below, we obtain the epistemic conditions for 〈L,M〉-permissibility.14

Proposition 5. For any T1×T2, S1(T∞1 )×S2(T∞2 ) is a 〈L,M〉-permissible set. There exists
T1 × T2 such that S1(T∞1 )× S2(T∞2 ) is the largest 〈L,M〉-permissible set.

For Proposition 5 to go through, we need a possible small-world state to contain a possible
grand-world state, and we need a small-world state containing a nonnull grand-world state
to be nonull; that is why Propositions 2 and 3 of Section 3 are crucial.

Appendix

Proof of Proposition 2

By Proposition 1, Proposition 2 can be restated as follows: For every σ ∈ minL(�S), and
every s ∈ σ, there exists t ∈ s−1(s) such that t is L(�)-possible. To prove this statement, we
assume the contrary. That is, suppose we are able to fix σ ∈ minL(�S) and s ∈ σ such that
every t ∈ s−1(s) is not L(�)-possible. Property L5 and σ ∈ minL(�S) imply s−1(σ) ∈ L(�),
which in turn, by definition, imply that

there exists τ ∈ minL(�) such that τ ⊆ s−1(σ). (26)

13Suppose that L is also a definition of believed events (as formalized in Section 3). Then player ti
L(�ti)-believes τj if and only if τj ∈ L(�ti).

14Proposition 5, when specialized to lexicographic expected utility preferences, is comparable to the result
in Brandenburger et al. (2008, Section 11B, pp. 332–333), where Ti is allowed to be infinite.
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By Proposition 1, the hypothesis that every t ∈ s−1(s) is not L(�)-possible can be rewritten
as

for all τ ∈ minL(�), s−1(s) ∩ τ = ∅. (27)

Eqs. (26) and (27) imply that there exists τ ∈ minL(�) such that τ ⊆ s−1(σ) \ s−1(s) =
s−1(σ \{s}), and so by L1, s−1(σ \{s}) ∈ L(�). Property L5 and s−1(σ \{s}) ∈ L(�) imply
that σ \ {s} ∈ L(�S), contradicting s ∈ σ ∈ minL(�S).

Proof of Proposition 3

Suppose that statement (ii) of Proposition 3 is not valid. Note that, by L5, if B1 (P1,
respectively) holds for L(�), then B1 (P1, respectively) holds for every L(�S). So invalidity
of statement (ii) implies that neither Eq. (11) nor Eq. (12) holds for the finest small world.
Consequently, we are able to fix τ ∈ minL(�) with cardinality |τ | > 1, fix τ ′ ∈ minL(�)
such that τ ′ 6= τ , and fix t ∈ τ \ τ ′. Since t ∈ τ ∈ minL(�) and |τ | > 1, we have {t} 6∈ L(�).
Since t 6∈ τ ′, we have τ ′ ⊆ T \ {t}. Property L1, τ ′ ∈ minL(�), and τ ′ ⊆ T \ {t} imply that
T \ {t} ∈ L(�). Consider the small world S = {{t}, T \ {t}}. Property L5, {t} 6∈ L(�), and
T \ {t} ∈ L(�) imply that {{t}} 6∈ L(�S) and {T \ {t}} ∈ L(�S); therefore, by Proposition
1, {t} is not L(�S)-possible. But Proposition 1 and t ∈ τ ∈ minL(�) imply that t is
L(�)-possible. Hence statement (i) of Proposition 3 is not valid either.

Conversely, suppose that statement (ii) is valid. There are, of course, two cases to
consider. First, suppose that L is a definition of believed events. By Eq. (11),

minL(�) = {{t|t is L(�)-possible}}. (28)

Property L5 and Eq. (28) imply that for every small world S,

minL(�S) = {{s|∃t ∈ s−1(s) such that t is L(�)-possible}}. (29)

Proposition 1 and Eq. (29) imply the validity of statement (i). Second, suppose that L is a
definition of possible events. By Eq. (12),

minL(�) = {{t}|t is L(�)-possible}. (30)

Property L5 and Eq. (30) imply that for every small world S,

minL(�S) = {{s}|∃t ∈ s−1(s) such that t is L(�)-possible}. (31)

Proposition 1 and Eq. (31) imply the validity of statement (i).

Proof of Proposition 4

We prove below that every (hence the largest) 〈L,M〉-permissible set is a subset of
∩∞n=0P

n
1 × ∩∞n=0P

n
2 , and ∩∞n=0P

n
1 × ∩∞n=0P

n
2 is a nonempty 〈L,M〉-permissible set.

Fix any 〈L,M〉-permissible set P1 × P2. Obviously, P1 × P2 ⊆ P 0
1 × P 0

2 ≡ S1 × S2. To
prove that P1 × P2 ⊆ ∩∞n=0P

n
1 × ∩∞n=0P

n
2 , it suffices to prove by induction that for every

positive integer n, if P1×P2 ⊆ P n−1
1 ×P n−1

2 , then P1×P2 ⊆ P n
1 ×P n

2 . Recall that, according
to Definition 2, for each si ∈ Pi, there exists �i∈ M(Sj) such that the following three
conditions are satisfied:
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(i) si �i s′i for all s′i ∈ Si.

(ii) sj is �i-nonnull for all sj ∈ Sj.

(iii) sj is L(�i)-possible only if sj ∈ Pj.

Condition (iii) and Pj ⊆ P n−1
j together imply that sj is L(�i)-possible only if sj ∈ P n−1

j ,
which can be combined with conditions (i) and (ii) to conclude that si ∈ P n

i .
It is easy to see that for every positive integer n, P n

i is nonempty and P n
i ⊆ P n−1

i . So, due
to the finiteness of Si, there exists a positive integer N such that PN−1

1 ×PN−1
2 = PN

1 ×PN
2 =

∩∞n=0P
n
1 × ∩∞n=0P

n
2 , implying that the latter is a 〈L,M〉-permissible set.

Proof of Proposition 5

For any si ∈ Si(T
∞
i ), fix ti ∈ T∞i with the property that si(ti) = si. By Eq. (25), at

least one such ti exists. Recall the assumption that �tiSj
∈M(Sj). So S1(T∞1 )× S2(T∞2 ) is a

〈L,M〉-permissible set if the following three conditions are satisfied:

(i) si �tiSj
s′i for all s′i ∈ Si.

(ii) sj is �tiSj
-nonnull for all sj ∈ Sj.

(iii) sj is L(�tiSj
)-possible only if sj ∈ Sj(T∞j ).

Since ti ∈ T∞i , ti must be rational and cautious. Eq. (22) and rationality of ti imply that
condition (i) above is satisfied. By Eq. (22), Proposition 3, and the fact that nonnull states
can be derived from a definition of believed/possible events, for every sj ∈ Sj,

if there exists tj ∈ s−1
j (sj) such that tj is �ti-nonnull, then sj is �tiSj

-nonnull. (32)

As ti is cautious, we indeed have, for every sj ∈ Sj, there exists tj ∈ s−1
j (sj) such that tj is

�ti-nonnull. So, Eq. (32) and the fact that ti is cautious imply condition (ii). By Eq. (22)
and Proposition 2, for every sj ∈ Sj,

if sj is L(�tiSj
)-possible, then there exists tj ∈ s−1

j (sj) such that tj is L(�ti)-possible. (33)

By Eq. (24) and the fact that ti ∈ T∞i , for every tj ∈ Tj,

if tj is L(�ti)-possible, then tj ∈ T∞j . (34)

Eqs. (25), (33), and (34) imply that condition (iii) is also satisfied.
Finally, we construct T1×T2 such that S1(T∞1 )×S2(T∞2 ) is the largest 〈L,M〉-permissible

set P ∗1 × P ∗2 . For any si ∈ P ∗i , fix a preference relation �si
Sj
∈M(Sj) such that the following

three conditions are satisfied:

(i) si �si
Sj
s′i for all s′i ∈ Si.

(ii) sj is �si
Sj

-nonnull for all sj ∈ Sj.
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(iii) sj is L(�si
Sj

)-possible only if sj ∈ P ∗j .

By Definition 2, at least one such �si
Sj

exists. As for any sci ∈ Si \ P ∗i , simply pick an

arbitrary si ∈ P ∗i and let �s
c
i
Sj

=�si
Sj

. Since �si
Sj

satisfies conditions (ii) and (iii) above,
sci �

si
Sj
s′i cannot hold for all s′i ∈ Si; otherwise sci would belong to P ∗i , a contradiction.

Let Ti = Si; for all si ∈ Ti, let �si=�si
Sj

and si(si) = si. Then we immediately have

P ∗1 × P ∗2 = T 1
1 × T 1

2 = T∞1 × T∞2 = S1(T∞1 )× S2(T∞2 ).
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