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1. Introduction

Two papers published in peer-reviewed journals (Holt, 2006; Holt et al., 2006) 
describe the mathematical basis of the UK Non-Native Organism Risk Assessment 
Scheme2. The current risk assessment methodology (specifically including the 
proposed scoring system and the categorization of responses) has also been peer-
reviewed in a report by RPS Group Ltd, available on the website of the GB Non-
Native Species Secretariat3. In the notes that follow, some previously unreported 
problems with the mathematical analysis on which the Scheme is based are outlined.

2. Some notation and terminology

We need an expanded notation, for clarity. We use the term experiment to refer 
generically to all the procedures used to generate a set of data, whether the data are 
observational or hypothetical. The common objective of the three experiments 
discussed here is to provide a basis for prediction of the level of threat presented by 
the import of alien species for indigenous species and habitats. In an experiment, a 
number of independent components of risk related (or at least, thought to be related) to 
the level of threat posed by a number of alien species are scored. The scale on which 
scores for risk components are coded is calibrated so that higher scores are associated 
with greater level of threat. Depending on the design of the experiment, the true threat 
status of the species involved may or may not be known.

In an experiment, the maximum number of risk components that may be scored is 
denoted R, and a particular component is identified by the subscript i, as Ri. A total of 
T species are assessed, but not all risk components are necessarily scored for each 
species. A particular species is denoted by the subscript j, as Tj. For the jth species 
(j=1…T), the total number of risk components scored is denoted Rj (1≤Rj≤R), where 
necessary. We can refer to a particular risk component for a particular species, where 
necessary, as Rij (i=1…Rj). The level of threat (v) is indicated by the score s(v), which 
is typically coded on an n-point ordinal-categorical scale, using a subscript k (k=1…n) 
to denote a particular score, as sk(v). Thus we can refer to the particular score (code) 
given to a particular species for a particular risk component, where necessary, as 
sijk(v).

We denote probabilities as Pr(▪). To convert from the probability Pr(▪) of an event 
to the odds Odds(▪) of an event, we note that Odds(▪) = Pr(▪)/(1− Pr(▪)) (so that the 
operational precedence is clear). For the reverse process, the conversion is Pr(▪) = 
Odds(▪)/(1+ Odds(▪)) (again, for clarity of operational precedence). Holt (2006) and 
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Holt et al. (2006) use the terms threat and risk apparently interchangeably, and neither 
is defined. Clearly, both terms are meant to convey the impression that the import of 
alien species may have undesirable effects on indigenous species and habitats. Here, 
threat is used when the actual or predicted status of an alien species is measured on an 
ordinal-categorical scale. Risk is used as a synonym for probability, specifically when 
the event in question an undesirable one. 

3. Experiment 1

In Experiment 1 (described on page 61 of Holt (2006)), a total of T = 40 species 
were assessed, of which 25 were definitively judged to be threats (denoted V) and 15 
definitively non-threats (denoted ¬V). These judgements were made independent of 
the scoring of risk components and represent the true status of each species. We will 
assume that the 40 species have in common some characteristics (of geography, 
taxonomy or ecology, for example) that make it a sensible idea for us to consider 
them as a natural group, and note that application of the results of the analysis in 
future should be restricted to species that share the same group characteristics. There 
are no problems with Experiment 1 as described by Holt (2006). The experiment is 
described here, in some detail, for comparison with Experiments 2 (Holt et al., 2006) 
and 3 (Holt, 2006).

The data presented comprise two separate (partial) frequency distributions of 
scores (for threats and non-threats) for a single risk component (so R = 1 in this 
example). For each species, scores for this risk component were coded on a 5-point 
scale (n=5, k=1…n, sk(v)=0…4), calibrated so that higher scores are associated with 
greater level of threat. Interpretations of the five points on the scale were as follows: 

k sk(v) Predicted level of threat
1 0 very low
2 1 low
3 2 neutral
4 3 high
5 4 very high

Thus, Experiment 1 is essentially designed to find a quantitative relationship 
between predicted level of threat and the true threat status. This relationship will then 
provide a basis for predicting the threat status of new species presented for risk 
assessment, for which the true status is unknown and any regulatory action must be 
taken on the basis of the predicted status. The data presented for Experiment 1 were as 
follows:

True status
k sk(v) Non-threat (¬V) Threat (V)
1 0 ? ?
2 1 ? ?
3 2 ? ?
4 3 ? ?
5 4 6 14

Sums 15 25
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3.1. Analysis of Experiment 1

From these data, we can calculate Pr(s5(v)|V) = 14/25 = 0.56 and Pr(s5(v)|¬V) = 
6/15 = 0.40 . We define the quantity Lk = Pr(sk(v)|V)/Pr(sk(v)|¬V) and note that Lk is an 
interval likelihood ratio (as discussed by, for example, Brown and Reeves (2003) and 
Sonis (1999)). Here, for k=5, Lk = 0.56/0.40 = 1.40. For brevity, Lk is often just 
referred to as a likelihood ratio. “The likelihood ratio [Lk = 0.56/0.40 = 1.40] means 
that it was 1.4 times as likely that [the risk component under consideration] would be 
given a score of ‘4’ if it was a threat” (Holt, 2006). Just to be clear on this, the 
likelihood ratio Lk = 1.40 (for k=5 in this example) means that scores of sk(v)=4 for 
the risk component under consideration are 1.4 times as likely to come from species 
that are threats than from species that are non-threats (see, for example, Sackett et al., 
1991). 

Together, the Lk (k=1…5) would constitute a discrete likelihood ratio function. 
The data presented by Holt (2006) do not allow the calculation of the rest of the 
function, but we can present the above data in abbreviated classification, as follows: 

True status
k sk(v) Non-threat (¬V) Threat (V)
1 0-3 9 11
2 4 6 14

Sums 15 25

In this abbreviated classification, Pr(s1(v)|V) = 11/25 = 0.44 and Pr(s1(v)|¬V) = 9/15 = 
0.60. Pr(s2(v)|V) = 14/25 = 0.56 and Pr(s2(v)|¬V) = 6/15 = 0.40. We can now calculate 
two likelihood ratios: 

L1 = Pr(s1(v)|V)/Pr(s1(v)|¬V) = 0.44/0.60 = 0.73
L2 = Pr(s2(v)|V)/Pr(s2(v)|¬V) = 0.56/0.40 = 1.40

The significance of these likelihood ratios is that they allow us to update the prior 
probability of threat (or non-threat) posed by a new alien species. Thus we can obtain 
the posterior probability of threat (or non-threat), having taken into account the 
evidence based on assessment of (in this case) a single risk component. This updating 
is made via Bayes’ theorem. We begin with two prior probabilities, Pr(V) and Pr(¬V) 
(such that Pr(V) + Pr(¬V) = 1). Following assessment of the evidence, we have four 
posterior probabilities: Pr(V|s2(v)) and Pr(¬V|s2(v)) (such that Pr(V|s2(v))+Pr(¬V|s2(v)) 
= 1), and Pr(¬V|s1(v)) and Pr(V|s1(v)) (such that Pr(¬V|s1(v))+Pr(V|s1(v)) = 1).

3.2. Results of Experiment 1

Using Bayes’ theorem, we can obtain:

Odds(V|s2(v)) = Odds(V) × L2

Odds(¬V|s2(v)) = Odds(¬V) × L2
-1

Odds(¬V|s1(v)) = Odds(¬V) × L1
-1

Odds(V|s1(v)) = Odds(V) × L1
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A value of Pr(V) is not supplied in the description of Experiment 1, but we can follow 
Holt (2006) and take Pr(V) = 0.5 (and so Pr(¬V) = 0.5), for the purpose of illustration. 
Prior probabilities are often based on historical data, but Holt (2006) justifies the 
adoption of Pr(V) = Pr(¬V) = 0.5 by noting that results obtained on this basis are 
considered to be relative, rather than absolute, measures of risk. Then Odds(V) = 
Odds(¬V) = 1 and: 

Odds(V|s2(v)) = 1.400
Odds(¬V|s2(v)) = 0.714
Odds(¬V|s1(v)) = 1.364
Odds(V|s1(v)) = 0.733

and then:

Pr(V|s2(v)) = 0.583
Pr(¬V|s2(v)) = 0.417
Pr(¬V|s1(v)) = 0.577
Pr(V|s1(v)) = 0.423

An alternative view would be possible if it were justifiable to regard the sample of 
species on which the analysis is based as representative of the population of species to 
which the results of the analysis will be applied. In that case we could take the relative 
frequencies of threat (V) and non-threat (¬V) as estimates of the prior probabilities. 
Then Pr(V) = 25/40 = 0.625 and Pr(¬V) = 15/40 = 0.375. Using Bayes’ theorem as 
above leads to the posterior probabilities:

Pr(V|s2(v)) = 0.70
Pr(¬V|s2(v)) = 0.30
Pr(¬V|s1(v)) = 0.45
Pr(V|s1(v)) = 0.55

3.3. Discussion of Experiment 1

Suppose that a new alien species is presented for risk assessment. It is not part of 
the experiment, so we do not know its true threat status, but we have the score sk(v) 
for the single risk component, and appropriate estimates of the prior probabilities 
Pr(V) and Pr(¬V). The posterior probabilities Pr(V|sk(v)) and Pr(¬V|sk(v)) (k=1,2) are 
then evidence-based revisions of prior probabilities. Finally, of course, for this kind of 
risk assessment scheme to become operational, we also need to have specified in 
advance what actions will follow once the risks (as posterior probabilities of threat 
status, given the evidence) have been identified by the analysis.     

Suppose that the analysis of data for a second risk component were available (so 
R=2). We need a bit more of the notation now: the two risk components are denoted 
Ri (i=1,2) and the kth likelihood ratio resulting from analysis of Ri is Lik (k=1…n). The 
risk component scores for a new alien species presented for risk assessment are s1k(v) 
for R1 and s2k(v) for R2 (k=1…n). For the set of scores {sik(v)}, Odds(V|{sik(v)}) = 
Odds(V) × L1k × L2k (see, for example, Go (1998)). In general, for a total of R risk 
components:
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Odds}{Odds (Equation 1)

in which the subscript k of each individual score sik(v) (i=1…R) (i.e., one score for 
each risk component analysed) tells us which one of the k=1…n likelihood ratios Lik

to include as one of the R terms in the product on the right-hand side of the equation 
(i.e., one likelihood ratio for each score). 

4. Experiment 2

Experiment 2 is described in Holt et al. (2006; Methodology, page 169; Results, 
Table 3). Data for a total of T = 6 species are presented (actually, data for 256 species 
were analysed but only those presented in Table 3 of Holt et al. (2006) are considered 
here). For each species, R = 7 risk components were scored. Scores were initially 
coded on a 3-point ordinal-categorical scale (n=3, k=1…n, sk(v)=1,2,3) which is 
calibrated so that higher scores are indicative of greater level of threat. 

If we compare Experiment 2 with Experiment 1, we see that in Experiment 2 the 
distribution of scores for a single risk component Ri is given in each column of the 
Table 1. However, this is a distribution over all Tj species. Unlike Experiment 1, there 
is no definitive judgement of the true threat (V) or non-threat (¬V) status of the 
species in Experiment 2: all are ‘potential quarantine pests’. We cannot, therefore, 
proceed by calculating likelihood ratios and using these to update prior probabilities 
to posterior probabilities, as in Experiment 1. 

Table 1.  Scores for risk components in Experiment 2.
Species Risk component Ri (i=1…7)
Tj (j=1…6) R1 R2 R3 R4 R5 R6 R7

Total 
score

Arithmetic 
mean

T1 2 3 2 1 1 1 1 11 1.57
T2 1 1 2 1 3 2 2 12 1.71
T3 2 2 2 1 3 1 1 12 1.71
T4 2 3 3 1 1 1 1 12 1.71
T5 2 2 3 1 3 1 1 13 1.86
T6 2 3 3 2 1 2 2 15 2.14

The design of Experiment 2 means that the basic data available for analysis of the 
level of threat are the frequency distributions of risk component scores for species. 
These scores must be combined in some way so as to provide an overall value that 
constitutes the predicted level of threat for use as a basis for risk assessment. In Table 
1, the total score (which in this case must lie between 7 and 21) for a species Tj is 
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. As Holt et al. (2006) point out, either this total score, or the arithmetic 

mean score   Rvs
R

i
ijk

1

, is often used to provide a basis for risk assessment. The 

premise is simple: a higher total or arithmetic mean score taken over the R risk 
components assessed is indicative of greater level of threat. When the number of risk 
components assessed is the same for all species (as in the Table 1), the arithmetic 
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mean score is only preferable to the total score as an overall value for the predicted 
level of threat because it is calibrated on the same scale as the individual risk 
components. When the number of risk components assessed varies between species, 
the arithmetic mean score is preferable because it allows easier comparisons of the 
overall predicted level of threat between species. 

Note that in using either the total score or the arithmetic mean score we have lost 
some information. Specifically, species T2, T3 and T4 all have the same total score and 
mean score, but the distribution of scores for species T4 is not the same as the 
distribution of scores for species T2 and T3.

4.1.  Analysis of Experiment 2 

The approach of Holt et al. (2006) to the analysis of Experiment 2 depends on the 
device of assigning (subjective) numerical odds of threat status to the 3-point ordinal-
categorical scale of scores (sk(v)=1,2,3) for risk components. Holt et al. (2006) write:

 “The assigning of scores in a risk assessment is essentially a relative process in 
that it is often possible to predict if the risk posed by one organism is greater or 
less than another, and so ordinal scoring is a reasonable way to express this 
understanding. If odds rather than scores are assigned directly, then the odds 
need only express an ordinal scale of risk in the same way as scores.”

 “Assigning odds instead of scores allows a more rigorous probabilistic treatment 
of the data…”

In order to assign numerical odds of threat status to designated points on the 
ordinal-categorical scale of scores, each score for risk component Ri for species Tj is 
regarded as an item of evidence, denoted here sijk(v) (k=1,2,3) Assigning odds, 
according to Holt et al. (2006), amounts to assessing how likely is this evidence given 
that the species in question is a threat. In conditional odds notation, this is 
Odds(sijk(v)|V).  

This reasoning is problematic. We are not actually given that any species is a 
threat (or non-threat) in this experiment. The introduction of conditionality implies 
that we have some additional information about an event that might influence our 
view of its odds (or probability). However, Experiment 2 only provides information 
on scores for risk components. In the present context, whether the scores for risk 
components take the form of values on a 3-point ordinal-categorical scale or values 
regarded as numerical odds, neither one provides any additional information about the 
other. We can replace the risk component scores by (subjective) numerical odds if we 
want, but in so doing we do not increase the information content of our data. Note that 
odds are assigned only at the three points for which scores are given, so the numerical 
odds are regarded as being on an ordinal scale. Essentially, the outcome of the 
exercise is the replacement of one ordinal scale (of scores) with another (of odds).   
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A species-specific constant Mj (Mj>1) is used in calculating numerical odds of 
threat status4. Values of Mj are not given in the description of Experiment 2, but it is 
straightforward to reverse engineer them from the data in Table 3 of Holt et al. (2006). 
However, Holt et al. (2006) do not offer an explanation for the differences between 
the values of Mj for the different species. Oddsijk(v) (k=1…n, n=3 in this case) is the 
odds of threat status applicable for risk component Ri (i=1…7 here) for species Tj

(j=1…6 here). Odds are assigned as follows5: when k = 1, Oddsijk(v) = 1/Mj; when 
k=2, Oddsijk(v) = 1; when k = 3, Oddsijk(v) = Mj. Table 1 of scores for risk component 
then becomes Table 2 of numerical odds for risk components.

Table 2.  Holt’s numerical odds for risk components in Experiment 2.

Species Risk component Ri (i=1…7)  


R

i
ijk v

1

Odds ‘probability’

Tj

(j=1…6)
Mj R1 R2 R3 R4 R5 R6 R7

T1 2.1624 1 Mj 1 Mj
−1 Mj

−1 Mj
−1 Mj

−1 0.0989 0.090
T2 2.3805 Mj

−1 Mj
−1 1 Mj

−1 Mj 1 1 0.1765 0.150
T3 2.3805 1 1 1 Mj

−1 Mj Mj
−1 Mj

−1 0.1765 0.150
T4 2.3805 1 Mj Mj Mj

−1 Mj
−1 Mj

−1 Mj
−1 0.1765 0.150

T5 2.1250 1 1 Mj Mj
−1 Mj Mj

−1 Mj
−1 0.4706 0.320

T6 2.5714 1 Mj Mj 1 Mj
−1 1 1 2.5714 0.720

We now consider steps 1, 2 and 3 of the procedure for deriving “a probability that 
the organism poses a risk, given the set of evidence.” (see page 168 and Appendix 1 
of Holt et al. (2006)). 

 Step 1. For each risk component, estimate the odds that the score sijk(v) occurs, 
given that the species is a threat. 

- Problem: actually, these odds cannot be conditional on threat status (as 
explained above).

 Step 2. The product of the odds over all risk components gives the combined odds 
that this set of scores {sijk(v)} will occur, given that the species is a threat.

- Problem: same problem as in Step 1.
- Problem: unfortunately, multiplying odds together in this way does not 

produce a ‘combined odds’ that is interpretable in a way that is consistent 
with the laws of probability. It is not clear how to interpret the quantity 

 


R

i
ijk v

1

Odds .

 Reverse the conditionality. 
- Problem: same problem as in Step 1.
- Actually, it is a good thing that there in no need to reverse the 

conditionality, because Equation 2 of Appendix 1 is incorrect (as a 
statement of Bayes’ theorem). The correct version is Equation 1 from 
section 3.3, above.

                                                
4 The term odds multiplier is used by Holt et al. (2006) for Mj, but this terminology is not a good idea 
as the term is used in a different way by bookmakers in the UK when settling multiple bets, and this 
usage will make an appearance in section 4.2.
5 Alternatively, note that log(Oddsijk(v)) = −log(Mj), 0, +log(Mj) for k = 1, 2, 3, respectively. 
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- Another bonus is that since we do not have to reverse the conditionality, 
we do not need to be concerned with making an assumption about the prior 
odds. No estimate of prior odds is needed to calculate   }{Pr vsijk .

 Step 3. Divide the combined odds by itself plus one. This converts the combined 
odds to a probability that the organism is a threat, given the set of scores {sijk(v)}.

- Problem: since the odds could not be conditional in the first place, this 
conditional probability cannot be derived from the data in Experiment 2.  

- Problem: since it is not clear how to interpret the quantity  


R

i
ijk v

1

Odds

(from Step 2), the resulting ‘probability’ 
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Odds1Odds  also has no clear interpretation.

- These problems notwithstanding, Table 2 above shows the derivation of 
‘probability’ as given in Table 3 of Holt et al. (2006).

Note that even if we just accept this ‘probability’ as some sort of summary of the 
numerical odds of threat status for a species, we still lose some information. 
Specifically, species T2, T3 and T4 all have the same ‘probability’, but the distribution 
of numerical odds for species T4 is not the same as the distribution for species T2 and 
T3.

4.2. How to combine odds

The easiest way to combine odds is to convert to probabilities, combine the 
probabilities as appropriate using the laws of probability, then convert back to odds at 
the end if required. Notwithstanding, if you really want to know how to combine 
odds, start by reading two articles by Fletcher (1994, 2004).

 We have values denoted  vijkOdds  corresponding to scores sijk(v) (k=1,2,3).  We 

want to find a combined value for the corresponding probabilities  vijkPr , over R

risk components (i=1…R), for the jth species Tj. This combined value is denoted 
  }{Pr vsijk .

 Step 1: calculate     
 v

v
v

ijk

ijk
ijk Odds1

Odds
Pr


  (i=1…R), for the jth species Tj.

 Step 2: calculate     



R

i
ijkijk vvs

1

Pr}{Pr . Thus we have calculated the 

probability of the observed set of scores {sijk(v)} for the jth species Tj. Of course, 
this is a subjective probability reflecting the subjective numerical odds of threat 
status assigned to the 3-point ordinal-categorical scale of scores for risk 
components, based on the species-specific constant Mj.
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 Alternatively, write  vijkOdds  as the bookmakers’ odds   1
Odds

1
to

vijk

 (actually, 

bookmakers odds are usually written as ‘integer to integer’, so, for example, if 

 
1624.2

1
Odds vijk , this is approximately ‘13 to 6’)6. 

 Calculate the corresponding decimal odds   1
Odds

1


vijk

.

 Calculate the odds multiplier  
 













R

i ijk v1

1
Odds

1
. The odds multiplier is used by 

bookmakers in the UK in the calculations for settling multiple bets. At this stage 

we could note that     }{Pr

1
1

Odds

1

1 vsv ijk

R

i ijk

















, so we have the desired 

probability as in Step 2 above.

 Otherwise, write the overall bookmakers’ odds as   111
Odds

1

1

to
v

R

i ijk

















.

 Then   

  11
Odds

1

1
}{Odds

1




















R

i ijk

ijk

v

vs .

 Finally,      
  }{Odds1

}{Odds
}{Pr

vs

vs
vs

ijk

ijk
ijk 

 .

4.3. Results of Experiment 2

The probabilities   }{Pr vsijk  are shown in the Table 3. These are calculated in 

accordance with the laws of probability, although of course the actual values are 
dependent on the choice of species-specific constant Mj. Actually, it makes some 

sense to calculate the geometric mean probability  R

R

i
ijk v

1

Pr . This will provide us 

with values that we can relate to the original probability scale for the  vijkPr  (we note 

that the   }{Pr vsijk  values could be very small if there were a large number of risk 

components). This also takes care of the problem that would arise when making 
comparisons between values of   }{Pr vsijk  if different numbers of risk components 

were scored for different species. 

                                                
6 This refers to the way that bookmakers in the UK write odds. 
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Table 3.  The probabilities   }{Pr vsijk  for species in Experiment 2.

Species Tj (j=1…6) Mj   }{Pr vsijk  R

R

i
ijk v

1

Pr  R

R

i
ijk vs

1

T1 2.1624 0.0017 0.4024 1.4262
T2 2.3805 0.0023 0.4193 1.5746
T3 2.3805 0.0023 0.4193 1.5746
T4 2.3805 0.0019 0.4085 1.5112
T5 2.1250 0.0038 0.4509 1.6685
T6 2.5714 0.0091 0.5108 2.0339

What have we achieved? The analysis is now mathematically correct, which is a 
good thing, but the manipulation of the original data in the form of scores to provide 
numerical odds, and subsequent calculation of ‘probability’ achieves nothing. For the 
data presented in Experiment 2, we would probably be better off just calculating the 

geometric mean score for each species  R

R

i
ijk vs

1

 (values are given in the Table 3 

above). Compared to the ‘probability’ calculated by Holt et al. (2006), the geometric 
mean score for each species:

 is mathematically correct;
 is simpler to calculate;
 is more transparent (no subjective numerical odds based on an unexplained 

species-specific constant are required);
 is interpretable directly on the original ordinal-categorical scale of scores;

 preserves more information from the original data. Note that the  R

R

i
ijk vs

1

(also the   }{Pr vsijk  and  R

R

i
ijk v

1

Pr ) capture a difference between species 

T4 and species T2 and T3. Recall that species T2, T3 and T4 all have the same 
total score, arithmetic mean score and ‘probability’ as calculated by Holt et al. 
(2006), but the distribution of scores for species T4 is not the same as the 
distribution of scores for species T2 and T3. 

5. Experiment 3

Experiment 3 is described in Holt (2006; Methodology, pages 59-60; Results, 
Figure 1 and Tables 2 and 3). The design is rather complicated. Data for a total of T = 
4 species are presented (see Figure 1 and Table 3 of Holt (2006)). For each species, a 
number of risk components were scored, but not all risk components were scored for 
each species. A particular species is denoted by the subscript j, as Tj. For the jth 
species (j=1…4), the total number of risk components scored is denoted Rj. Here, 
R1=47, R2=45, R3=43 and R4=347. Where necessary, we can refer to a particular risk 
component for a particular species as Rij (i=1…Rj), but the risk components are not 
identified individually in the data set. The level of threat (v) is indicated by the score 

                                                
7 Values read from Fig. 1 of Holt (2006).
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s(v), which is coded on a 5-point ordinal-categorical scale, using a subscript k
(k=1…n, n=5) to denote a particular score, as sk(v) (sk(v)=0…4). The scale is 
calibrated so that higher scores are indicative of greater level of threat. Thus we can 
refer to the particular score given to a particular species for a particular risk 
component, where necessary, as sijk(v). The data presented comprise frequency 
distributions of risk component scores for each species.

Of the 4 species, one was definitively judged to be low threat (denoted V1), one 
was definitively medium threat (denoted V2) and two were definitively high threat
(denoted here V3). These judgements were made by assessors, independent of the 
scoring of risk components, and represent the true status of each species.

5.1. Analysis of Experiment 3

Holt’s (2006) approach to the analysis of Experiment 3 essentially ignores the data 
on the true threat status of each species and proceeds along the lines of the analysis of 
Experiment 2 (where such data were unavailable). Here, we will first examine Holt’s 
(2006) approach, then look at an approach that incorporates the data on true threat 
status. 

Holt (2006) first assigns a probability  vkPr  to each point on the 5-point ordinal-

categorical scale of scores, such that       cvsvsv kk 35.0Pr  . The value of c, an 

empirical conversion parameter, was taken to be c = 0.017 (a constant), and s3(v) is 
the point on the scale of risk component scores at which the predicted level of threat is 

neutral. Then    
 v

v
v

k

k
k Pr1

Pr
Odds


  and we have: 

k sk(v) Predicted level of threat Prk(v) Oddsk(v)
1 0 very low 0.466 0.873
2 1 low 0.483 0.934
3 2 neutral 0.500 1.000
4 3 high 0.517 1.070
5 4 very high 0.534 1.146

Holt (2006) describes a procedure for deriving “the conditional probability that a 
species is a threat given the set of scores obtained.” 
 Holt (2006) regards the probability  vijkPr  as a conditional probability 

  VvsijkPr , i.e., the probability of score sijk(v) for a particular risk component for 

a particular species, given that the species in question is a threat (denoted here V).
- Problem: actually, these odds cannot be conditional. Conditionality can’t 

just be assigned to a probability according to how you regard it; 
conditionality represents additional information (see section 4.1). In fact, 
we do have this additional information here, in the form of the judgements 
of threat status made by assessors. But those are not being called on by 
Holt (2006) in this analysis. 
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 Holt (2006) then calculates the conditional probability   Vvsijk Pr  of score 

sijk(v) for a particular risk component for a particular species given that the species 
in question is not a threat (denoted here ¬V) by assuming that 

     VvsVvs ijkijk Pr1Pr  . 

- Problem: there is no basis in the laws of probability for this assumption. 
The notations ‘|V’ and ‘|¬V’ refer us to two different probability 
distributions (see the analysis of Experiment 1 (section 3.1) for a 
numerical example). Think of it like this: you can’t regard the same score 
as being conditional on the species being a threat, then as being conditional 
on the species being a non-threat. The species is either one or the other; 
you can’t have it both ways.  

- Problem: here Holt (2006) classifies species as either a threat or a non-
threat, when actually there are 3 categories of threat status (low, medium, 
high; see Table 3 of Holt (2006)).

 For each risk component, Holt (2006, Equation 2) calculates interval likelihood 
ratios      VvsVvs ijkijk PrPr  (k=1…5) and says that these can be thought of 

as the conditional odds that a risk component will have a particular score, given 
that the species in question is a threat. 

- Problem:      VvsVvs ijkijk PrPr  is indeed the appropriate formula for 

calculation of interval likelihood ratios (see section 3.1). However, these 
can be thought of as conditional odds only because of the way that the 
component conditional probabilities are (wrongly) defined here. There are 
two errors (detailed above): first, conditionality cannot just be assigned as 
described by Holt (2006); second, calculation of   Vvsijk Pr by Holt 

(2006) is based on an invalid assumption.
 Next Holt (2006) finds, separately for each species Tj, the product of the Rj values 

of      VvsVvs ijkijk PrPr  (each risk component contributes one value, 

depending on the score sijk). 
- Problem: in Holt’s (2006) Equation 3, the product is taken over i=1…n

(i.e., the range of scores) rather than (as it should be) i=1…Rj (i.e., the 
range of risk components for each species).

- Problem: Holt (2006) claims that this product is the combined conditional 
odds Odds({sijk(v)}|V), but as in the analysis of Experiment 2 (see section 
4.1), multiplying odds together in this way does not produce a ‘combined 
odds’ that is interpretable in a way that is consistent with the laws of 
probability. 

 Holt (2006) needs to reverse the conditionality to obtain Odds(V|{sijk(v)}).  
- Problem: as discussed above, the odds as described by Holt (2006) cannot 

be conditional. As with Experiment 2, it is a good thing that there in no 
need to reverse the conditionality, because here Equation 4 in Holt (2006) 
is incorrect (as a statement of Bayes’ theorem). The correct version is 
Equation 1 from section 3.3.

- And again as in Experiment 2, it is a bonus that since we do not have to 
reverse the conditionality, since then we do not need to be concerned with 
making an assumption about the prior odds. No estimate of prior odds is 
needed to calculate   }{Pr vsijk .
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 Holt (2006) converts the combined conditional odds Odds(V|{sijk(v)}) to the 
corresponding conditional probability that the organism is a threat, given the set of 
scores obtained.

- Problem: since (at least in the way the data in Experiment 3 were analysed 
by Holt (2006)) the odds could not be conditional in the first place, this 
conditional probability cannot be derived as shown by Holt (2006). 

- Problem: since it is not clear how to interpret the quantity  


jR

i
ijk v

1

Odds , 

the resulting ‘probability’    















jj R

i
ijk

R

i
ijk vv

11

Odds1Odds  also has no 

clear interpretation.

5.2. Results of Experiment 3

All these problems notwithstanding, Table 4 below shows the ‘probability’ for 
each species, as given in Table 2 of Holt (2006). Holt (2006) does add the caveat that 
these are not true probabilities, but that they provide a relative measure of risk in the 
range 0 – 1. However, given the problems in the analysis leading to Holt’s (2006) 
‘probability’, it is quite difficult to see what value this measure can have as a basis for 
risk assessment. Also in Table 4, for completeness, is the probability 

    



jR

i
ijkijk vvs

1

Pr}{Pr , i.e., the combined probability of the set of scores sijk(v) 

calculated according to the laws of probability. Finally, the geometric mean 

probability  j

j

R
R

i
ijk v

1

Pr  provides us with values that we can relate to the probability 

scale that was attached to the original ordinal-categorical scale of scores (shown in 
Table 3 above). 

Table 4.  The probabilities   }{Pr vsijk  for species in Experiment 3.

Species Tj (j=1…4) Rj ‘probability’   }{Pr vsijk  j

j

R
R

i
ijk v

1

Pr

T1 47 0.855 1.640×10−14 0.509
T2 45 0.892 7.737×10−14 0.511
T3 43 0.584 1.282×10−13 0.501
T4 34 0.306 3.705×10−11 0.493

We have still have not achieved anything that is demonstrably better than just 
calculating the geometric mean score for each species (as outlined in section 4.3). 
Unfortunately, if the adopted scale of scores includes ‘0’ (as in Experiment 3) (and 
there are zeros in the data) then the geometric mean score will also be zero. However, 
this difficulty could easily be overcome by adjusting the adopted scale of scores from 
0,1,2,3,4 to 1,2,3,4,5. 
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5.3. Conditional probabilities in Experiment 3

Since there are data on the true threat status of the species (in Table 3 of Holt 
(2006)) as well as the predicted status, we can calculate conditional probabilities. The
calculation is given here only for the purpose of illustration. It is meant to be applied 
to situations in which there is a representative sample of species, such that the overall 
frequency distribution of species among the categories of true threat status reflects the 
corresponding frequency distribution in the population of interest (Holt et al. (2006), 
where data for 256 potential quarantine pests were analysed, may be such a case). 
Here we will assume that all risk components carry equal weight. 

Table 5.  Frequencies for risk scores in Experiment 3.
True threat status

Predicted level of threat 
Low (V1) Medium (V2) High (V3)

Score (species T4) (species T3) (species T1, T2) Row sum
0  (very low) 12 7 7 26
1  (low) 3 9 9 21
2  (neutral) 8 10 26 44
3  (high) 7 6 20 33
4  (very high) 4 11 30 45
Column sum 34 43 92 169

Table 6.  Probabilities for risk scores in Experiment 3.
True threat status

Predicted level of threat 
Low (V1) Medium (V2) High (V3)

Score (species T4) (species T3) (species T1, T2) Row sum
0  (very low) 0.0710 0.0414 0.0414 0.1538
1  (low) 0.0178 0.0533 0.0533 0.1243
2  (neutral) 0.0473 0.0592 0.1538 0.2604
3  (high) 0.0414 0.0355 0.1183 0.1953
4  (very high) 0.0237 0.0651 0.1775 0.2663
Column sum 0.2012 0.2544 0.5444 1.0000

Before we make a prediction, all we know are the column sums: the relative 
frequencies of low (V1), medium (V2) and high (V3) threat status among the species 
assessed. These are taken as the prior probabilities (Pr(V1) = 0.2012, Pr(V2) = 0.2544, 
and Pr(V3) = 0.5444). Suppose now that the predicted level of threat is very high. This 
prediction changes the prior probabilities to posterior probabilities Pr(V1|very high) = 
0.0237/0.2263 = 0.0889, Pr(V2|very high) = 0.0651/0.2663 = 0.2444, and Pr(V3|very 
high) = 0.1775/0.2663 = 0.6667. We see that the effect of the prediction that the level 
of threat is very high for a species is to increase the probability that the species is high 
threat. The probability that the species is medium threat is little changed by the 
prediction that the level of threat is very high, while the probability that the species is 
low threat is reduced. 
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5.4. Experiment 1 revisited

Note that we can analyse Experiment 1 in the same way. From the frequencies 
given in section 3.1, we can calculate the corresponding probabilities (Table 7).

Table 7.  Probabilities for risk scores in Experiment 1.

Predicted level of threat True threat status

Score sk(v) Low (¬V) High (V) Row sum

0-3  (k=1) 0.225 0.275 0.5
4      (k=2) 0.150 0.350 0.5
Column sum 0.375 0.625 1.0

The prior probabilities are Pr(V) = 25/40 = 0.625 and Pr(¬V) = 15/40 = 0.375. The 
posterior probabilities are then:

Pr(V|s2(v)) = 0.35/0.5 = 0.70
Pr(¬V|s2(v)) = 0.15/0.5 = 0.30
Pr(¬V|s1(v)) = 0.225/0.5 = 0.45
Pr(V|s1(v)) = 0.275/0.5 = 0.55

as in section 3.2.
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