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Abstract

The paper analyses the effects of innovations, technological specialisa-
tion and technology diffusion on economic growth and convergence of the
EU countries from 1969 to 1998. The empirical analysis is based on a panel
data model, which enables us, on the one hand, to assess the impacts of
these three factors as well as of the usual production factors on long-term
economic growth, and, on the other hand, to calculate their partial contri-
butions to β- and σ-convergence of labour productivities within the EU.
The results show that besides capital accumulation, transferable techni-
cal knowledge is a driving force of growth for catching-up EU countries,
while it is the level of Ricardian technological specialisation for advanced
EU countries. Furthermore, technology diffusion is a main driving force for
the convergence of labour productivities, while different levels of Ricardian
technological specialisation slow down convergence.

∗This paper was prepared while the author was a Visiting Fellow at the Directorate General
for Economic and Financial Affairs, EU Commission. I gratefully acknowledge the stimulating
research atmosphere at DG ECFIN and would like to thank Werner Röger and Klaus Wälde
for helpful comments.
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1 Introduction

Although the growth enhancing effects of technological change and innovations
had been known for some time, it took several decades to attract the interest
of researchers to study technical change. This lack of interest may be explained
in part by complex procedures ruling science and technology and the unknown
mechanisms translating innovations into broad-based economic effects.
Besides the general innovativeness of a country, its technological specialisa-

tion might also affect its economic performance. Based on new growth theory,
we can differentiate between two kinds of specialisation: Smithian specialisation
and Ricardian specialisation (Dowrick, 1997; Dalum/Laursen/Verspagen, 1999).
Smithian specialisation leads to ‘learning-by-doing’ effects and increasing returns
to scale, independent of the technological areas in which countries are specialised.
Ricardian specialisation, on the other hand, concerns the qualitative character of
a country’s technological specialisation, because countries specialised in techno-
logical areas with opportunities for higher rates of productivity growth might be
in a better position to achieve fast overall growth. Furthermore, technologically
backward countries can catch up by imitating technologies from other countries.
This paper aims at assessing empirically in a consistent manner the impact of
these three facets of technological progress on economic growth and convergence
of output per worker within the EU.
To this end, I estimate different versions of a growth model that captures inno-

vations, technology diffusion and the different kinds of technological specialisation
in an augmented technical progress function. The model is based on panel data for
14 EU countries from 1969 to 1998 and allows also for unobserved country effects.
Patents granted at the US Patent and Trademark Office are used as an indica-
tor for commercially relevant innovations and to calculate measures of Smithian
and Ricardian technological specialisation. The calculations of measures of the
Ricardian specialisation are based on the high-technology list developed at the
Fraunhofer Institute for Systems and Innovation Research, which enables us to
differentiate between leading-edge technologies, high-level technologies and a re-
maining group of low technologies. The superior models, i.e. the models with
the most appropriate indicators of technological specialisation, are then used to
assess the effects of innovations, technology diffusion and technological specialisa-
tion as well as the impact of the usual production factors on long-term economic
growth of the EU countries. Furthermore, a simple transformation of the empiri-
cal growth model enables us to calculate the partial contributions of these factors
to β- and σ-convergence of output per worker within the EU.
The paper proceeds in four parts. Section 2 deals with some theoretical is-

sues concerning the links between innovations, technological specialisation and
economic growth. A description of the methodology applied in the empirical
analysis follows in section 3. In this context, some data issues especially with
regard to the calculation of patent stocks and specialisation measures are also
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considered. Section 4 contains the empirical results and finally, in section 5 some
conclusions are presented.

2 Innovations, Specialisation and Growth: The-
oretical Issues

In spite of their dissimilarities in the theoretical foundation and the concrete
design, the numerous approaches in neoclassical growth theory, evolutionary eco-
nomics and a central branch of new growth theory show the common quintessence
that technical progress and innovations are important driving forces of economic
growth (Aghion/Howitt, 1998). However, with regard to technological speciali-
sation the conclusions are not unambiguous. One branch of new growth theory,
following Romer (1986) and Lucas (1988), emphasizes the importance of ‘learning-
by-doing’ effects and increasing returns to scale, independent of the technological
areas, in which countries are specialised. From this viewpoint, Smithian speciali-
sation matters to growth. Another branch of new growth theory, following Romer
(1990) and Grossman/Helpman (1991), concludes on the basis of so-called ’R&D-
models of growth’ that the qualitative character of a country’s specialisation is
decisive, because countries specialised in technological areas with opportunities
for higher rates of productivity growth might be in a better position to achieve
fast overall growth. From this viewpoint Ricardian specialisation matters to
growth, because positive spillovers emerge mainly in R&D-intensive technologies
and industries.
Both viewpoints of specialisation can also be found in evolutionary economics.

One branch, based on the variation-selection principle, emphasizes the impor-
tance of Smithian specialisation by concluding that specialisation advantages
emerge "regardless of the particular sectors in which individual countries con-
centrate their efforts; in other words, for advanced countries being specialized
appears to be even more important than choosing the ‘right’ fields” (Archibugi/
Pianta, 1992). The other branch, inspired by the post-Keynesian tradition,
takes a neo-Schumpeterian view and argues that Ricardian specialisation mat-
ters to growth because of differential income elasticities between activities (e.g.
Dalum/Laursen/Verspagen, 1999). This view adds a demand-side related argu-
ment to the supply-side related argument of new growth theory.
Neoclassical growth theory, on the other hand, first of all emphasizes that de-

creasing marginal productivity of capital drives convergence of per capita incomes
and labour productivities. This might be the reason why in cross-country growth
analyses usually identical exogenous rates of technical change are assumed. A
classical example for this approach is the influential analysis in Mankiw/Romer/
Weil (1992) which has been reproduced — in spite of all criticism — many times. As
a consequence, differences in growth rates of per capita income or labor produc-
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tivity stem mainly from differences in capital accumulation, because differences
in national innovation capabilities are assumed away in explaining both relative
output levels and growth rates, and therefore economic convergence. To the ex-
tent that these capabilities, i.e. the adoption and accumulation of technologies,
are important for convergence, a large part of the empirical literature to date is
misguided (Bernard/Jones, 1996).
Following Bernard/Jones (1996), I will elaborate this argument within the

context of the Solow growth model. The aggregate production function of a
country n is given by

Yn = Kαn
n (AnLn)

1−αn ⇒ Yn
Ln
= A1−αnn

µ
Kn

Ln

¶αn

, (1)

where Yn represents the output, An the level of labour-augmenting technical
progress, Kn the capital employed and Ln the amount of labour. The partial
production elasticity αn as well as An are allowed to vary across countries. For
the sake of simplicity, I assume that these variations are caused by differences in
aggregate innovation capabilities and perhaps different technological specialisa-
tions.
As usual, net capital accumulation is a constant fraction of output, i.e.

K̇n = snYn − δnKn, (2)

while convergence of national innovation capabilities as a catching-up process
requires that the accumulation of labor-augmenting technology be faster, the
larger the gap towards the technologically leading country is. Hence, a simple
assumption for the growth rate of technology is

gAn =
Ȧn

An
= ξn

Aw

An
, (3)

where ξn represents the ability of a country to reduce the technological gap.
Furthermore, it is assumed that the level of technology in the leading country Aw

grows exogenously at a rate g ≡ ξw. Solving this differential equation yields the
steady state technology ratios

An

Aw
=

ξn
ξw

. (4)

In this framework, steady state growth rates of output per capita and capital
per capita for each country as usual equal the growth of the labor-augmenting
technology in the technologically leading country:

g( YnLn )
= g(KnLn )

= gAn = g, (5)

but the relative steady state levels of output per capita depend not only on saving
rates sn, depreciation rates δn and population growth rates pn, but also on the
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abilities of countries to reduce the technological gap towards the leading country
and on the aggregate partial production elasticities, namelyµ

Yn
Ln

¶∗
µ
Yw
Lw

¶∗ = ξn
ξw

µ
sn

pn + g + δn

¶ αn
1−αn

µ
sw

pw + g + δw

¶ αw
1−αw

. (6)

Thus, in a world with technologies varying across countries, convergence of per
capita incomes and labor productivities will only occur if there is a converging
development of national innovation capabilities. Otherwise, countries will only
converge to their own steady states.

3 Methodology and Data Issues

For the empirical analysis, the approach developed by de la Fuente (2002) for
the analysis of convergence between the Spanish regions has been taken up and
modified as well as augmented. This modification allows us to assess the effects
of innovations, technological specialisation and technology diffusion as well as the
impact of the usual production factors labour and capital on economic growth
and convergence within the EU. Furthermore, data issues are discussed in this
section.

3.1 The Empirical Model

The starting point for the derivation of the empirical model is an augmented
Cobb-Douglas production function

Ynt = AntK
α
ntL

β
ntP

γ
ntS

δ
nt, (7)

where Pnt represents the patent stock and Snt the technological specialisation
of EU-country n in the period t.1 The interplay of Ant, Pnt and Snt could be
interpreted as a technical progress function: Ant measures the level of — at the
moment still — exogenous technical progress, which will be partly endogenized in
the further course of specification of the empirical model, while P γ

nt and S
δ
nt reflect

1The following presentation leans on de la Fuente (2002), but the Cobb-Douglas production
function is — additionally to the presentation in de la Fuente (2002) — extended to include the
patent stock and a measure of technological specialisation. Furthermore de la Fuente (2002)
assumes labour-augmenting Harrod-neutral technical progress, while I assume Hicks-neutral
technical Progress for the sake of a slightly simpler parametrisation of the underlying model.
However, in the case of a Cobb-Douglas production function and also for the empirical model
derived from it, the different kinds of technical progress have no impact on the parameters to
be estimated.
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the degree of efficiency due to the stock of results of R&D activities (innovations)
and technological specialisation. In logarithmic form the production function can
be written as

ynt = ant + αknt + βlnt + γpnt + δsnt, (8)

where lower case letters denote logarithms. Taking first differences gives growth
rates as

∆ynt = ∆ant + α∆knt + β∆lnt + γ∆pnt + δ∆snt, (9)

where ∆ is the difference operator.
For the log level of — at the moment still — exogenous technical progress ant

it is assumed that it consists of an index of transferable technical knowledge bnt
and of a temporally fixed country-specific effect rn, which takes into account e.g.
different geographic conditions or endowments of natural resources. Hence

ant = bnt + rn. (10)

Next, the transferable part of technical knowledge is endogenized as a function of
the patent stock, technological specialisation and the technological gap between
the respective country and the EU average. To this end, it is written as

bnt = bt + b̃nt, (11)

where bt = (1/N)
PN

n=1 bnt is the EU average of bnt and b̃nt = bnt − bt the tech-
nological distance between EU country n and the EU average. Let the average
(log) level of transferable technical knowledge bt continue being exogenous and it
depends on e.g. the technological gap between the EU and other technologically
leading countries. For its change, i.e. the average rate of technical progress, it
is assumed that it can be approximated for the considered period of time by a
constant g and a trend t, therefore

∆bt = g + ct. (12)

The change of the technological distance between EU country n and the EU
average depends, on the one hand, on the difference between its log patent stock
and the EU average at the end of the previous period ( p̃nt−1 = pnt−1− pt−1 with
pt−1 = (1/N)

PN
n=1 pnt−1) as well as on its relative specialisation with regard to

the EU average at the end of the previous period (s̃nt−1 = snt−1 − st−1 with
st−1 = (1/N)

PN
n=1 snt−1), and, on the other hand, on its technological distance

b̃nt−1 to the EU average in the previous period. Adding furthermore an identically
independently distributed error term unt gives

∆b̃nt−1 = �p̃nt−1 + ζs̃nt−1 − ηb̃nt−1 + unt. (13)
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If technologies actually diffuse from one EU country to another, it can be expected
that the coefficient η is negative, i.e. ceteris paribus the rate of technical progress
is higher the more technologically backward a country is.
In order to obtain a feasible empirical model, b̃nt−1 has to be depicted by

observable variables. Substituting to this end (10) into (8), taking into account
the time lag and solving for bnt−1 gives

bnt−1 = ynt−1 − αknt−1 − βlnt−1 − γpnt−1 − δsnt−1 − rn. (14)

Analogously, we get for the EU average

bt−1 = yt−1 − αkt−1 − βlt−1 − γpt−1 − δst−1 − r. (15)

Subtracting (15) from (14) yields

b̃nt−1 = bnt−1 − bt−1 = ỹnt−1 − αk̃nt−1 − βl̃nt−1 − γp̃nt−1 − δs̃nt−1 − r̃n, (16)

where variables marked with tildes represent deviations from the EU average, so
is r̃n = rn − r with r = (1/N)

PN
n=1 rn, too.

Substituting (12), (13) and (16) into (9) gives the feasible empirical model

∆ynt = g + ηr̃v + ct+ α∆knt + β∆lnt + γ∆pnt + δ∆snt + �p̃nt−1 + ζs̃nt−1

−η

ỹnt−1 − αk̃nt−1 − βl̃nt−1 − γp̃nt−1 − δs̃nt−1 −
NX

n=1;
n6=v

θnDCn


+unt, (17)

where the index v denotes a reference country and the coefficient of the n-th
country dummy DCn is θn = r̃n − r̃v. Austria is used as reference country in all
estimations because it is relatively close to the hypothetical EU average country.
The model can be estimated by nonlinear least squares.

3.2 Decomposition of Growth and Convergence Measures

The estimation results from the empirical model can be used, on the one hand,
in the line of the usual growth accounting to put down the long-term economic
growth of the individual EU countries to its different sources: capital, labour,
innovations, specialisation and transferable technical knowledge. On the other
hand, due to relative simple transformations of the empirical model, the mea-
sures of σ- and β-convergence of labour productivities within the EU can be
decomposed into additive components, which capture the contributions of the
just mentioned sources. For that I again fall back on a methodology proposed by
de la Fuente (2002), which he labels as “partial convergence analysis”.
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Assuming that the sum of the partial production elasticities of capital and
labour equals unity, the growth rate of labour productivity of EU country n can
be written according to (17) as

∆ynt −∆lnt = g + ηr̃v + ct+ α (∆knt −∆lnt) + γ∆pnt + δ∆snt + �p̃nt−1

+ζs̃nt−1 − η
³
ỹnt−1 − αk̃nt−1 − βl̃nt−1 − γp̃nt−1 − δs̃nt−1

−
NX

n=1;
n6=v

θnDCn

+ unt. (18)

Again, it is useful to relate the log labour productivities of the individual countries
to the average of the EU countries. This average of log labour productivities which
can be interpreted as the value for a hypothetical country that has average log
factor and patent stocks as well as an average specialisation, is

∆yt −∆lt = g + ηr̃v + ct+ α (∆kt −∆lt) + γ∆pt + δ∆st + ηθ + ut, (19)

where θ is the average of θn, n 6= v. Subtracting (19) from (18) gives the change
of relative labour productivity ∆qnt of EU country n as

∆qnt = α
³
∆k̃nt −∆l̃nt

´
+ γ∆p̃nt + δ∆s̃nt + �p̃nt−1 + ζs̃nt−1

−η

ỹnt − αk̃nt−1 − βl̃nt−1 − γp̃nt−1 − δs̃nt−1 + θ −
NX

n=1;
n6=v

θnDCn


+unt − ut. (20)

Thus, change of relative labour productivity of EU country n is the weighted
sum of its factor and patent stock and its specialisation as well as their rates of
change, with all variables measured as deviations from the EU average.
For the sake of a concise presentation of the further procedure, a simplification

of the notation is helpful. Let gqrn denote the average annual contribution of the
r-th component to the change of relative labour productivity ∆qnt. Here, the
contribution of capital-deepening α(∆k̃nt − ∆l̃nt) can be divided into α∆k̃nt +
(−α∆l̃nt), where the first part of the term represents the contribution of the
growth rate of the capital stock and the second part the contribution of a change
in employment.
The decomposition of the measure of σ-convergence — the standard deviation

of relative log labour productivities — can be carried out by calculating those
standard deviations at the end of observation period which would arise if changes
of relative labour productivities would be caused by just one component, while the
changes of the other components would equal zero. To this end, the hypothetical
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log level of relative labour productivity at the end of the observation period
(qrn1998) is calculated for each EU country n, which would result from a sole
change of the r-th component, therefore

qrn1998 = qn1968 + gqrnT, (21)

where T = 1998− 1968 is the length of the observation period. Subsequently the
standard deviation of these hypothetical levels of relative labour productivities
can be calculated across all n EU countries. The comparison of this number with
the standard deviation of relative labour productivities in the initial year (qn1968)
provides an approximate measure of how σ-convergence has been affected by the
r-th component. It is only an approximate measure since the changes induced
by the various components will generally not add up exactly to the total change
of the standard deviation because the covariances of the individual components
generally will not equal zero (de la Fuente, 2002).
By contrast, the measure of β-convergence can be decomposed exactly. As

usual, the total extent of β-convergence can be estimated by a cross-section re-
gression

∆qn = α+ βqn1968 + vn. (22)

Since ∆qn =
PR

r=1 gqrn, the estimates of the coefficients αr and βr from R
regressions

gqrn = αr + βrqn1968 + vrn (23)

add up exactly to the estimates of the coefficients α and β from (22). Thus β̂r is
a measure of the contribution of the r-th component to total β-convergence.

3.3 Data Issues

Before the results of the econometric estimations will be presented, some issues
with regard to data used should be discussed. The output data are real GDP in
1990 PPP-US-$, which are taken from the data base of the Groningen Growth and
Development Centre. Domestic civil employment numbers are from the AMECO
data base of the DG ECFIN of the European Commission. This source also
contains real net capital stocks with 1995 as the base year in million Euro (for
the members of the European Monetary Union) or in national currencies (for the
other EU countries). These data were converted into 1990 PPP-US-$ to achieve
comparability with the GDP data. Furthermore, for these variables the unique
level shift in 1991 due to German unification was eliminated from the time series
for Germany.
The patent stocks of the EU countries were calculated from the patents

granted to these countries at the US Patent and Trademark Office. With re-
gard to the calculation of patent stocks from patents granted, two opposite
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opinions predominate in the literature. In the one line of the literature, the
view is taken that the economically relevant life time of a patent is much longer
than its legal life. Thus Andersen/Walsh (1998), Cantwell/Andersen (1996),
Cantwell/Piscitello (2000) and Fai (1999) calculate patent stocks by accumulating
patents over a thirty-year period and assume thereby a linear depreciation func-
tion as in vintage capital models, i.e. the current number of patents is weighted
with 1, those of the previous periods with factors from 29/30 to 1/30. They justify
their assumption with the hint that new technical knowledge is partly embodied
in new equipment or devices, which have an average life span of 30 years. Zachari-
adis (2000), who calculates patent stocks using the perpetual inventory method
with a depreciation rate of 7 per cent, argues similarly by pointing out that his
rate would correspond with this century’s average annual rate of technological
obsolescence estimated by Caballero/Jaffe (1993).
In the other line of the literature, the opinion is held that the economically

relevant life span of a patent is much shorter than its legally possible life.2 As
evidence for it, among other things, the analysis of Mansfield/Schwartz/Wagner
(1981) is quoted, which shows that 60 per cent of all patents are invented at most
4 years ago. Therefore many authors use a depreciation rate of 15 per cent in
their calculations of patent stocks by means of the perpetual inventory method,
which implies a average life of 6.6̄ years (e.g. Chen/Ho/Ik et al., 2002; Gam-
bardella/Torrisi, 2000; Hall/Jaffe/Trajtenberg, 2001 and Lach, 1995). Other au-
thors use even higher depreciation rates of 20 per cent (e.g. Agrawal/Henderson,
2001 and Henderson/Cockburn, 1996) or 30 per cent (e.g. Blundell/Griffith/Van
Reenen, 1998; Cockburn/Griliches, 1988 and Dushnitsky/Lenox, 2002).
I also assume a depreciation rate µ = 0.15 for the calculation of patent stocks,

but the problem of calculating a initial stock is avoided by following the suggestion
of Heeley/Khorana/Matusik (2000) to confine the depreciation of the patent stock
to a period lasting only several years.3 Here, a six year period is used, such that

2Some authors steer a middle but theoretically not convincing course by calculating the
patent stock in such a manner that the explanatory power of this variable is maximized. So
Bosworth/Wharton/Greenhalgh (2000) assume that the patent stock evolves proportionally to
the number of patents granted, thus Pt = βP granted

t , whereas β is quasi-estimated within the
model because P granted

t is used as a proxy variable for the patent stock. This implies that
patents granted grow with a constant rate g, such that β = 1/ [1− (g − µ)], where µ is the
depreciation rate. Koleda/Le Mouël (1998), on the other hand, use all depreciation rates from
0 to 100 per cent in 1 per cent intervals and choose that rate which provides the best estimation
results for the total factor productivity to patent relation of different industries in each case.
They yield depreciation rates from 1 per cent for intermediate goods to 41 per cent for private
services.

3Assuming that the number of annual patents granted evolved in the past with the same
average rate g like in the observation period, an initial stock may be calculated as Pn0 =
P granted
n0 [(1 + g) / (µ+ g)], but for several EU countries the number of patents granted is zero
in the first available year 1963, especially when patents granted in the area of leading-edge
or high-level technology are considered. Referring to the fact that at high depreciation rates,
patents granted far in the past have only little impact on the patent stock, some authors avoid
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Table 1: Concordance between ISIC2 and SIC for the R&D-intensive industries

ISIC2 Description SIC (USPTO
sequence
number)

Leading-edge technology
3522 Drugs and medicines 14
3825 Office and computing machinery 27
3832 Radio, TV and communication 42+43

equipment
3845 (and partly 3829) Aircraft, guided missiles and 47, 54

space vehicles

High-level technology
351+352 (without 3522) Chemicals ex. drugs 6-9, 11-13
382 (without 3825) Non-electrical machinery (ex. 23-26, 29-32

office and computing machinery)
383 (without 3832) Electrical machinery (ex. radio, 35+36, 38-40

TV, communication equipment)
3843 Motor vehicles 46
3841+3842+3844+3849 Other transport equipment 49-53
385 Professional goods 55

the patent stock Pnt is given by

Pnt =
tX

τ=t−5
(1− µ)(t−τ) P granted

nτ , (24)

where P granted
nt is the number of US patents granted to EU country n in year t.4

These patent stocks are also used to calculate measures of specialisation. For
these calculations, I differentiate — as already mentioned — between Ricardian
specialisation, which concerns the qualitative character of a country‘s technologi-
cal specialisation, and Smithian specialisation, which leads to ‘learning-by-doing’
effects and increasing returns to scale, independent of the technological areas, in
which countries are specialised.
As measures of Ricardian specialisation, the patent stock share in the area

of the entire R&D-intensive technology as well as those in the areas of leading-

this problem by using the first available observation of patents granted as initial stock (e.g.
Blundell/Griffith/Van Reenen, 1998 and Dushnitsky/Lenox, 2002).

4Those authors using the first available observation of patents granted as the initial stock
basically apply a very similar approach, namely Pnt =

Pt
τ=t−t0 (1− µ)(t−τ) P erteilt

nτ , except that
they put down every further patent stock vintage to an additional vintage of patents granted.
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edge and high-level technology were used. The assignment of industries to these
areas is based on the high-technology list developed at the Fraunhofer Insti-
tute for Systems and Innovation Research, which is displayed in Table 1 (cf.
Grupp/Jungmittag/Legler et al., 2000). In order to use this list based on ISIC2
for a classification of US patents, I developed a concordance to the US classifi-
cation (SIC from 1972) to which each US patent is originally assigned.
It can be shown easily that the log patent share of a technological area ad-

justed to the EU average equals the national log relative patent share logRPSmn

adjusted to the EU average log relative patent share 1
N

PN
n=1 (logRPAmn). For

the patents of a technological area m (m = R&D-intensive technology, leading
edge or high-level technology), it holds namely:

log

 Pmn

MP
m=1

Pmn

− 1

N

NX
n=1

log
 Pmn

MP
m=1

Pmn




= log



Pmn

MP
m=1

Pmn

NP
n=1

Pmn

MP
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N
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(logRPSmn) (25)

For the analysis of the impact of Smithian specialisation, standardized diver-
sity indices

Dn =

Ã
1−

MX
m=1

σ2mn

!
/ (1− 1/M)

were calculated, where σmn is the patent share of sector m in the EU country n.
Here, M = 42 sectors according to the SIC classification were included.
GDP data are available for 14 EU countries (excluding Luxemburg) and be-

cause taking into account a six year period for the calculation of patent stocks,
patent stock data are available from 1968 to 1998. Since a further year is needed
for taking first differences, a total of 420 observations is used for the empirical
analysis.
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4 Empirical Results

4.1 Estimation Results

In the first step, the empirical model considering technological specialisation in
the entire R&D-intensive area was estimated in three variants (Table 2). In the
first variant (model 1), no restrictions were imposed on the model. The estimates
of the production elasticities of the factors capital and labour (α and β) show the
usual magnitude. At the same time, the null hypothesis of a F -test that their
sum equals 1 cannot be rejected on the usual levels of significance. Furthermore,
there is a significant positive growth effect of an increase of the patent stock.
The estimate of this elasticity γ is rather similar to those of other analyses (e.g.
Jungmittag/Blind/Grupp, 1999 and Jungmittag/Welfens, 2002). However, the
relative level of the patent stock (�) has no significant impact on economic growth.
For the Ricardian specialisation in the entire R&D-intensive area, the effects are
inverted. The change of specialisation (δ) has no significant effect on growth,
while the relative level of specialisation (ζ) shows a highly significant positive
impact. The coefficient that captures technology diffusion (η) is at a significance
level below 1 per cent different from zero and indicates a moderate rate of diffusion
(6.3 per cent per year). Moreover, a F -test shows that the country-specific fixed
effects are different from zero.
In model 2, the non-rejected null hypothesis that the sum of the produc-

tion elasticities of the factors capital and labour equals 1 is taken into account
explicitly. This hardly has any effect on the other parameters of the model. Ad-
ditionally, the non-significant variables are removed in model 3. This leads to a
slight increase of the estimate of the coefficient of the level effect of technological
specialisation, while the estimate of the rate of technology diffusion decreases
slightly.
In the second step, technological specialisation in the area of leading-edge

technology is taken into account instead of specialisation in the area of the entire
R&D-intensive technology (Table 3). In this case, an increase in the patent stock
also has a positive effect on economic growth in the most general specification
(model 4). However, the null hypothesis that the relative level of specialisation
has no impact on growth cannot be rejected at a significance level of 10 per
cent. Furthermore, the influence of the relative level of the patent stock and of
the change of technological specialisation is again not different from zero at the
usual levels of significance. The null hypothesis, that the sum of the production
elasticities of capital and labour is zero, cannot be rejected either. The opposite
holds for the null hypothesis with regard to fixed country-effects.
Explicitly taking into account the restriction concerning the production elas-

ticities of capital and labour again hardly changes the estimation results (model
5). However, if the clearly non-significant variables are removed from the model,
the positive impact of the relative level of specialisation in the area of leading-
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Table 2: Estimation results considering specialisation in R&D-intensive technol-
ogy

Model 1 Model 2 Model 3
Coefficient t-value Coefficient t-value Coefficient t-value

g + ηr̃v 0.0502 3.08a) 0.0449 3.18 0.0469 3.45
c -0.0004 -2.48 -0.0004 -2.60 -0.0004 -2.71
α 0.3068 2.47 0.3751 5.54 0.3662 5.48
β 0.6191 9.14 [0.6249] [0.6338]
γ 0.0371 2.52 0.0349 2.50 0.0358 2.54
δ 0.0057 0.23 0.0082 0.33
� 0.0075 1.27 0.0076 1.30
ζ 0.0399 2.07 0.0401 2.07 0.0448 2.49
η 0.0632 2.86 0.0576 2.71 0.0512 2.37
R2adj. 0.3778 0.3786 0.3769
α = β 0.4292b) 0.51c)P

θn = 0 4.5575b) 0.00c) 3.9335b) 0.00c) 3.1155b) 0.00c)
a) White’s heteroskedasticity-consistent estimators of the variance matrix are used to

calculate t-statistics.
b) F -value
c) Level of significance

edge technology is statistically highly significant (model 6), while the estimates
of the other coefficients remain largely unchanged. Particularly as well by taking
into account this kind of specialisation, the rate of technology diffusion is around
6 per cent per year.
When specialisation in the area of high-level technology is included, the rel-

ative level of the patent stock is also initially in the most general specification
beside the rate of change of the patent stock — at a significance level of 10 per
cent — different from zero (model 7 in Table 4). On the other hand, the two
specialisation variables do not show the slightest significance. Restricting the
sum of the production elasticities of capital and labour to zero again hardly has
any influence on the other parameters (model 8). However, if the non-significant
variables are removed from the model, the relative level of the patent stock also
loses significance, so that we come to a model which includes — besides capital,
labour and exogenous technical progress — only the change of the patent stock. In
this specification, the estimate of the rate of technology diffusion also is distinctly
lower (4 per cent).
In the last step, the standardized diversity index as a measure of absolute

Smithian specialisation is included in the model (Table 5). The two coefficients
for the change (δ) and the relative level (ζ) of this measure of specialisation show
in the most general specification (model 10) a negative value which implies that
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Table 3: Estimation results considering specialisation in leading-edge technology

Model 4 Model 5 Model 6
Coefficient t-value Coefficient t-value Coefficient t-value

g + ηr̃v 0.0425 2.70a) 0.0402 2.86 0.0427 3.17
c -0.0003 -1.96 -0.0003 -2.19 -0.0003 -2.28
α 0.3770 3.01 0.4074 5.90 0.4097 5.90
β 0.5906 8.51 [0.5926] [0.5903]
γ 0.0353 2.46 0.0345 2.51 0.0339 2.47
δ -0.0077 -1.07 0.0075 -1.06
� 0.0039 0.61 0.0038 0.59
ζ 0.0103 1.54 0.0105 1.61 0.0133 2.35
η 0.0619 2.65 0.0595 2.66 0.0604 2.71
R2adj. 0.3820 0.3834 0.3838
α = β 0.0814b) 0.78c)P

θn = 0 4.4531b) 0.00c) 4.1842b) 0.00c) 4.3280b) 0.00c)
a) White’s heteroskedasticity-consistent estimators of the variance matrix are used to

calculate t-statistics.
b) F -value
c) Level of significance

Table 4: Estimation results considering specialisation in high-level technology

Model 7 Model 8 Model 9
Coefficient t-value Coefficient t-value Coefficient t-value

g + ηr̃v 0.0452 2.74a) 0.0395 2.78 0.0416 3.00
c -0.0004 -2.34 -0.0003 -2.41 -0.0004 -2.51
α 0.3214 2.51 0.3900 5.55 0.3843 5.34
β 0.6061 8.64 [0.6100] [0.6157]
γ 0.0352 2.37 0.0331 2.34 0.0321 2.24
δ 0.0030 0.13 0.0043 0.18
� 0.0103 1.71 0.0104 1.73
ζ 0.0015 0.09 0.0012 0.08
η 0.0586 2.56 0.0520 2.37 0.0408 1.83
R2adj. 0.3670 0.3679 0.3638
α = β 0.3920b) 0.53c)P

θn = 0 3.6893b) 0.00c) 3.2210b) 0.00c) 1.8804b) 0.03c)
a) White’s heteroskedasticity-consistent estimators of the variance matrix are used to

calculate t-statistics.
b) F -value
c) Level of significance
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Table 5: Estimation results considering Smithian technological specialisation

Model 10 Model 11 Model 12
Coefficient t-value Coefficient t-value Coefficient t-value

g + ηr̃v 0.0427 2.56a) 0.0395 2.76
c -0.0004 -2.11 -0.0003 -2.33 see model 9
α 0.3757 2.89 0.4142 5.66
β 0.5830 7.97 [0.5858]
γ 0.0341 2.35 0.0330 2.39
δ -0.2470 -1.48 -0.2537 -1.53
� 0.0114 1.90 0.0114 1.91
ζ -0.1865 -1.59 -0.1896 -1.62
η 0.0542 2.44 0.0510 2.35
R2adj. 0.3746 0.3759
α = β 0.1298b) 0.72c)P

θn = 0 3.3289b) 0.00c) 2.9945b) 0.00c)
a) White’s heteroskedasticity-consistent estimators of the variance matrix are used to

calculate t-statistics.
b) F -value
c) Level of significance

a low specialisation of this kind has a negative effect on economic growth. But
they are only slightly above a significance level of 10 per cent different from zero
(12.65 per cent for δ and 10.51 per cent for ζ). At the same time, the level effect
of the patent stock is at a significance level of 5.64 per cent different from zero for
the first time. However, since countries with a relative large patent stock often
show a low degree of Smithian specialisation, a certain degree of intercorrelations
among these variables can be expected. This suspicion is confirmed when at a
time one of these three variables is eliminated from the model. Then the two
others clearly lose significance. Therefore, it can be assumed that the impact of
a low Smithian specialisation is not robust, so that we finally end up again with
a model without specialisation variables (model 12 = model 9).
The country-specific fixed effects are in all models highly significantly different

from zero. This result shows that there are long-term productivity differentials
between the EU countries which cannot be explained by the variables in the
models. The normalized country-specific effects, i.e. their average is exactly
one after adding the fixed effect for Austria, are displayed in Figure 1. In the
model without specialisation variables (model 9), Ireland shows the largest pos-
itive difference in long-term productivity relative to the EU average with 18.7
per cent, followed by Belgium, Spain and France. At the lower end Germany,
Sweden, Great Britain and particularly Greece with -39.6 per cent can be found.
The standard deviation of the unexplained long-term productivity differentials is
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Without specialisation variable (model 9)
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Including specialisation in R&D-intensive technology (model 3)
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Including specialisation in leading-edge technology (model 6)
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Figure 1: Unexplained long-term productivity differences within the EU

14.6 per cent. It decreases to 13.6 per cent, when the specialisation in the area
of entire R&D-intensive technology is included in the model (model 3). At the
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upper end the same countries as before are located in a slightly changed order,
while at the lower end Sweden is replaced by the Netherlands in the group of
the last four countries. If specialisation in the area of leading-edge technology is
taken into account (model 6), the standard deviation increases distinctly to 16.3
per cent, with mainly a rise in the range while those countries with unexplained
small below-average productivity differentials approach the average. In the group
of the four countries with the largest positive unexplained productivity differen-
tials, Finland replaces France, while there is only an internal change of ranks
within the group of the last four countries with the largest negative unexplained
productivity differentials. Altogether, however, the ranking of unexplained long-
term productivity differentials is rather stable. The rank correlation coefficient
between the unexplained differences in model 9 and either model 3 or 6 is in
both cases equal to 0.886 and between the unexplained differences in model 3
and 6 equal to 0.877. Of course this result also shows that a certain scope for the
further search for the determinants of long-term productivity differentials within
the EU remains.

4.2 Results of the Growth Decompositions

Based on the models capturing specialisation either in the area of the entire R&D-
intensive technology (model 3) or in the area of leading-edge technology (model
6), the average annual GDP growth of EU countries from 1969 to 1998 can be
decomposed into its various components. In the period under consideration,
Ireland shows the highest average annual growth with 4.63 per cent, followed by
the four other initially lagging countries Portugal, Spain, Greece and Finland,
whose growth rates were between 3.60 and 3.09 per cent (Table 6). Austria,
the Netherlands, France, Belgium and Italy form the medium group with growth
rates above 2.5 per cent. Denmark, Great Britain, Germany and Sweden with
growth rates between 2.26 and 2.00 per cent are to be found in the last group.
Within the group with high average annual GDP growth, Finland, Spain

and Ireland saw relatively high growth contributions from transferable technical
knowledge (between 57.6 and 46.0 per cent), measured by the term ĝ+ ĉt̄− η̂ (·).
In contrast, this contribution is comparatively small for Greece and Portugal with
33.3 and 34.3 per cent. At the same time, the growth contribution of capital is
relatively small for Ireland and Finland at 31.5 per cent, mediocre for Portugal
and Spain, and very high for Greece with 51.0 per cent. Moreover, Ireland, Greece
and Portugal show a comparatively high contribution of labour to GDP growth
(between 15.7 and 14.1 percent), while this contribution is rather small in the case
of Spain and Finland (6.2 and 4.8 per cent). In this group, Finland profits above
all from the growth of its patent stock, followed by Ireland and Spain with a clear
margin. In comparison, the contributions of this component as expected are very
small in the case of Greece and Portugal. The relative level of specialisation in
the area of the entire R&D-intensive technology shows a slightly negative impact
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Table 6: Decomposition of average annual growth of GDP from 1969 to 1998
considering specialisation in R&D-intensive technology

Country ∆yn Percentage contribution to average annual growth
(%) ĝ + ĉt̄− η̂ (·) α̂∆kn (1− α̂)∆ln γ̂∆pn ζ̂ s̃R&Dn

IE 4.63 46.0 31.5 15.7 5.9 0.9
PT 3.60 34.3 41.0 14.1 2.0 8.7
ES 3.32 53.7 43.1 6.2 5.2 -8.2
GR 3.13 33.3 51.0 15.6 3.1 -3.0
FI 3.09 57.6 31.5 4.8 11.0 -4.9
AT 2.93 49.1 42.3 15.8 4.0 -11.1
NL 2.78 23.3 36.0 28.0 2.9 9.8
FR 2.63 41.8 39.9 10.8 3.7 3.7
BE 2.62 49.1 38.8 7.2 5.1 -0.3
IT 2.54 40.6 43.7 4.0 5.3 6.5
DK 2.26 51.0 33.8 14.7 5.9 -5.4
UK 2.21 53.9 33.0 8.6 0.5 4.0
DE 2.19 29.2 45.8 10.3 4.3 10.4
SE 2.00 65.7 35.8 6.6 3.3 -11.5

for Greece, Finland and Spain, while it is negligible or slightly positive in the
case of Ireland and Portugal.
Within the second group, above all the Netherlands are striking, for which a

very small relative contribution of transferable technical knowledge (23.3 per cent)
can be observed at the same time as a very large relative contribution of labour
growth (28.0 per cent) to GDP growth. This development is accompanied by
moderate contributions of capital and the patent stock (36.0 and 2.9 per cent) as
well as a distinct contribution of the relative technological specialisation to GDP
growth. In comparison, the contributions of transferable technical knowledge
are clearly higher for the other countries of this group, with values between 49.1
(Austria and Belgium) and 40.6 per cent (France). The same also holds to a lesser
degree for the contributions of capital and patent stocks to growth. With regard
to the contributions of technological specialisation, however, no clear-cut picture
evolves. France and Italy profit slightly from their relative specialisation in the
area of R&D-intensive technology (3.7 and 6.5 per cent), while this contribution
is negligible for Belgium and clearly negative for Austria (-11,1 per cent).
Within the last group of EU countries with relatively low GDP growth, three

countries show either high or very high relative contributions of transferable tech-
nical knowledge to growth (Denmark and Great Britain with 51.0 and 53.9 per
cent as well as Sweden with 65.7 per cent). At the same time, these coun-
tries experienced relatively small contributions of capital growth to GDP growth.
Moreover, Denmark realized a distinct contribution of employment growth to
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GDP growth, while the contribution of this component is moderate in the case
of Great Britain and Sweden. The growth of the patent stock is a contributing
factor in two of these three countries (Denmark and Sweden), with 5.9 and 3.3 per
cent on average to economic growth; in the case of Great Britain this influence
is negligible. Finally, Great Britain profits comparatively moderately from its
relative specialisation in the area of the entire R&D-intensive technology, while
this contribution is clearly negative for Denmark and Sweden which bring up the
rear within the EU with -11.5 per cent.
Germany takes a special position within this group, but partly also within the

EU as a whole. Its relative contribution of transferable technical knowledge only
amounts to 29.2 per cent. This value is only undercut by the Netherlands. At
the same time it shows the highest relative contribution of specialisation in the
area of the entire R&D-intensive technology to growthwith 10.4 per cent. The
picture is completed by relatively high contributions of capital and labour (45.8
and 10.3 per cent) as well as by an average contribution of patent stock growth.
When the growth decomposition is based on the model capturing specialisa-

tion in the area of leading-edge technology, all countries — of course without chang-
ing the ranking — have slightly higher contributions of capital to GDP growth and
the contributions of labour and patent stocks are a little bit smaller (Table 7).
However, there are distinct shiftings of the contributions of transferable technical
knowledge and of the relative level of technological specialisation. Within the
group of heavily growing, initially lagging countries more than 80 per cent of
Finland’s average annual GDP growth can be ascribed to transferable technical
knowledge, while with -30.7 per cent it experienced a high negative contribution
of its relative specialisation in the area of leading-edge technology. Spain also
experienced a negative contribution of its specialisation (-14.8 per cent) and at
the same time a high positive contribution of transferable technical knowledge.
The contributions of the latter component are more moderate for Ireland and
Portugal (44.6 and 36.8 per cent), for which, furthermore, the effects of their
relative specialisation in the area of leading-edge technology are negligible. The
case of Greece is different. It experienced only a small relative contribution of
transferable technical knowledge (with 20.2 per cent the penultimate position
within the EU) and a moderate contribution of its technological specialisation
(5.4 per cent).5

Within the second group, especially the Netherlands and in a less pronounced
form also France are striking, because they have either no or only a small con-
tribution of transferable technical knowledge and, at the same time, either a
very or strongly distinct contribution of their relative specialisation in the area of
leading-edge technology. In comparison, the contribution of transferable technical

5With regard to the interpretation of Greece’s technological specialisation, a certain degree
of caution is required due to its small patent stocks, especially in the area of leading-edge
technology.
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Table 7: Decomposition of average annual growth of GDP from 1969 to 1998
considering specialisation in leading-edge technology

Country ∆yn Percentage contribution to average annual growth
(%) ĝ + ĉt̄− η̂ (·) α̂∆kn (1− α̂)∆ln γ̂∆pn ζ̂ s̃LEn

IE 4.63 44.6 35.2 14.6 5.6 0.0
PT 3.60 38.8 45.8 13.1 1.8 0.5
ES 3.32 55.9 48.2 5.7 4.9 -14.8
GR 3.13 20.2 57.0 14.5 2.9 5.4
FI 3.09 80.7 35.2 4.5 10.4 -30.7
AT 2.93 47.8 47.3 14.7 3.7 -13.6
NL 2.78 -4.8 40.2 26.0 2.8 35.7
FR 2.63 21.2 44.6 10.1 3.5 20.6
BE 2.62 48.0 43.4 6.7 4.9 -2.9
IT 2.54 37.8 48.8 3.7 5.0 4.8
DK 2.26 54.3 37.7 13.6 5.6 -11.3
UK 2.21 33.3 36.8 8.0 0.5 21.3
DE 2.19 34.7 51.2 9.6 4.1 0.5
SE 2.00 58.2 40.0 6.2 3.1 -7.5

knowledge is much higher in the case of Italy, with at the same time a moderate
contribution of its specialisation to GDP growth. Finally, a very high share of
growth can be ascribed to transferable technical knowledge in the case of Austria
and Belgium, while their specialisations in the area of leading-edge technology
contributed either strongly or slightly negatively to their growth performance.
Among the four countries of the last group with relatively low average annual

growth rates, a very large part of growth can be attributed to transferable tech-
nical knowledge in the case of Denmark and Sweden (54.3 and 58.2 per cent).
Moreover, both countries experienced losses of growth by -11.3 and -7.5 per cent
respectively due to their specialisation. In contrast, Great Britain and Germany
profit only to a modest extent from transferable technical knowledge with 33.3
and 34.7 per cent. They differ, however, to a large extent with regard to the
contribution of their relative technological specialisation to growth, which is neg-
ligible in the case of Germany, while Great Britain comes second within the EU
with 21.3 per cent.
In summary, it may be noticed that on the one hand, growth of capital stocks

and transferable technical knowledge provided the most important contributions
to long-term GDP growth in the EU during the period from 1969 to 1998. How-
ever, the contributions of the other components (changes in employment and
patent stocks as well as the relative levels of technological specialisation) can-
not be neglected. On the other hand, a glance at the decomposition results
already shows the opposite tendency of the contributions of transferable techni-
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Figure 2: Correlations between contributions of transferable technical knowl-
edge and technological specialisation to GDP growth

cal knowledge and technological specialisation to GDP growth. This impression
is confirmed, when both components are plotted against each other in a scatter
diagram (Figure 2). Considering specialisation in the area of the entire R&D-
intensive technology, the R2 is 0.589 and we have a highly significant negative
relationship at a level of one per cent. If alternatively specialisation in the area
of leading-edge technology is considered, the R2 increases to 0.858. This result
indicates that some of the countries negatively specialized in the entire R&D-
intensive technology or — even more pronounced — in leading-edge technology
managed in the past to achieve high relative contributions to growth due to tech-
nology transfer and imitation. Therefore, it can be assumed that especially for
those countries which catched-up strongly within the EU, increases of efficiency
enabled by technology transfer and imitation are an important preliminary stage
to an own innovation capability in the R&D-intensive area.
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4.3 Results of the Convergence Decompositions

The starting point of the decomposition of σ- and β-convergence is the calculation
of the labour productivities in the initial year of the observation period 1968 and
of their average annual changes until 1998 as well as the decomposition of the
latter into the components of the empirical model. The results of this exercise on
the basis of the model with specialisation in the entire R&D-intensive technology
are displayed in Table 8. With regard to the initial level of labour productivity
in 1968, Germany was clearly in the first place with a value of about 34 per cent
above the (hypothetical) EU average. France (21.77 per cent) and Belgium (21.31
per cent) followed with a clear margin. An additional six countries also show an
above-average initial level (from the Netherlands with 19.75 per cent to Austria
with 1.59 per cent). Finland, Ireland and the three South European countries
were clearly below the average, with Portugal (-54.72 per cent) far behind.
If average annual changes of relative labour productivity are considered, coun-

tries being initially positioned above-average — with the exception of Belgium and
Italy — show negative values, while initially backward countries show positive rates
of change, which were highest for Ireland (1.17 per cent) and lowest for Greece
(0.05 per cent). Thus, a broad majority of the EU countries show a more or less
distinct tendency towards the average of log labour productivities.6

With the exception of Austria, the contributions of changes of the capital
stock are negative for all countries with initially above-average labour productiv-
ities, which partly explains the tendency of labour productivities towards the EU
average. These were most pronounced for Sweden, Great Britain and Denmark.
On the other hand, four of the five initially lagging countries (except Finland)
show a clearly positive contribution of relative capital stock growth. In contrast,
the impact of changes in relative employment is rather heterogeneous. Among
the initially above-average countries they contribute to an approach towards the
average in the case of the Netherlands and Austria. The results are similar with
an opposite sign for the initially backward countries. In the case of Finland and
Spain changes of relative employment support the tendency towards the average,
while they act as a brake in the case of Ireland, Greece and Portugal.
For six of the nine initially above-average countries, changes of relative patent

stocks contribute to the tendency towards the EU average labour productivity,
while their contributions are negligible in the case of Belgium, Denmark and Italy.
Among the initially backward countries, Finland and Ireland — as well as to a
modest extent Spain — profit from an improvement of their relative positions with
regard to patent stocks. In contrast, for Greece and Portugal, this component
counteracts the slight (Greece) or stronger (Portugal) tendency towards the EU
average of labour productivities.

6However, it cannot be excluded that there is not only a tendency towards the average,
but that in the long-term some initially backward countries will top the average, while some
initially leading countries will fall back below the average.
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Table 8: Decomposition of relative labour productivity growth from 1969 to
1998 considering specialisation in R&D-intensive technology

Country qn1968 ∆qn α̂∆k̃n −α̂∆l̃n γ̂∆p̃n ζ̂ s̃R&Dn −η̂ (·)
(per cent)

DE 33.91 -0.48 -0.11 0.07 -0.04 0.23 -0.63
FR 21.77 -0.14 -0.06 0.03 -0.03 0.10 -0.17
BE 21.31 0.00 -0.10 0.09 0.00 -0.01 0.01
NL 19.75 -0.76 -0.11 -0.25 -0.05 0.27 -0.62
DK 17.76 -0.57 -0.35 0.01 0.00 -0.12 -0.11
IT 16.36 0.06 0.00 0.14 0.00 0.16 -0.24
SE 14.23 -0.53 -0.40 0.12 -0.06 -0.23 0.04
UK 9.83 -0.41 -0.38 0.09 -0.12 0.09 -0.08
AT 1.59 -0.11 0.13 -0.07 -0.01 -0.33 0.17
FI -15.69 0.55 -0.14 0.11 0.21 -0.15 0.51
ES -20.03 0.68 0.32 0.08 0.04 -0.27 0.51
IE -28.74 1.17 0.35 -0.22 0.14 0.04 0.86
GR -37.34 0.05 0.49 -0.09 -0.03 -0.09 -0.23
PT -54.72 0.48 0.36 -0.10 -0.06 0.31 -0.04

The impact of relative technological specialisation varies rather considerably.
Among the countries with initially above-average labour productivity, it alleviates
the decrease in relative levels of labour productivity in the case of the Netherlands
and Germany as well as — to a smaller extent — also in the case of Italy, France
and Great Britain, while it supports this process in the other four countries.
The picture is similarly heterogeneous for the initially lagging countries. The
influence of technology diffusion is generally a mirror image of the impact of
technological specialisation, so that among the initially advanced countries it
provides the highest contribution to the approach towards the average in the
case of Germany and the Netherlands. Among the initially backward countries,
Ireland, Finland and Spain profit from very high contributions of technology
diffusion to the growth of their relative levels of labour productivity. On the other
hand, a negative contribution in the case of Greece takes prime responsibility for
its small tendency towards the average.
Alternatively taking into consideration specialisation in the area of leading-

edge technology leads mainly to a shift of the contributions of technological spe-
cialisation and technology diffusion to the changes of relative labour productivity,
without changing their total contribution to a greater extent (Table 9). Among
the countries with above-average initial levels, the comparatively highly positive
specialisation in the area of leading-edge technology reduces the tendency to-
wards the EU average in the case of the Netherlands, France and Great Britain.
Technology diffusion works against this, such that the sum of both effects is pos-
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Table 9: Decomposition of relative labour productivity growth from 1969 to
1998 considering specialisation in leading-edge technology

Country qn1968 ∆qn α̂∆k̃n −α̂∆l̃n γ̂∆p̃n ζ̂ s̃LEn −η̂ (·)
(in %)

DE 33.91 -0.48 -0.12 0.07 -0.03 0.01 -0.41
FR 21.77 -0.14 -0.07 0.04 -0.03 0.54 -0.61
BE 21.31 0.00 -0.11 0.10 0.00 -0.08 0.09
NL 19.75 -0.76 -0.13 -0.28 -0.05 0.99 -1.30
DK 17.76 -0.57 -0.39 0.01 0.00 -0.25 0.06
IT 16.36 0.06 0.00 0.15 0.00 0.12 -0.21
SE 14.23 -0.53 -0.44 0.13 -0.06 -0.15 -0.01
UK 9.83 -0.41 -0.43 0.10 -0.11 0.47 -0.43
AT 1.59 -0.11 0.15 -0.08 -0.01 -0.40 0.23
FI -15.69 0.55 -0.15 0.12 0.20 -0.95 1.33
ES -20.03 0.68 0.36 0.09 0.04 -0.49 0.69
IE -28.74 1.17 0.39 -0.25 0.14 0.00 0.89
GR -37.34 0.05 0.55 -0.10 -0.03 0.17 -0.54
PT -54.72 0.48 0.40 -0.11 -0.06 0.02 0.23

itive only for Great Britain. Compared to specialisation in the area of the entire
R&D-intensive technology, the positive contributions of technological specialisa-
tion decrease particularly in the case of Germany and to a lesser extent in the
case of Italy, while the amount of negative contributions increase in the case of
Belgium, Denmark and Austria. Only for Sweden is the amount of the negative
contribution a little bit lower. The changes in contributions of technology diffu-
sion are almost a mirror image of the changes in contributions of specialisation.
For Denmark, the Netherlands and Sweden, the sum of these components is now
slightly higher, so that the tendency towards the average diminishes a bit.
Among the five countries with labour productivities below the EU average in

1968, the trade-off between growth contributions of technological specialisation
and technology diffusion increases in favour of the latter in the case of Finland and
Spain and to a lesser extent in the case of Portugal. The opposite occurs in the
case of Greece, where the contribution of technology diffusion to relative growth
decreases further, while the contribution of specialisation moves into the positive
zone.7 Due to its negligible contributions of the specialisation in the entire R&D-
intensive technology as well as in leading-edge technology, there hardly is any
change in the high contribution of technology diffusion to growth for Ireland.
Based on these figures, the decomposition of σ- and β-convergence within the

7As already mentioned in footnote 5, a certain degree of caution is required with regard to
the interpretation of Greece’s technological specialisation because of its small patent stocks,
especially in the area of leading-edge technology.
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Table 10: Decomposition of σ-convergence of labour productivities within the
EU considering technological specialisation

Standard deviation of relative labour productivities
R&D-intensive Leading-edge technology

1968 1998 %∆ % total 1998 %∆ % total
Actual 0.2662 0.1764 -33.74 0.1764 -33.74
Without level 0.2662 0.1852 -30.45 100 0.1852 -30.45 100
shift DE 1991
Growth due only
change in:
capital 0.2662 0.2072 -22.17 72.81 0.2015 -24.30 79.81
labour 0.2662 0.2825 6.09 -20.02 0.2847 6.92 -22.73
capital/labour 0.2662 0.2207 -17.09 56.14 0.2165 -18.69 61.38
patents 0.2662 0.2600 -2.34 7.69 0.2603 -2.24 7.35
specialisation 0.2662 0.2780 4.43 -14.53 0.3361 26.23 -86.15
technology 0.2662 0.2270 -14.73 48.39 0.2470 -7.22 23.73
diffusion

EU can be carried out. With regard to σ-convergence, the standard deviation of
the relative labour productivities of the 14 considered EU countries was 0.2662
in 1968 (Table 10). Until 1998 it actually decreased by 33.74 per cent to 0.1764,
while a decrease of 30.45 per cent to 0.1852 has to be assumed when the unique
level shift due to German unification is eliminated. Since this was done with the
data of the empirical model, this adjusted measure of σ-convergence is also the
basis of the decomposition.
Obviously the development of capital stocks provided the largest contribution

to σ-convergence in the thirty-year period until 1998. If growth in this period had
been caused only by changes in capital stocks, the standard deviation would have
decreased by 22.17 per cent to 0.2072 based on the empirical model considering
specialisation in the area of the entire R&D-intensive technology, that is 72.81 per
cent of the total decline. When the model considering specialisation in the area
of leading-edge technology is used, the share in the total decline is even slightly
higher at 79.81 per cent. On the other hand, the standard deviation would have
increased by 6.09 and 6.92 per cent respectively if growth had been caused only
by changes of employment. Altogether, capital deepening would have contributed
56.14 per cent (taking into account specialisation in the area of the entire R&D-
intensive technology) and 61.38 per cent (taking into account specialisation in the
area of leading-edge technology) to the total decline of the standard deviation of
relative labour productivities respectively.
If growth of labour productivities had been caused solely by changes of patent

stocks, the decline of the standard deviation would have been rather small with
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7.69 and 7.35 per cent respectively of the total decline. The effect of specialisa-
tion in the area of the entire R&D-intensive technology is moderately negative —
the standard deviation would have increased by 4.43 per cent — and the effect of
specialisation in leading-edge technology is strongly negative — the standard devi-
ation would have been increased by 26.23 per cent. Finally, technology diffusion
provides an important contribution to the reduction of the standard deviation. Its
sole consideration on the basis of the model with specialisation in the area of the
entire R&D-intensive technology would have reduced the standard deviation by
14.73 per cent, which is a contribution of 48.39 per cent to total σ-convergence.
When the model with specialisation in the area of leading-edge technology is
used, the hypothetical reduction is only 7.22 per cent, thus 23.73 per cent of
total σ-convergence.
The estimate of β is 0.0151, which implies a rate of absolute β-convergence

λ = 0.02011 within the EU from 1969 to 1998, since λ = (−1/T ) [ln (1− βT )]
(Table 11). This value is very similar to the ubiquitous 2 per cent which is
ascertained in various cross-section studies of convergence (e.g. Barro/Sala-i-
Martin, 1991 and Sala-i-Martin, 1996). The contribution of the factor capital
to the estimate of β amounts to 55.32 per cent on the basis of the model with
technological specialisation in the entire R&D-intensive area and to 61.89 per
cent on the basis of the model with specialisation in leading-edge technology.
Changes of employment, on the other hand, slowed down β-convergence slightly,
such that the contribution of capital deepening was between 43.67 and 48.87 per
cent, depending on the model used.
The contributions of patent stocks and technological specialisation are not

significantly different from zero, but the magnitude of the estimate for the con-
tribution of specialisation in the area of leading-edge technology points to a con-
siderable convergence impeding effect. The contribution of technology diffusion
is almost as large as the contribution of capital in the model with specialisation
in the area of the entire R&D-intensive technology, and it is even higher in the
model with specialisation in the area of leading-edge technology. Therefore, con-
vergence of capital stocks per person employed and technology diffusion are the
important driving forces of absolute β-convergence.
Since Greece and Portugal still have a special position within the EU, it

was assumed by introducing a dummy variable for these two countries that they
and the rest of the EU would converge to different steady states. This dummy
variable is highly significant and the estimate of β rises to 0.258, which implies
a conditional convergence rate of 4.96 per cent (the lower panel of Table 11). In
the case of such a conditional convergence, the contribution of capital reduces
distinctly to either 28.34 per cent (when specialisation in the area of the entire
R&D-intensive technology is considered) or 31.71 per cent (when specialisation in
the area of leading-edge technology is considered). Altogether, capital deepening
is then responsible for only one-fifth to one-quarter of the total estimate of the
convergence parameter.
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Table 11: Decomposition of β-convergence of labour productivities within the
EU considering technological specialisation

Absolute β-convergence
R&D-intensive technology Leading-edge technology

β̂ t-value R2 % β̂ t-value R2 %
Total -0.0151 -3.34a) 0.53 100 -0.0151 -3.34 0.53 100
Contribution
of change in:
capital -0.0083 -5.10 0.59 55.32 -0.0093 -5.10 0.59 61.89
labour 0.0018 1.74 0.14 -11.64 0.0020 1.74 0.14 -13.03
capital/labour -0.0066 -3.83 0.47 43.67 -0.0074 -3.83 0.47 48.87
patents -0.0009 -0.97 0.08 6.13 -0.0009 -0.97 0.08 5.80
specialisation 0.0006 0.23 0.01 -4.08 0.0051 1.25 0.08 -33.85
technology -0.0082 -1.67 0.28 54.28 -0.0119 -1.82 0.22 79.19
diffusion

Conditional β-convergence (GR, PT and the rest of the EU)
R&D-intensive technology Leading-edge technology

β̂ t-value R2 % β̂ t-value R2 %
Total -0.0258 -6.46 0.76 100 -0.0258 -6.46 0.76 100
Contribution
of change in:
capital -0.0073 -2.53 0.60 28.34 -0.0082 -2.53 0.60 31.71
labour 0.0015 0.65 0.14 -5.82 0.0017 0.65 0.14 -6.52
capital/labour -0.0058 -2.01 0.48 22.52 -0.0065 -2.01 0.48 25.19
patents -0.0032 -3.26 0.51 12.26 -0.0030 -3.26 0.51 11.60
specialisation 0.0041 1.45 0.18 -15.80 0.0134 1.80 0.27 -51.66
technology -0.0209 -10.01 0.86 81.03 -0.0297 -4.73 0.65 114.87
diffusion
a) White’s heteroskedasticity-consistent estimators of the variance matrix are used

to calculate t-statistics.

The contribution of the development of patent stocks is now highly signifi-
cantly different from zero and constitutes about 12 per cent of the total estimate
of β, independent of the specification of the empirical model. With regard to
technological specialisation, at least specialisation in the area of leading-edge
technology is now at a level of 10 per cent significantly different from zero. At
this magnitude, it prevents a 51.66 per cent higher estimate of β. Thus the dif-
ferent degrees of relative specialisation in the area of leading-edge technology are
an important obstacle for conditional β-convergence within the EU. On the other
hand, with contributions of either 81 or 115 per cent, technology diffusion is to
a even larger extent the driving force of convergence of labour productivities in
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this specification of the convergence regressions, however, towards two different
steady states.

5 Summary and Conclusions

The empirical analysis of the impact of innovations, technological specialisation
and technology diffusion on economic growth and convergence of the EU coun-
tries from 1969 to 1998 provided some clear-cut results. Innovations measured
by the growth rates of the patent stocks of the EU countries foster economic
growth. With regard to specialisation, there is only little empirical evidence that
technological Smithian specialisation is conducive to economic growth within the
EU. In contrast, the level of relative technological specialisation in the area of
R&D-intensive industries and especially in the area of leading-edge industries
contributes significantly to economic growth within the EU. Moreover, the esti-
mations suggest a moderate rate of technology diffusion, depending on the spec-
ification of the empirical model between 5 and 6 per cent per year.
The growth decomposition showed that besides capital accumulation, tech-

nology diffusion is a driving force for growth of catching-up countries within the
EU, while it is the level of relative Ricardian technological specialisation for ini-
tially leading EU countries. Furthermore, the decomposition of measures of σ-
and β-convergence reveals that technology diffusion is also a main driving force
— at least as important as capital accumulation — of the convergence of labour
productivities within the EU, while different levels of relative Ricardian techno-
logical specialisation slow down convergence. The relative growth of the patent
stock, however, only contributes significantly to β-convergence if conditional con-
vergence (Greece and Portugal against the rest of the world) is considered.
In accordance with Dalum/Villumsen (1996), it can be concluded on the basis

of the empirical results, that a sole specialisation in leading-edge technology is
probably no panacea for a “paradise on earth”. However, it is also obvious
from the empirical results that processes of structural change towards R&D-
intensive industries should be supported by policy, because countries which were
successful in this process also experienced higher growth opportunities in the
recent past. Furthermore, national as well as EU policy should support cross-
border technology diffusion and knowledge spillovers. Especially with regard to
the catching-up but still backward countries within the EU, it might be necessary
to promote these countries through a selective EU research and technology policy,
so that they succeed in setting up efficient national innovation systems and, at
the same time, participate in a gradually emerging European innovation system.
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