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ABSTRACT 
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Returns to Schooling in the Absence of Exclusion Restrictions: 

An Application to the NLSY* 
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practitioners from its use. This paper outlines how the estimator can be implemented 
parametrically. The use of parametric assumptions is accompanied by a large reduction in 
computational and programming demands. We illustrate the approach by estimating the 
return to education using a sample drawn from the National Longitudinal Survey of Youth 
1979. Accounting for endogeneity increases the estimate of the return to education from 
6.8% to 11.2%. 
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1 Introduction

Perhaps the most commonly explored "treatment e¤ect" in the empirical economics

literature is the impact of an individual�s educational attainment level on his/her

earnings. The popularity of these investigations re�ects two considerations. First,

the implications of human capital investment, at both the individual and aggregate

level, are of signi�cant economic interest and importance. Second, the endogeneity

of educational choices to wages is understood to bias the OLS estimates of the re-

turn to education. This endogeneity is typically attributed to factors such as reverse

causation, the correlation between the unobservable factors which determine educa-

tion level and wages, and/or the presence of measurement error. To account for the

endogeneity of education in the estimation of wage equations a number of strategies

have been employed. While they are too great in number to allow a detailed descrip-

tion here, they are generally based on instrumental variables (IV) estimation (see, for

example, Angrist and Krueger 1991, Du�o 2001 and Heckman, Urzua and Vytlacil

2006).1

A feature of these various IV approaches is that they exploit the existence of a

variable(s) which is responsible for some variation in the conditional mean of the

education level, but is exogenous and unrelated to wages. While this typically in-

volves the use of an exclusion restriction other techniques, such as those based on

the comparison of twins and siblings, also have an IV interpretation. An alternative

strategy is to exploit the variation in the conditional error variances while imposing

restrictions on other conditional second moments. The �rst paper to employ such

a methodology is Vella and Verbeek (1997) who provide a rank order IV procedure.

1For a detailed survey see Card (1999).
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Rummery et al (1999) use this strategy to estimate the return to schooling for Aus-

tralian youth. This procedure assigns observations into di¤erent subsets on the basis

of some observed characteristic. Within each subset the observations are then ranked

by their value of the reduced form education residual as this represents a measure of

the unobserved heterogeneity responsible for the endogeneity of schooling. The e¤ect

of education on wages is then identi�ed by comparing the wages and education of in-

dividuals in one subset with those of individuals of similar rank in the other subsets.

This method identi�es the schooling e¤ect provided there is heteroskedasticity in at

least one equation and that the heteroskedasticity in that equation is not correlated

with the heteroskedasticity in the other. Hogan and Rigobon (2002) also study the

return to education and employ the approach proposed by Rigobon (1999). Although

the Rigobon procedure is based on the method of moments estimation, the identifying

restriction imposed is similar to rank order IV in that it assumes the heteroskedas-

ticity in one of the equations is a function of a particular variable(s) but that the

covariance of the errors across equations is not.

The Vella and Verbeek (1997) and Rigobon (1999) strategies provide an identifying

source in the absence of exclusion restrictions. However, their value to empirical

work is limited due to the nature of the error structures they allow. Klein and Vella

(2010), hereafter KV(2010), provide an estimator for a more general error structure

that allows the heteroskedasticity in both equations to be functions of the same

variables provided the correlation coe¢ cient for the underlying homoskedastic error

terms across equations is constant. This is potentially useful for many models in

which exclusion restrictions are not available and the assumptions of the alternative

heteroskedasticity based estimators are not satis�ed. The identi�cation results in
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KV(2010) are based on nonparametric and semiparametric representations of the

heteroskedasticity and this is theoretically appealing as the results are not reliant on

speci�c forms of the heteroskedasticity. KV(2010) also provide an estimation strategy

which is employed in their simulation evidence and in the empirical investigation of

the return to schooling reported in Klein and Vella (2009), hereafter KV(2009).

Due to the nonparametric nature of the KV(2010) estimator the programming and

computation requirements are demanding. The contribution of this paper is to adapt

the estimator to a parametric setting thereby making it more easily to implement. We

illustrate how the components of the model treated nonparametrically in KV(2010)

can be parameterized in a �exible manner. We also outline an appropriate estimation

procedure. We stress that the objective of this paper is implementation. We do not

provide any new theoretical results and rely on the KV(2010) identi�cation results in

the more general setting.

We illustrate the procedure by estimating the return to education using a sample

of individuals from the 2004 wave of the National Longitudinal Survey of Youth 1979

(NLSY79). This survey contains information on individuals living in the US aged 14

to 22 years in 1979. These data represent an interesting object of study as they have

been used in other empirical investigations of the return to schooling and this allows

a comparison of our estimates with those using alternative identifying strategies. Our

results suggest that schooling is endogenous and the adjusted impact of one additional

year of schooling on wages is 11.2% in contrast to the OLS estimate of 6.8%. This

result is consistent with the range of estimates which have been obtained for these

data using IV techniques.

In the next section we discuss the KV(2010) identi�cation strategy in the return
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to schooling context. We discuss the features of the data exploited in estimation and

assign them an economic interpretation in the return to education framework. We

also outline how a parametric version of this procedure can be implemented. Section

3 presents the data and estimation results. Some concluding comments are presented

in Section 4.

2 The Model

2.1 Model and Identi�cation

We begin by recasting the KV(2010) approach in the returns to schooling frame-

work. We state the assumptions of the model and the implications of the identifying

restriction. The model has the following triangular form:

wi = xi�0 + �1educi + ui; i = 1; :::; n (1)

educi = xi�0 + vi; (2)

where wi and educi denote the wage and the years of education of individual i; and

xi denotes a vector of exogenous variables such that E[uijxi] = E[vijxi] = 0. The

endogeneity of educi arises through the possible correlation between the error terms

ui and vi which renders the OLS estimates of the �
0s inconsistent. The same x0is

appear in (1) and (2), and we impose no restrictions on the parameter vectors � and

�: Accordingly there are no available instruments to estimate (1).

To identify the model we assume the presence of heteroskedasticity and impose an
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additional restriction on the correlation between the error terms. More explicitly, let

S2u(xi) and S
2
v(xi) denote the conditional variance functions for ui and vi and assume:

ui = Su(xi)u
�
i and vi = Sv(xi)v

�
i ; (3)

where u�i and v
�
i are homoskedastic error terms. Moreover, assume that either Su(xi)

and/or Sv(xi) are not constant and the ratio Su(xi)=Sv(xi) is not constant across i.

The key identifying restriction is that the conditional correlation coe¢ cient between

the homoskedastic error terms, u�i and v
�
i is constant.

2 That is:

E[u�i v
�
i ] = E[u

�
i v
�
i jxi] = �0: (4)

Before focusing on how (3) and (4) can be combined to identify the parameters in

(1) consider the interpretation of this error structure in the wage/schooling setting.

It seems reasonable to view u�i and v
�
i as correlated measures of unobserved ability.

Thus equation (3) suggests that the contribution of unobserved ability to wages and

schooling depends on the individual�s socioeconomic factors. These factors may be

time invariant or capture considerations which may evolve over the individual�s life

cycle (see, for example, Cunha and Heckman 2007). For instance, the e¤ect of an

individual�s unobserved ability on wages and schooling might be in�uenced by the

type of school he/she attended and his/her family background. KV(2009) argue that

when distance to school is the sole determinant of educational attainment the location

of schools within a region would produce not only di¤erences in the average regional

2KV (2010) show that this constant conditional correlation assumption is consistent with a num-
ber of data generating processes. While the economic implications of the assumption are dependent
on the circumstance under investigation it is useful to note that the assumption is generated by a
range of processes.
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level of education but also in the regional variance in educational attainment. To

illustrate this they consider two regions, one where all the individuals are equidis-

tant from schools and another where all individuals are at varying distances from the

nearest school. In this case it is not clear which region will have the highest average

attendance but clearly in the region where all the individuals are equidistant the vari-

ance will be lower. KV(2009) argue that heteroskedasticity may also arise from other

factors. For example, having a working mother may increase educational attainment

for some children as it may re�ect a positive family attitude towards professional

achievement. In contrast, it may also re�ect that the family has income concerns and

the mother needs to work for pecuniary reasons. Including an indicator for whether

the individual�s mother works in the schooling equation will capture the average e¤ect

of having a working mother but clearly there will be some variance in this e¤ect.

A similar logic underlies the presence of heteroskedasticity in the wage equation.

As workers obtain work experience it is possible that some perform better than others

in term of wage growth. This introduces heteroskedasticity as a function of the

individual�s age. Moreover, regional variables may re�ect factors like the cost of

living and while these variables capture the average e¤ect of living in a city, it is

likely that the heteroskedasticity in the wage residuals will also be related to these

variables due to di¤erent living expenses within the same region.

While the presence of heteroskedasticity is largely an empirical issue the imposi-

tion of (4) is a restriction with economic implications. As u�i captures the level of

unobserved ability in the schooling equation and v�i in the wage equation, the assump-

tion regarding the constant value of �0 indicates that after conditioning out the role

of the x0is the return to unobserved ability is constant. Note that this does not imply
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that unobserved ability is not rewarded di¤erently, in either the wage or schooling

equations, depending on the individual�s socioeconomic background. In fact, this is

the process which is captured in (3) and provides the variation which identi�es the

return to education. The restriction in (4) indicates that once the in�uence of these

socioeconomic factors is accounted for the return to unobserved ability is constant.

This seems a reasonable assumption.

The assumption that these homoskedastic error terms capture unobserved ability

suggests that �0 should be positive. However a common �nding is that the OLS

estimate of the return to education is smaller than the IV estimate and this is only

compatible with a negative correlation between the error terms. KV(2009) propose

an error structure that satis�es the identi�cation assumption in (4) and is consistent

with a negative estimate of �0 even in the presence of ability positively a¤ecting both

earnings and schooling. They argue that the e¤ect of ability on wages and schooling

has a predictable and an unpredictable component. That is:

ui = au(xi)a
�
i e
u
i and vi = av(xi)a

�
i e
v
i ; (5)

where au(xi) and av(xi) capture the predictable impact while eui and e
v
i the unpre-

dictable. In this speci�cation �0 measures the correlation between e
u
i and e

v
i . This

error structure allows ability to positively a¤ect wages and schooling, while its inter-

action with the e0s may produce a negative correlation across equations. To consider

how a negative value of �0 might arise we follow the interpretation of Vella and Gre-

gory (1996) who assume that ei captures some unobservable factors capturing "over

achievement". Accordingly the impact of evi on schooling is positive while that of e
u
i

on wages is negative. This is consistent with the empirical �nding that the return to

8



over education is lower than the average return to education (Dolton and Vignoles,

2000; Groot and van den Brink, 2000 and Rubb, 2002). As it is not possible to iden-

tify an individual�s level of over education, empirical models assume a constant rate

of return on the total years of education. Under this speci�cation the wage equation

error term captures the "over education penalty". Note that while this situation pro-

duces a negative estimate of �0, it does not imply that the wage decreases as the level

of eui increases as a higher value of e
u
i is associated with a higher wage resulting from

the rise in education.

Finally, it is important to remark on some features, which are of potential empir-

ical interest, that are not incorporated in the model in equations (1)-(4). The �rst

feature it does not allow for is the heterogeneity in the returns to education. This

type of heterogeneity is captured in the random coe¢ cient models of Heckman and

Vytlacil (1998) and Wooldridge (2003). In those models the returns to education

are assumed to be a function of observed and unobserved characteristics that a¤ect

schooling choices.3 Using instrumental variables they obtain consistent estimates of

the average return to education assuming a constant correlation coe¢ cient between

the unobserved factors a¤ecting education and its returns. Our speci�cation is re-

lated to this model as the return to education is constant but there is heterogeneity

in the returns to unobserved factors. For models where the returns to education are

heterogenous it is not immediately clear which parameter our procedure estimates.4

A second restrictive feature of (1)-(4) is that education enters the wage equation

3Note that our model allows the return to education to depend on observed covariates. Column
(3) in Table A2 investigates this possibility in our sample.

4In models where the heterogeneity in the return to education is a function of observable char-
acteristics it may be possible to adapt our estimator by explicitly modelling the process. However,
when the heterogeneity is due to unobservables it is not clear how one would adjust our procedure
nor interpret the estimated parameter.
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linearly. An alternative speci�cation would be to allow for a non linear relationship

between wages and schooling, but this would represent a substantial departure from

our setting. One possibility would be to extend the nonparametric instrumental vari-

ables procedure of Newey et al (1999). However, including non linear education terms

requires including additional control terms to accounts for their endogeneity and it is

not clear how this could be incorporated in the present estimation strategy.

We now discuss the strategy employed to estimate the model in (1)-(4). KV(2010)

note that the unknown parameters in the wage equation can be consistently estimated

using a control procedure which removes the component of ui which is correlated with

vi: This is done by including a consistent estimate of vi in equation (1) and making

the new error term in (1):

"i = ui � �vi;

where � = cov(ui; vi)=var(vi): Note, critically, that in the absence of heteroskedas-

ticity � is not a function of xi. Thus the inclusion of vi in (1) in the absence of

exclusion restrictions does not provide any variation which can not be fully explained

by educi and xi, and the model is not identi�ed. However, KV(2010) note that when

the distribution of the error terms does depend on xi, we can condition on xi making

the new error term in (1):

"i = ui � A(xi)vi;

where A(xi) = �0Su(xi)=Sv(xi) and �0 = [cov(ui; vijxi)=(Sv(xi)Su(xi))]: A(xi) is now

a non linear function of xi and this non linearity in A(xi) is a source of identi�cation

provided one can impose the appropriate structure in estimation. KV(2010) show
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that this can be done by imposing (4). Accordingly the parameters in (1) can be

estimated from the following controlled regression:

wi = xi�0 + �1educi + �0
Su(xi)

Sv(xi)
vi + "i; i = 1; :::; n (6)

where "i is a zero mean error term. Note that the main features of this estimation

equation are the following. First, with either or both Su(xi) and Sv(xi) non constant

the model is identi�ed. Second, identi�cation requires Su(xi)
Sv(xi)

is not constant implying

that the form of heteroskedasticity must vary across equations. Finally, as both vi

and Sv(xi) are straightforward to estimate, the di¢ culty arises in the estimation of

Su(xi):

2.2 Empirical Strategy

KV(2010) provide an estimator for the above model without imposing any structure

on Su(xi) and Sv(xi). While KV(2009) employ that proposed estimator in their em-

pirical investigation the computational di¢ culties associated with estimating these

functions, particularly Su(xi); may discourage the use of the procedure. Before pro-

ceeding to the parametric version it is useful to outline the KV(2010) estimation

process and highlight where the computational demands arise.5

As is highlighted below the approach in KV(2010) requires the sequential esti-

mation of vi and Sv(xi) and then the joint estimation of the �
0s and Su(xi) using

the estimated values of vi and Sv(xi): As vi is the reduced form error, its estimate,

bvi, comes directly from the OLS estimate of the education equation. The estimation

of Sv(xi) is obtained as the square root of the nonparametric estimate of E[bv2i jxi]
5A formal description of the Klein and Vella (2010) estimator is provided in the Appendix.
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noting this is further simpli�ed by imposing that the x0is enter the Su(xi) and Sv(xi)

functions in index form. Thus, obtaining estimates of vi and Sv(xi) is straightforward

in the semiparametric case.

The computational demands associated with the KV(2010) procedure arise in

the estimation of the main equation. First, the nonparametric nature of the Su(xi)

function and the non linearity inherent in estimating the parameters in (6) requires

estimating this nonparametric function multiple times in each round of each iteration

of the optimization problem. This is exacerbated by two additional issues. First, the

identi�cation proof in the semiparametric case requires that the optimization prob-

lem generating the wage equation comprises two criterion functions which must be

separately and jointly minimized. One of these functions involves conditioning on the

index which enters the Su(xi) function while the other requires jointly conditioning

on both the index that enters Su(xi) and also that which enters Sv(xi). The presence

of these nonparametric expectations not only increases computation but also requires

the use of the appropriate forms of bias reduction. KV(2010) employ two bias reduc-

tion methods. First, rather than use higher order kernels, which are known to have

poor �nite sample behavior, they employ local smoothing. This requires that the

bandwidth in the employed kernel is able to vary depending on where in the data the

density is estimated. Second, KV(2010) employ a two step procedure where in the

�rst step the objective function is trimmed on the basis of the x0is to get initial esti-

mates. Using these consistent estimates one constructs the estimated indices which

appear in the Su(xi) and Sv(xi) functions and the objective function is trimmed again

on the basis of these indices. The use of local smoothing increases computation as it

requires estimates of the pilot densities to estimate the varying bandwidth. The use
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of the xi and index trimming means that each step has to be estimated twice.

While the above estimation approach is feasible, and implemented in both KV(2010)

for simulation evidence and in KV(2009) for empirical evidence, it is likely that the

required computation and programming discourages practitioners from adopting the

semiparametric approach. Accordingly, we now outline how to estimate the model

while treating both Su(xi) and Sv(xi) as known functions of an index with unknown

parameters. This reduces the degree of computation for several reasons. First, the

need to estimate nonparametric functions is eliminated. Second, the absence of these

unknown functions eliminates the need to condition on two indices simultaneously.

Finally, the absence of the nonparametric estimation means we do not require bias

reducing methods and the multiple steps. These considerations combine to greatly

reduce the computational burden.

To bypass the semiparametric estimation we specify the following form for the

heteroskedastic functions:

S2ji = exp(zji�j); j = u; v; (7)

where zji is the vector of variables considered to produce the heteroskedasticity in

the respective equations6 and �j is a vector of unknown parameters. In what follows

we will refer to zji�j as the heteroskedastic index. Although we employ the above

functions in estimation it is straightforward to explore alternative forms. In the next

section we investigate the sensitivity of our estimates of primary interest to di¤erent

6KV(2010) allow xi = zi and this is the speci�cation employed in KV(2009) although it seems
reasonable to allow them to di¤er in practice. Note that including variables in zi which do not
appear in xi does not identify the education coe¢ cient in the same way as excluded variables can
be used as an instruments. However, they do provide a source of identifying power in as much they
are able to explain movements in the variances.
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parameterizations of the heteroskedasticity.

Given the parameterization of S2ji in (7) the estimation procedure is the following:

i) Regress educi on xi to obtain a consistent estimate of the residual which we

denote bvi:
ii) Estimate �v through non linear least squares using ln(bvi2) as the dependent vari-

able. Compute the standard deviation of the reduced form error as bSvi=qexp(zvib�v):
iii) Using bvi and bSvi it is possible to estimate the wage equation parameters in two

ways.

a) First given an assumed form for Su(xi) estimate the model parameters as the

solution to the following non linear least squares problem:

min
�;�0;�1u;�u

nX
i=1

�
wi � xi�0 � �1educi � �0

�p
exp(zui�u)

�
� bvibSvi

�2
: (8)

b) While the approach in (a) produces consistent estimates it requires the esti-

mation of Su(xi) through the minimization of a least squares problem related to wi.

This requires uncovering Su(xi) though the observed variation in bui: An alternative
to (a) is to estimate �u in Su(xi) in the similar manner as is done for the education

equation. For a given value of �; say �c; we de�ne the residual ui(�c): Using this

value of ui(�c) we regress ln(ui(�c)
2) on zui�cu where we also use candidate values for

�cu. From this regression we compute Ŝui(�c) as
p
exp(zui�cu) and estimate �0c as:

min
�0c

nX
i=1

 
ui(�c)� �0c

Ŝui(�c)bSvi bvi!2 : (9)

The �nal estimates of �c; �cu and �0c are those that minimize (9) and are obtained

through a standard iterative procedure.
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While this latter procedure worked very well in this context we found that in

general it is useful to employ one additional step. With the �nal estimates of �;

which we denote �f ; from this last optimization problem we de�ne the residual uif =

wi� xi�0f � �1feduci:We then use u2if to get Ŝui(�f ) in precisely the same way as in

step (ii) above. Once we have Ŝui(�f ) we can regress wi on xi; educi and
Ŝui(�f )bSvi bvi to

get the estimates. This �nal step has the advantage that it separates the estimation

of the �0s from the estimation of Su:

To evaluate the performance of this approach in a controlled setting we applied it

to the simulated data in KV(2010). Note that in obtaining the estimates we specify

the correct parametric form of heteroskedasticity as employed by KV(2010) but esti-

mate the unknown parameters which control the degree of heteroskedasticity. Table

A1 in the appendix reports the results from this exercise and compares them with the

simulation results in KV(2010). As expected Table A1 suggests that the parametric

form of the estimator works well and there are e¢ ciency gains from imposing the

correct parametric assumptions.

3 Results

3.1 Previous Studies

To illustrate the utility of this approach we focus on an empirical application. We

estimate the e¤ect of education on earnings using a sample of male and female re-

spondents in the 2004 wave of the National Longitudinal Survey of Youth (NLSY79).

In the core sample of the survey 4081 individuals report valid information to estimate
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our wage-schooling model and this is the sample we employ.7

The NLSY79 is an attractive data source for estimating the return to schooling as

it contains detailed family background information and a large array of cognitive abil-

ity tests. Card (1999) argues that the inclusion of such controls in the wage equation

substantially reduces the ability bias in the measured return to education. However,

despite the wealth of information in the survey it is di¢ cult to �nd exogenous sources

of variation for schooling to employ as instruments. For example, an identi�cation

strategy based on changes in the minimum school-leaving age is not valid due to

the lack of educational reforms while individuals in the sample were enrolled at high

school (Oreopoulos 2008).

To identify the e¤ect of education on earnings previous studies have employed

various proxies of the costs of school attendance such as the distance to the nearest

school, average local tuition and the local unemployment rate in the area of residence

of the respondent at the school going age. Using these sources of variation Carneiro

and Lee (2008) and Chen (2008) obtain IV estimates of the return to education

between 13 and 15 percent in a sample of males from the NLSY79. While these

are larger than the OLS estimates, which is consistent with the general consensus

regarding the impact of endogeneity, some authors argue against the validity of such

instruments due to the non random assignment of households to schools (see, for

example, Cameron and Taber 2004).

The various family background measures in the NLSY79 have also been employed

as instruments. However Card (1999) shows that IV estimates based on family back-

7The NLSY79 contains 3 subsamples. A core sample aimed to be representative of the US popu-
lation. A second supplemental sample designed to oversample Hispanics, blacks and disadvantaged
whites. The third subsample contains individuals in the military service.
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ground characteristics are systematically higher than the corresponding OLS esti-

mates and probably contain a bigger upward ability bias. This is supported by

Blackburn and Neumark (1995) which reports an IV estimate (9.6 percent) notably

higher than the OLS estimate (4.2 percent).8 It is also unclear which type of fam-

ily background characteristics can be expected to a¤ect education but not wages.

Given the di¢ culty of �nding an appropriate instrument in the NLSY79 context the

identi�cation strategy outlined above seems particularly useful. A comparison of our

results with those in previous studies using the NLSY79 also seems of interest since,

despite the concerns regarding instrument validity, there is some consensus regarding

the presence and the e¤ect of the endogeneity bias.

3.2 Estimation Results

In estimating the model in (1)-(4) we use as a measure of earnings, wi, the log of

the hourly wage in 20049 and as a measure of schooling, educi, the years of education

completed. The explanatory variables are those commonly employed in the estimation

of schooling and wage equations and capture the individual�s background and some

features of the school type and location. Table 1 describes the variables employed

and Table 2 provides their summary statistics. The OLS estimates for the education

and wage equations are reported in Tables 3 and 5 respectively. We include in the

wage equation variables that describe the family background of the respondent (e.g.

whether the mother worked when the respondent was 14 and parental education)

8The instruments employed are the number of siblings, the number of younger siblings, the birth
order percentile among siblings, the mother�s high grade, the father�s high grade, dummies for the
presence of magazines or newspapers in the home while growing up, a dummy for living with both
parents at age 14, and a dummy for living with one parent and step-parent at age 14.

9We delete the observations with extremely low or extremely high wages (i.e. below the 1% and
above the 99% of the hourly wage distribution).
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and an standardized measure of ability available in the NLSY79, denoted AFQT,

to reduce the ability bias as suggested in Card (1999).10 The wage equation also

contains variables, namely the geographical indicators in 2004 and the individual�s

marital status, which do not appear in the education equation. These variables do

not identify the model as IV requires variable(s) in the education equation which do

not appear in the wage equation.

3.2.1 The Education Equation

We �rst discuss the OLS estimates of the educational model reported in Table 3.

The estimates are consistent with those in the existing schooling literature. Parental

education and the AFQT score have an important positive e¤ect on years of education.

In contrast, respondents in larger families obtain less years of education. There is

also evidence of a schooling gap in favor of females. Consistent with Cameron and

Heckman (2001) we also �nd a small positive education gap for the minority groups

after controlling for the family background.

The KV(2010) procedure requires at least one of the equations�error terms to

be heteroskedastic. Using the estimates from Table 3 we examine the presence of

heteroskedasticity in the schooling equation. The statistic for the White test is 244:06

and that for the Breusch-Pagan, using all the explanatory variables in the model, is

81:21. These values clearly reject the null hypothesis of homoskedastic errors.

The next step is to estimate the form of heteroskedasticity in the schooling equa-

tion, S2vi. An examination of the results for the heteroskedasticity tests suggested

that the variables responsible for the heteroskedasticity are the Hispanic indicator,

10The ability measure in the NLSY79 corresponds to the Armed Force Quali�cation Test (AFQT)
taken by all the respondents in 1980. This variable is standardized by gender and age.
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some of the geographical variables and the AFQT score. The regional result is con-

sistent with that of KV(2009) and Rummery et al (1999). The result related to the

Hispanic indicator captures the heterogeneous nature of the group which identi�es

itself as Hispanic while the AFQT captures that the level of education varies within

individuals who have similar levels of ability. Though we suspect that some of the

variables in the schooling model may a¤ect the error variance we do not have strong

arguments to exclude others from the heteroskedastic index. Accordingly in estimat-

ing the determinants of the conditional variance for the education equation we use

all variables which appeared in the conditional mean (i.e. zvi = xi).11

The non linear least squares estimates of S2v(xi) are reported in Table 4.
12 The

standard errors of the estimated parameters in the wage equation, the �0s, and those

in both heteroskedastic indices, the �0js, are obtained from 1000 bootstrap replications

with random replacement. Moreover, in obtaining the standard errors we account for

the multiple step nature of the procedure by re-estimating each of the steps for each

replication. Given that we have assumed an exponential form for S2v(xi) we can

directly interpret the sign of the coe¢ cients for the variables inside the index dis-

played in the Table 4. The coe¢ cient on the AFQT score is positive and statistically

signi�cant. This re�ects that more able students have a larger set of educational

alternatives and thus the variance of schooling levels is positively related to this mea-

sure of ability. The estimate for the living in the South at age 14 indicator is also

statistically signi�cant and negative suggesting a lower dispersion in schooling levels

11Column (1) of Table A2 to A4 in the appendix shows the results obtained when the index
includes only the geographic indicators, the AFQT and the Hispanic indicator. Our main results
are una¤ected by this alternative speci�cation.
12Note that among all the explanatory variables in Table 4 that enter the heteroskedastic index,

zji�j ; there is also a constant.
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among individuals living in the South of the country during their early teens.

3.2.2 The Wage Equation

We now turn to the estimation of the primary equation. In addition to the variables

in the education equation we include in the wage equation some additional variables,

such as the geographical indicators in 2004 and the individual�s marital status, which

are considered to in�uence an individual current earnings level. Before considering

the adjusted estimates we brie�y discuss the OLS estimates in Table 5. The primary

feature of interest is the estimated impact of education on earnings which is :068. The

magnitude of this coe¢ cient is in line with the previously reported OLS estimates in

Kane and Rouse (1995), Cameron and Taber (2004) and Chen (2008), which use the

same data.

In implementing our estimation strategy it is �rst necessary to specify the vari-

ables entering the index underlying the heteroskedasticity of the wage equation, zui�u:

Although we experimented with di¤erent choices for the variables in zui, including

one with all the variables that enter the conditional mean of the wage, we focus our

most detailed discussion on our preferred speci�cation which included only a few vari-

ables.13 In this speci�cation the heteroskedastic index contains a constant and the

geographic indicators in 2004 to allow for di¤erences in the variance of wages due

to economic conditions across regions. We also include the age of the respondent to

account for the disparity across individuals in terms of wage growth.

Table 5 presents the estimates of the coe¢ cients in the wage equation obtained

from estimating (6) using the method denoted (iiib) in section 2:2. We refer to these as

13See Table A2 to A4 in the appendix for a comparison of the results obtained under alternative
speci�cations of the heteroskedasticity function.
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the CF estimates and they, along with their reported standard errors, are displayed in

columns (3) and (4). Before we focus on the estimated impact of education on wages

we highlight a number of the interesting features of this table. First, the estimates

for the exogenous variables for the OLS and the CF procedures are generally quite

similar. Both estimates provide evidence of a small marriage premium and a gender

di¤erential of about 25% in favor of males. Some of the regional variables such as the

indicator for living in a city and in the North Eastern region in 2004 are positive and

statistically signi�cant. Also, the indicator for living in a city at age 14 is statistically

signi�cant and positive while living in the South of the country at age 14 has a negative

e¤ect on the 2004 level of wages. The two speci�cations also provide evidence of a

wage penalty for blacks. Finally there seems to be evidence of an ability premium as

captured by the positive and statistically signi�cant coe¢ cient on the AFQT score.

The key feature of the columns of this table, however, is the di¤erence in the

estimate of the education coe¢ cient. While the OLS estimate was 6:8 percent the

CF estimate is 11:2 percent. Moreover while there is some loss in statistical signi�-

cance, in comparison to the OLS estimate, the coe¢ cient is statistically signi�cant at

conventional levels of testing. Finally the estimate of the correlation coe¢ cient, �0,

is negative and statistically signi�cant, indicating that education is not exogenous.

Our results suggest, as is frequently found in this literature, that the OLS esti-

mate is below the estimate obtained after controlling for the endogeneity of education

(see for example Angrist and Krueger, 1991; Card 1995a, 1995b and 1999; Harmon

and Walker, 1995; Kling 2001 and Cameron and Taber 2004). The OLS-IV gap may

re�ect a sizeable measurement error in the education variable, but the large size of

our estimated correlation coe¢ cient, �0:172, is also compatible with the "penalty"
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to educational over achievement suggested by Vella and Gregory (1996). Under this

interpretation the error component of the education equation not only captures unob-

served ability, thus the negative �0 would suggest that the return to ability is negative,

but it can also include some other factors (i.e. motivation) that lead an individual to

obtain a level of education above what is predicted by the model. If the wage equation

does not allow the return to education to be di¤erent from that to over education,

the residuals in this equation will capture "the over education penalty". Therefore

the correlation between the unobserved terms in the schooling and the wage equation

will be negative, as the factors responsible for the over education are penalized in the

wage equation. We conclude that our �ndings are in line with the results in previous

studies. Our estimate of the return to education falls within the range of estimates

reported in the surveys by Card (1999, 2001), where most estimates of the return to

schooling after adjusting for the endogeneity of education are between 8 percent and

13 percent per school year.

The non linear least squares estimates of S2u and corresponding standard errors

are in Table 6. These estimates indicate that the variance of wages is signi�cantly

larger in the Western and North-Eastern states of the country. The other variables

included in the index do not seem to a¤ect the variance of the unobservables in the

model.14

As our approach assumes certain parametric representations for the heteroskedas-

tic processes it is important to examine the robustness of our results to alternative

forms. Tables A2 to A4 in the appendix show the estimates obtained under alter-

native speci�cations of the heteroskedasticity function. The estimates of the return

14Note that the absence of heteroskedasticity in the wage equation would not invalidate our iden-
ti�cation strategy as this requires heteroskedasticity in either equation.
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to education range between 11:4% and 12:1%, slightly above that obtained under

our preferred speci�cation, 11:2%. However the di¤erent estimates are within the

95% con�dence interval of each other. Thus we conclude that our main results are

una¤ected by the use of these alternative forms of heteroskedasticity.

Overall the results are very supportive of this empirical approach. First, the re-

sulting estimate is in the range of the estimates obtained via the conventional IV

approach for these data. This suggests that there is su¢ cient heteroskedasticity in

the data to identify the return to education and that the identifying restriction re-

garding the correlation coe¢ cient is reasonable in this context. Second, while there is

some e¢ ciency lost in the CF estimates compared to the OLS estimates, the increase

in the standard errors is similar to that obtained when comparing OLS to IV esti-

mates. Third, the coe¢ cient on �0 is reasonably precisely estimated which suggests

the identifying restriction in this context is informative.

4 Conclusions

The objective of this paper is to provide a fully parametric procedure of the KV(2010)

semiparametric estimator which can be employed to control for endogeneity in trian-

gular systems in the absence of exclusion restrictions. A disadvantage of the KV(2010)

approach is that it is restricted to a model where the endogenous regressor enters lin-

early and without any heterogeneous e¤ects. An advantage is that for the model they

consider KV(2010) provide a procedure that does not require instruments to enable

estimation. Accordingly, the KV(2010) estimator seems to be suitable to address

a wide range of empirical questions. In providing a fully parametric procedure we

expect that many practitioners who would be discouraged by the computational de-
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mands of the semiparametric estimator will be more likely to employ this approach.

In addition to discussing how the procedure can be implemented we apply our ap-

proach to study the impact of schooling on wages for a sample of individuals drawn

from the NLSY79. Our results suggest that schooling is endogenous and the adjusted

impact of schooling is 11:2 percent in contrast to the OLS estimate of 6:8 percent.

This is consistent with studies that employ instrumental variables approaches in these

data and �nd that education is endogenous and that OLS underestimates the return

to education.
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Table 1: Variable de�nition:

w log of hourly wage

educ years of education completed

married indicator for being married in 2004

NE indicator for living in a North Eastern state in 2004

W indicator for living in a Western state in 2004

NC indicator for living in a North Central state in 2004

city indicator for living in a city in 2004

siblings number of siblings

Mwork14 indicator for whether the mother of i works when i is 14

Hispanic indicator for Hispanic

black indicator for black

male indictor for male

Feduc years of education completed by the father of i

Meduc years of education completed by the mother of i

S14 indicator for living in the South at age 14

city14 indicator for living in a city at age 14

age age of i

AFQT Score obtained in the Armed Forces Qualifying Test (a measure of cognitive ability)
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Table 2: Summary Statistics:

mean S.E. min max

w 2:767 0:662 2:88 96:5

educ 13:515 2:347 0 20

married 0:593

NE 0:161

W 0:265

NC 0:186

city 0:746

siblings 3:563 2:496 0 17

Mwork14 0:564

Hispanic 0:170

black 0:265

male 0:500

Feduc 11:129 3:026 0 20

Meduc 11:085 3:829 0 20

S14 0:342

city14 0:795

age 43:255 2:183 40 47

AFQT 0:195 0:915 2:181 �2:781

Nobs 4081
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Table 3: Schooling Equation (Conditional Mean):

estimates S.D.�

siblings �0:051 (0:013)

Mwork14 0:020 (0:060)

Hispanic 0:720 (0:092)

black 1:164 (0:080)

male �0:278 (0:059)

Feduc 0:068 (0:011)

Meduc 0:072 (0:014)

S14 0:104 (0:065)

city14 0:043 (0:072)

age 0:009 (0:014)

AFQT 1:401 (0:040)

constant 11:085 (0:614)

R2 0:354

Test for Heteroskedasticity (statistics)

White 244:06

Breush-Pagan 81:21
*The standard errors are obtained from 1000 bootstrap rep lications w ith random rep lacem ent
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Table 4: Schooling equation (Conditional Variance)

estimates S.D.�

siblings �0:020 (0:017)

Mwork14 0:087 (0:079)

Hispanic 0:002 (0:130)

black �0:021 (0:107)

male 0:050 (0:074)

Feduc �0:023 (0:013)

Meduc �0:026 (0:018)

S14 �0:145 (0:078)

city14 0:069 (0:090)

age 0:015 (0:016)

AFQT 0:544 (0:050)

constant �0:141 (0:733)
*Standard errors adjusted for the presence of heteroskedastic ity
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Table 5: Wage Equation (Conditional Mean)

OLS S.D. CF S.D.�

educ 0:068 (0:0054) 0:112 (0:017)

�0 �0:172 (0:061)

married 0:079 (0:017) 0:079 (0:016)

NE 0:072 (0:031) 0:070 (0:032)

W 0:036 (0:030) 0:037 (0:031)

NC �0:023 (0:029) �0:023 (0:029)

city 0:029 (0:019) 0:029 (0:019)

siblings 0 (0:004) 0:002 (0:003)

Mwork14 0:019 (0:016) 0:019 (0:016)

Hispanic 0:081 (0:027) 0:048 (0:031)

black �0:022 (0:024) �0:074 (0:031)

male 0:248 (0:016) 0:258 (0:016)

Meduc 0:006 (0:004) 0:002 (0:004)

Feduc 0:002 (0:003) �0:002 (0:003)

S14 �0:054 (0:027) �0:060 (0:027)

city14 0:054 (0:021) 0:051 (0:020)

age 0:061 (0:153) 0:064 (0:152)

age2 �0:001 (0:002) �0:001 (0:002)

AFQT 0:162 (0:012) 0:088 (0:025)

constant 0:034 (3:309) �0:498 (3:303)

R2 0:30 0:30
*The standard errors are obtained from 1000 bootstrap rep lications w ith random rep lacem ent. The values of the White and

Breush-Pagan test for the presence of heteroskedastic ity in the wage equation are resp ectively 265.45 and 69.23.
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Table 6: Wage equation (Conditional Variance)

estimates S.D.�

age 0:008 (0:017)

NE 0:206 (0:113)

W 0:220 (0:109)

NC 0:090 (0:094)

constant �3:175 (0:720)
*Standard errors in parenthesis. The standard errors are obtained from 1000 bootstrap rep lications w ith random rep lacem ent
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5 Appendix

5.1 A description of the Klein and Vella (2010) estimator

This section describes how to estimate the model in equations (1)-(4) using the two

step semiparametric procedure in Klein and Vella (2010). First regress educi on xi to

obtain b� and de�ne the reduced form residuals as:

bvi = educi � xib�:
KV(2010) assume the following single index structure for the conditional variance

function:

S2vi � E
�
v2i j xi

�
= E

�
v2i j Ivi (�vo)

�
;

where Ivi (�vo) � x1i + x2i�vo. The o subscript denotes the true parameter, x1 is

a continuous regressor and x2 contains the remaining explanatory variables.15 The

unknown parameters in the index, �vo, are estimated by semiparametric least squares

with bv2i as the dependent variable (see Ichimura, 1993) as:
b� = argmin

�

X
�̂ i

h
v̂2i � Ê

�
v̂2i j Ivi (�v)

�i2
;

where �̂ i is a trimming function that restricts xi to a compact set depending on sample

quantiles. The estimator for the conditional variance function is then given as:

Ŝ2vi =
bE �bvi2 j Ivi �b�v�� ;

15Note that a continuous regressor is not required when the conditional variances are estimated
parametrically.
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where bE is a non-parametric estimator for the indicated conditional expectation.

KV(2010) show with a monte carlo investigation that the estimator of Svi and also

that of the parameters in the primary equation improves if the above process is

repeated in a GLS step using the initial estimator of Ŝvi.

For the wage equation the conditional variance function and the parameters of

interest are estimated simultaneously. Once again an index restriction is imposed.

The index for the wage equation heteroskedasticity is constructed as Iui (�uo) � x1i+

x2i�uo: Note that for generality the same x0s are allowed to appear in both Iu and Iv

although this is not necessary and not imposed in the empirical work. Similar to the

education approach the wage equation parameters, � = (�; �u; �), could be estimated

as follows:

� � argmin Q̂1 (�)
�

:

where:

ui (�) � (wi � xi�0 � �1educi) ; Ŝui (�; �u)
2 � Ê

�
u2i (�) j Iui (�u)

�
:

and :

Âi (�) � �
h
Ŝui=Ŝvi

i
;

Q̂1 (�) � 1

N

X
i

�̂ i

h
wi � xi�0 � �1educi � Âi (�) v̂i

i2
.

KV(2010) show that minimizing Q̂1 (�) may not ensure that the correct minima is

obtained. Namely, in minimizing the probability limit of Q̂1 (�) ; the set of potential

minimizers is not su¢ ciently restricted to enable an identi�cation argument. To
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ensure that the set of minimizers does satisfy an appropriate index restriction, the

objective function is modi�ed as follows. Let:

Ŝ�2ui (�; �u) � Ê
�
u2i (�) jIui (�u) ; Îvi

�
Â�i (�) � �

h
Ŝ�ui=Ŝvi

i
Q̂2 (�) � 1

N

X
i

�̂ i

h
wi � xi�0 � �1educi � Â�i (�) v̂i

i2
:

Here, S�2ui captures the conditional expectation of the variance function when one

conditions on its own index plus the additional index characterizing the data gener-

ating process. The �nal, combined objective function is then given as:

Q̂ (�) � Q̂1 (�) + Q̂2 (�) :

Denote Q;Q1 and Q2 as the limiting values (uniform probability limits) for the above

objective functions. KV(2010) show that �o, the vector of true parameter values, is

a minimizer not only for Q but also separately for Q1 and Q2. The reader is referred

to KV(2010) for the argument underlying the identi�cation strategy.

As discussed above the semiparametric estimation procedure is associated with

substantial computational and programming demands. In this paper we impose para-

metric assumptions on the conditional variance functions, S2vi and S
2
ui
, thereby reduc-

ing computational demands. Also, as noted in the text above, there is no need for the

simultaneous conditioning on the two indices nor estimation of the trimming functions

and this also reduces computational issues.
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5.2 Simulation Evidence

KV(2010) conduct a monte-carlo exercise to analyze the �nite sample performance of

the semiparametric estimator. Below we re-estimate their simulated model using the

estimator proposed in this paper and compare the results.

In the simulated model the same exogenous variables appear in the conditional

means and the conditional variances of both endogenous variables. The two indices

underlying the heteroskedasticity are also highly correlated and the same functional

form for the heteroskedastictiy is employed in each equation. The model has the

following form:

Y1i = 1 + x1i + x2i + Y2i + ui

Y2i = 1 + x1i + x2i + vi

ui = 1 + exp(:2 � x1i + :6 � x2i) � u�i
vi = 1 + exp(:6 � x1i + :2 � x2i) � v�i
u�i = :33 � v�i + N(0; 1) and v�i � N(0; 1):

The exogenous variables x1i and x2i are generated as standard normal random

variables and then x2i is transformed into a chi-squared variable with 1 degree of

freedom. The simulation results in Table A1 are for a sample size of 1000 and 100

replications. The Table compares the results obtained using the parametric version of

the estimator employed in this paper (column 3), to those in KV(2010) obtained with

the semiparametric procedure (column 2). For comparison purposes, the �rst column

reports the OLS estimates. To investigate the performance of the estimator when

the parametric assumptions are misspeci�ed, we perform two additional simulation
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exercises. In column 4 we assume that the conditional variance is only a function of

x1, while in column 5 we assume that is a second order polynomial in x2.

Table A1: Simulation Results

OLS Semiparametric Parametric

CF CF CF CF

(1) (2) (3) (4) (5)

constant 0.858 (.122)� 1.003 (.201) 0.964 (.115) 0.985 (.170) 0.943 (.126)

x1 0.858 (.120) 1.003 (.201) 0.966 (.151) 0.977 (.172) 0.929 (.149)

x2 0.866 (.121) 1.011 (.203) 0.969 (.116) 0.993 (.162) 0.951 (.126)

y2 1.137 (.108) .993 (.119) 1.036 (.108) 1.016 (.162) 1.057 (.121)

� .298 (.110) 0.212 (.250) 1.583 (2.42) 0.130 (.278)
*Standard errors in parenthesis.
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5.3 Alternative speci�cations of the functional forms

Table A2 displays the CF estimates of the wage equation obtained using alternative

functional forms for the heteroskedasticity. Table A3 and A4 show the estimates

of the heteroskedasticity function parameters in the wage and the schooling equa-

tions respectively. Column (1) in the tables report the estimates obtained using the

speci�cation in equation (7), but excluding some explanatory variables from the het-

eroskedastic index. In particular, the index only includes the variables that according

to the results in Table 4 seem to be responsible for the variability in schooling levels

(i.e. AFQT and regional indicators). In column (2) we report the estimates when the

heteroskedastic indices for wages and schooling include the same explanatory vari-

ables that their respective models for the conditional mean. Finally, in column (3) we

use the main speci�cation in the paper but include in the conditional mean for wages

interaction terms between the years of education and some explanatory variables (i.e.

gender, race and AFQT).

The estimates obtained under the di¤erent speci�cations are between 11:4% and

12:1%, slightly above that obtained under our preferred speci�cation 11:2%. Note that

the di¤erent estimates are within the 95% con�dence interval of each other. Thus

we conclude that our main results are una¤ected by the use of alternative functional

forms for the heteroskedasticity. Moreover, we do not �nd evidence that the return

of education varies across the socioeconomic characteristics considered.

Table A2: Wage Equation (Conditional mean)

(1) (2) (3)

educ 0:114(0:018)� 0:120(0:020) 0:121(0:028)

�0 �0:178(0:063) �0:191(0:072) �0:210(0:093)
*Standard errors in parenthesis. The standard errors are obtained from 1000 bootstrap rep lications w ith random rep lacem ent
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(1) (2) (3)

married 0:079(0:016)� 0:079(0:017) 0:078(0:017)

NE 0:070(0:032) 0:070(0:032) 0:072(0:032)

W 0:037(0:031) 0:037(0:030) 0:037(0:031)

NC �0:022(0:029) �0:023(0:029) �0:022(0:029)

city 0:029(0:019) 0:029(0:020) 0:030(0:019)

siblings 0:002(0:003) 0:002(0:003) 0:003(0:004)

Mwork14 0:019(0:016) 0:019(0:016) 0:019(0:016)

Hispanic 0:048(0:031) 0:042(0:032) �0:021(0:138)

black �0:076(0:031) �0:083(0:034) �0:245(0:141)

male 0:259(0:016) 0:260(0:017) 0:287(0:099)

Feduc �0:002(0:003) �0:002(0:003) �0:002(0:004)

Meduc 0:002(0:004) 0:002(0:004) 0:001(0:003)

S14 �0:060(0:027) �0:060(0:027) �0:060(0:027)

city14 0:051(0:020) 0:051(0:020) 0:051(0:020)

age 0:065(0:152) 0:060(0:152) 0:065(0:152)

age2 �0:001(0:002) �0:001(0:002) �0:002(0:002)

AFQT 0:086(0:029) 0:079(0:028) 0:083(0:055)

(educ �male) �0:002(0:007)

(educ � AFQT ) �0:001(0:006)

(educ � hispa) 0:004(0:011)

(educ � black) 0:012(0:010)

constant �0:178(3:298) �0:492(3:311) �0:616(3:317)

R2 0:30 0:30 0:30
*Standard errors in parenthesis. The standard errors are obtained from 1000 bootstrap rep lications w ith random rep lacem ent
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Table A3: Wage Equation (Conditional Variance)

(1) (2) (3)

married : �0:121(0:102)� :

NE �0:132(0:076) 0:192(0:161) 0:156(0:116)

W 0:028(0:090) 0:135(0:157) 0:197(0:108)

NC 0:503(0:042) �0:006(0:149) 0:049(0:094)

city : 0:038(0:104) :

siblings : �0:004(0:018) :

Mwork14 : �0:057(0:084) :

Hispanic : 0:148(0:129) :

black : 0:051(0:117) :

male : 0:041(0:080) :

Meduc : 0:030(0:014) :

Feduc : �0:009(0:021) :

S14 : 0:009(0:139) :

city14 : 0:175(0:121) :

age 0:132(0:108) �0:578(0:795) 0:013(0:017)

age2 : 0:007(0:009) :

AFQT : 0:077(0:056) :

constant �0:052(0:084) 9:346(17:24) �3:310(0:750)
*Standard errors in parenthesis. The standard errors are obtained from 1000 bootstrap rep lications w ith random rep lacem ent
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Table A4: Schooling Equation (Conditional Variance)

(1) (2) (3)

siblings : �0:020(0:017)� �0:020(0:017)

Mwork14 : 0:087(0:080) 0:087(0:080)

Hispanic 0:132(0:108) 0:002(0:130) 0:002(0:130)

black : �0:021(0:107) �0:021(0:107)

male : 0:050(0:074) 0:050(0:074)

Feduc : �0:023(0:013) �0:023(0:013)

Meduc : �0:026(0:183) �0:026(0:018)

S14 �0:132(0:076) �0:145(0:078) �0:145(0:078)

city14 0:028(0:090) 0:069(0:090) 0:069(0:090)

age : 0:015(0:016) 0:015(0:016)

AFQT 0:503(0:042) 0:544(0:050) 0:544(0:050)

constant �0:052(0:084) �0:141(0:733) �0:141(0:733)
*Standard errors in parenthesis. The standard errors are obtained from 1000 bootstrap rep lications w ith random rep lacem ent
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