
principle be used to generate Hicksian welfare
measures for changes in the prices of the goods
whose demands are explicitly modeled.

To illustrate the potential usefulness of the
incomplete demand system framework, consider
a common empirical problem in the outdoor
recreation literature [see e.g., Herriges and Kling
(1999) for a review]. Analysts are often interested
in valuing the access to a single recreation site
that is located in a larger geographic region con-
taining several sites. The varying proximity of
individuals to these sites, as well as differences in
each individual’s opportunity cost of time, suggest
that the sites’ implicit prices or travel costs vary
across the target population. Data limitations
often imply that the analyst only has trip data for
the site of interest. This combination of preference
linkages, price variations, and data limitations
suggest that employing separability assumptions
or the Hicksian composite commodity theorem in
a demand model for the relevant site would be
inappropriate. However, the insights of Epstein
and LaFrance and Hanemann suggest that the
incomplete demand system approach can be used
to estimate a consistent demand specification and
Hicksian welfare measures for the site of interest.
In fact, several authors (e.g., Gum and Martin
1975, Hof and King 1982, Caulkins, Bishop, and
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Incomplete Demand Systems, Corner
Solutions, and Welfare Measurement

Roger H. von Haefen

This paper demonstrates how corner solutions raise difficulties for the specification, estimation,
and use of incomplete demand systems for welfare measurement with disaggregate
consumption data, as is common in the outdoor recreation literature. A simple analytical model
of consumer behavior is used to elucidate the potential biases for welfare measurement arising
from modeling the demand for M goods as a function of M + N prices (N > 1) and income when
individuals do not consume all goods in strictly positive quantities. Results from a Monte
Carlo experiment suggest that these biases can be substantial for large-scale policy shocks
when prices are highly correlated.

Key Words: demand systems, welfare analysis, corner solutions, microeconometrics

Applied researchers are often interested in
developing empirical demand models for a subset
of goods entering preferences. A practical issue
arising in these situations is the treatment of
the remaining goods whose demands are not
explicitly modeled. The dominant strategies for
resolving this issue in applied microeconomic
analysis involve either separability or Hicksian
composite commodity assumptions. Both of these
approaches imply restrictions on preferences or
prices that may not hold empirically. When they
do not, Epstein (1982) has proposed an incom-
plete demand system strategy in which the analyst
models the demand for the goods of interest as
functions of their own prices, the remaining goods
prices, and income. LaFrance and Hanemann
(1989) prove that if the incomplete demand
system satisfies a set of regularity conditions
analogous to the classical integrability conditions
for complete demand systems, it is consistent
with a rational preference ordering and can in
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calculation techniques have been developed
(e.g., Wales and Woodland 1983, Lee and Pitt
1986, von Haefen, Phaneuf, and Parsons 2004),
their implications have not been fully appreciated
in the context of incomplete demand systems.
The main thesis of this paper is that when corner
solutions are present and market and virtual prices
diverge, consistent estimation of incomplete
demand systems is far more complex than
what current empirical practice suggests. In fact,
no econometrically feasible approach for consis-
tently estimating an incomplete demand system
currently exists in this context, and the hurdles
that must be overcome are substantial. This reality
suggests that, barring significant econometric
innovations, the only empirically viable and
theoretically consistent RUM-based approach to
recovering demand parameters for a subset of
goods entering preferences with micro data is
complete demand system estimation.

The paper begins by developing a simple
analytical model of consumer behavior to high-
light the critical role virtual prices play in applied
demand analysis when corner solutions are
present. The model is used to suggest: 1) the
potential biases arising from the common empir-
ical practice of estimating an incomplete demand
system as a function of income and all market
prices; 2) the significant and complex hurdles
that must be overcome for consistent estimation;
and 3) additional biases arising when using
misspecified incomplete demand systems for wel-
fare measurement.

A Monte Carlo experiment is subsequently
used to investigate whether the difficulties raised
with the standard approach to estimating incom-
plete demand systems in the existing outdoor
recreation literature imply significantly biased
welfare estimates. A five-good complete demand
system is developed and calibrated using para-
meter estimates, descriptive statistics, and
empirical results reported in Phaneuf (1999). Five
hundred simulated data sets are generated from
the model and used to estimate an incomplete
demand model for a single good that employs
observed market prices in place of the behav-
iorally relevant virtual prices for the remaining
goods. A comparison of welfare estimates from
the incomplete demand system specification, with
estimates generated from the assumed model for

Bouwes 1985, Rosenthal 1987, Kling 1989, Smith
1993, Ozuna and Gomez 1994, Gurmu and
Trivedi 1996, Eom and Larson 2006, Phaneuf,
Carbone, and Herriges 2009) have suggested or
empirically implemented demand specifications
that fall under the rubric of incomplete demand
system approaches. Boardman et al. (2006) sum-
marize the conventional wisdom in this literature:

“Estimating such a (travel cost) model is
conceptually straightforward. First, select a
random sample of households within the
market area of the site. These are the poten-
tial visitors. Second, survey these households
to determine their number of visits to the site
over some period of time, all of their costs
from visiting the site, their costs of visiting
substitute sites, their incomes, and their other
characteristics that may affect their demand.
Third, specify a functional form for the
demand schedule and estimate it using the
survey data.” (p. 354)

This paper raises difficulties with the specifica-
tion, estimation, and use of the incomplete
demand system framework for welfare measure-
ment with disaggregate consumption data. An
empirical regularity with individual or household
level data is that consumption levels for the goods
of interest and their related substitutes and com-
plements are a mixture of interior (i.e., strictly
positive valued) and corner (zero) solutions.
In traditional microeconometric [i.e., random
utility maximization (RUM) models of consumer
behavior], Pudney (1989) and Phaneuf, Kling,
and Herriges (1999) point out that observable
market prices for unconsumed goods do not enter
the remaining goods’ demand functions. Rather,
economic theory suggests that virtual prices
(Neary and Roberts 1980), i.e., the prices that
would drive their demands to zero, influence
choice. These virtual prices are bounded from
above by their corresponding market prices and
depend in general on the structural parameters and
unobserved heterogeneity entering preferences,
income, and the prices of goods consumed in
strictly positive quantities. Consequently, they are
unobservable and endogenous from the analyst’s
perspective. Although the implications of corner
solutions for the estimation of complete demand
systems are now well known (see e.g., Pudney
1989), and consistent estimation and welfare
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parameters, Ω, and unobserved heterogeneity,
εε, known to the individual but unobserved and
random from the analyst’s perspective. For com-
pactness these arguments are suppressed in this
section. The partitioning of goods into x and z
subgroups reflects the analyst’s interest in the
welfare implications of price or access changes
for the goods in x alone and/or a lack of con-
sumption data for z. To allow for corner solutions,
all goods in x and z are assumed nonessential, but
to minimize excessive notation, zN is assumed
essential, i.e.,

(2)

The individual behaves as if she maximizes (1)
with respect to her budget constraint,

(3)

where p, q, and y are exogenous prices and
income normalized by the price of zN. The opti-
mal consumer demand functions can be solved for
by maximizing the following Lagrangian:

where λ, δ, and µ are a scalar and two vectors 
of Lagrange multipliers. Because a strictly
increasing utility function implies budget 
exhaustion, the implied Kuhn-Tucker conditions,
in addition to equations (2) and (3) above, are:
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where λ is the marginal utility of income.
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two alternative policy scenarios, suggests that 
the bias introduced by using market prices in
place of virtual prices is relatively small (less than
4 percent) for small price changes regardless of
the correlation structure among the good’s 
own price and substitute prices. However, for 
scenarios involving large price changes such as
the elimination of a good, the bias can be as large
as 35 percent if the good’s own price is strongly
correlated with substitute prices.

At present, econometric techniques for address-
ing the substantial challenges of consistent
incomplete demand system estimation have not
been developed and thus remain important but
challenging areas for future applied research.
Therefore, one of this paper’s main implications
is that the only fully consistent option for consis-
tently accounting for interior and corner solutions
in applied demand analysis is to estimate com-
plete demand systems. 

Analytical Model

This section uses a simple analytical model of
consumer behavior to clarify the difficulties 
arising from the improper use of market prices 
in applied demand analysis when corner solutions
are present. In what follows, the implications of
corner solutions for estimating and calculating
welfare measures from incomplete demand 
systems are emphasized. Unless otherwise noted,
however, these implications apply equally to 
complete demand systems (Pudney 1989 and 
Phaneuf, Kling, and Herriges 1998) although 
consistent estimation and welfare calculation
techniques have been developed to address these
difficulties in the latter context. A maintained
assumption throughout the section is that 
consumer preferences for a set of M + N (M > 0,
N > 1) goods can be represented by a smooth,
continuously differentiable, strictly increasing,
and strictly quasi-concave utility function,

(1)
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an (N-1)-dimensional vector, and a scalar of
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econometric models of consumer choice, individ-
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well as the Lagrange multipliers, λ* > 0, δ* ≥ 0,
and µ* ≥ 0. Inserting these optimal values into 
(4) and (5) allows one to define the Marshallian
“virtual” prices (Neary and Roberts 1980) for
each of the (M+N–1) goods:

(7)

(8 )

The structure of equations (7) and (8) suggest
several points. are simultaneously
determined with [x*,z*,zN] and functions of the
same exogenous factors—income, other good’s
prices, preference parameters, and unobserved
heterogeneity. Unlike [x*,z*,zN], however, they
are unobservable from the analyst’s perspective
when they diverge from their corresponding 
market prices. From (6), these divergences occur
whenever are strictly positive, 
i.e., whenever equal zero.

Using virtual prices, one can recast the 
consumer’s problem as the maximization of 
(1) with respect to the following notional budget
constraint:

(9)

where are M and (N-1)-dimensional
vectors of quasi-fixed virtual prices implied by (7)
and (8), respectively. Approaching the constrained
optimization problem in this way suggests that 
optimal demand can be written as functions of all
virtual prices and income, i.e.,
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With the analytical model derived above as
background, it is possible to critically assess the
incomplete demand system specifications that
have been suggested or used in the outdoor recre-
ation literature (e.g., Gum and Martin 1975, Hof
and King 1982, Caulkins, Bishop, and Bouwes
1985, Rosenthal 1987, Kling 1989, Smith 1993,
Ozuna and Gomez 1994, Gurmu and Trivedi
1996, Eom and Larson 2006, Phaneuf, Carbone,
and Herriges 2009). For concreteness, a com-
monly used empirical specification—the single
equation censored regression model (i.e., M = 1)
where consumption is modeled as a linear and
additive function of its own price, N–1 other
goods’ prices, and income—is considered, i.e.,

(12)

where are estimable struc-
tural parameters and ε1 captures unobserved 
heterogeneity. In general, estimating equation 
(12) within the censored regression framework
will not produce consistent parameter estimates.
As suggested by the structure of equations (7) and
(10), the estimates will only be consistent if 
interior solutions for the N–1 goods are present
for all individuals in the target population. A 
priori, one cannot determine the direction or 
magnitude of bias in the estimated parameters 
because the analyst is in essence employing a 
fundamentally misspecified demand model. 

A comparison of equations (10) and (12) 
might suggest a relatively simple approach to 
consistently estimate the demand parameters for
x1—estimate (12) with replacing q through-
out. Such a strategy is problematic for at least two
reasons. Recall that virtual prices are latent and
probabilistic from the analyst’s perspective,
implying that using in (12) is an unobserved
random variable. With strong if not heroic
assumptions about the structure of demand and
the distribution of unobserved heterogeneity,
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however, the analyst could construct unbiased
predictions for that can be used in (12). Even
if generating these regressors is possible, exploit-
ing them in demand estimation would imply a 
complex multivariate errors-in-variables problem.
And to the degree that the estimation equation 
is nonlinear or nonadditive in virtual prices, the
difficulty of the errors-in-variables problem
would be even more pronounced.

A second set of complications arises from the
fact that demand and virtual prices are simultane-
ously determined. As a result, and ε1 would be
correlated, implying that the (predicted) virtual
prices would require instruments. These instru-
ments would have to come from outside the set 
of exogenous factors that directly enter the
demand system (prices, income, as well as any
demographic shifters). With enough assumptions,
it may be possible to predict virtual prices and
account for the simultaneity and errors-
in-variables problems, but the consistency of the
estimated parameters, however, would hinge on
several assumptions that are highly suspect if not
implausible. Thus, it seems reasonable to con-
clude that recovering credible parameter estimates
from a single- or multiple-equation incomplete
demand system is extremely if not prohibitively
difficult when corner solutions are present.

In addition to the estimation problems associ-
ated with (12), further difficulties arise with
welfare measurement. Returning to the single
equation context, consider a policy scenario
involving a price increase from p′′1 to p1′′′′. If
income effects are absent, it is well known that
the Marshallian and Hicksian demands for x1 are
equivalent and the integral from p′′1 to p1′′′′ of either
represents the Hicksian compensating variation
(CV), i.e.,

(13)

assuming x1 > 0 is strictly positive before and after
the price change. It is important to recognize once
again that the virtual prices for the (N–1) other
goods are endogenous functions of p1. As a result,
the structure of (13) suggests that as p1 rises from
p′′1 to p1′′′′, these virtual prices may endogenously
change. If the analyst naively uses the demand
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specification in (12) to construct welfare meas-
ures, however, she will miss these feedback link-
ages between p1 and the other goods’ virtual
prices.

There is a final difficulty with using (12) when
estimating either the total Hicksian value of x1
or a relatively large price change that drives the
demand for x1 to zero for some individuals in 
the relevant population. In these situations, the
Hicksian consumer surplus is defined as the 
integral from the current market price to the 
Hicksian “choke” price, , i.e., the price 
that drives Hicksian demand for x1 to zero. It is
important to recognize that is endogenously
determined along with the Hicksian demands and
virtual prices. Therefore, the choke price implied
by (12) that ignores this simultaneity may be very
different from the choke price that does not. When
this occurs, the bounds of the integral that define
the Hicksian consumer surplus will not be 
properly specified and the integrity of welfare
estimates will be further compromised.

Collectively, what these potential sources of
bias suggest is that, unless the analyst knows the
structure of the virtual price functions for the
remaining goods, consistent welfare measurement
is not feasible even when consistent estimation of
the structural demand parameters is. This finding
casts further doubt on the usefulness of the 
incomplete demand system framework for
applied demand analysis with disaggregate 
consumption data. As noted above, consistent
econometric and welfare calculation techniques
have been developed to account for corner 
solutions in the context of complete demand 
systems (Wales and Woodland 1983, Lee and Pitt
1986, von Haefen, Phaneuf, and Parsons 2004,
von Haefen 2007). Thus, the only theoretically
consistent approach for recovering welfare 
measures affecting a subset of goods’ prices at
present is through the complete demand system
framework. More will be said on this topic in the
paper’s conclusion. 

Although the above discussion suggests a num-
ber of potential biases with the standard approach
to estimating and constructing welfare measures
from incomplete demand systems, their combined
effects are uncertain. It is possible, albeit unlikely,
that they do not substantially influence derived
welfare measures. In the next section, a Monte
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tions and procedures used to fit Phaneuf’s homo-
thetic Indirect Translog model for four Wisconsin
outdoor recreation sites to the above framework.
These four goods and a Hicksian composite are
partitioned into disjoint sets such that only the
demand for a single good is explicitly modeled
(and, by implication, N = 1 and M = 4). A poten-
tially significant piece of information for this
application, not reported in Phaneuf, is the corre-
lation structure among implicit prices (i.e., travel
costs) for the four sites. In related work, Kling
(1989) identified the importance of the correla-
tion structure among prices for estimation and
welfare calculation in an incomplete demand 
system framework but did not consider the added 
complexity raised by corner solutions. To evalu-
ate the sensitivity of derived welfare measures to
alternative correlation structures, five alternative
correlation specifications are developed. Because
all prices are assumed to be log-normally distrib-
uted, the five specifications assume that the
correlation coefficient between lnp1 and lnqj
equals r for j = 1,2,3, and that the correlation 
coefficient between lnqi and lnqj equals zero, ,
j = 1,2,3; i ≠ j. Across the five specifications, 

r ranges from -0.5 to +0.5 in 0.25 increments. 
Table 2 includes descriptive statistics from the

calibrated model. They suggest that the simulated
sample’s average prices and participation rates
match the observed behavior in the Wisconsin
data set reasonably well. Table 2 also suggests
that the induced correlations between (p1, qj), 
j = 1,2,3, resulting from the assumed correlations
between (lnp1, lnqj), j = 1,2,3, range from roughly
-0.30 to +0.40 across the five specifications. 

These five calibrated models were then used to
generate estimates of the sample’s unconditional
expected Hicksian consumer surplus arising from
a $20 price increase and the loss of the first good.
These estimates were generated by a simulation
algorithm with 500 replications and are used to
benchmark the subsequent analysis. Table 3 out-
lines the main components of the algorithm. All
components were coded in Stata 10.0 (Stata Data
Analysis and Statistical Software, StataCorp LP,
College Station, Texas). A copy of the source code
can be obtained from the author upon request.

To evaluate the welfare implications of incom-
plete demand systems specified as functions of
market prices when corner solutions are present,

i

Carlo experiment is used to illustrate that the net
bias may in fact be substantial for large price
changes when own and substitute good prices are
highly correlated. This finding is of course condi-
tional on the assumed structure of consumer
preferences, the judgments made in calibrating
the simulation experiment, and the policy 
scenarios considered. Nevertheless, it illustrates
the critical role of virtual price functions in the
construction of welfare measures from incomplete
demand systems

Monte Carlo Experiment

The Monte Carlo experiment employs the fol-
lowing quasi-linear demand system specification
considered by Bockstael, Hanemann, and Strand
(1986):

(14)

(15)

where z*
N is strictly positive by assumption. The 

corresponding indirect utility function can be 
written compactly using vector notation as:

(16)

where α and Φ are a vector and matrix of all 
constant terms and (Hicksian) own and cross price
effects in (14) and (15), respectively; ε is the
(N+M-1)-dimensional vector of unobserved 
determinants of choice; and is the concatena-
tion of the vectors of the endogenous
virtual price functions. The above specification is
homogenous of degree zero in prices and income
and satisfies the adding-up condition. To insure
economic consistency, Φ must be symmetric (i.e.,
Φ = ΦT) and negative semi-definite (the eigen-
values of Φ must be non-positive).

To calibrate (14) and (15), the Monte Carlo
experiment employs parameter estimates, descrip-
tive statistics, and empirical results reported in
Phaneuf (1999). Table 1 documents the assump-
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Table 3. Description of Simulation Algorithm for Constructing Hicksian Consumer Surpluses 
              from the Specified Model

1. Beginning with 1st individual, simulate  using a pseudo random number generator.

2. Solve for the virtual prices ( ) and demands ( ) for the baseline state.  

A. Begin by solving for the implied notional demands conditional on all market prices.

B. If all demands are nonnegative, proceed to step 3.  
C. Otherwise, partition all commodities into groups with strictly negative (hereafter group 1) and nonnegative 

demands (group 2). For the goods with negative demands, solve for the virtual prices that drive their demands 
to zero [see Phaneuf (1999) for details].  

D. Test whether all calculated virtual prices are less than or equal to their market prices. If not, place the subset of 
goods with virtual prices greater than their market prices in group 2 and the remainder in group 1. For the goods 
in group 1, solve for the virtual prices that drive their demands to zero. Repeat until all goods in group 1 have 
virtual prices less than or equal to their market prices.  

E. Using the virtual prices constructed from step D and the market prices for the goods from group 2, recalculate 
the implied demands for all goods. Go to step B above.

3.

C. Partition all commodities into groups with strictly negative (hereafter group 1) and nonnegative demands (group 2). 
For the loss of x1 scenario, place x1 in group 1 regardless. For the remaining goods with negative demands, solve 
for the virtual prices that drive their demands to zero [see Phaneuf (1999) for details].  

D. Test whether all calculated virtual prices are less than or equal to their market prices. If not, place the subset of 
goods with virtual prices greater than their market prices in group 2 and the remainder in group 1. For the site loss 
scenario, always place x1 in group 1. For the goods in group 1, solve for the virtual prices that drive their demands 
to zero. Repeat until all goods in group 1 have virtual prices less than or equal to their market prices.  

E. Using the virtual prices constructed from step D and the market prices for the goods from group 2, recalculate 
the implied demands for all goods. Go to step B above.

4. Conditional on ( 1, 1, 2, 3 ) , the Hicksian consumer surplus is:

5. Repeat steps 1-4 500 times. The mean across the 500 simulations is an unbiased point estimate for the unconditional
expectation for the individual’s Hicksian consumer surplus.

6. Repeat steps 1-5 for all 500 simulated observations. The mean across the 500 mean Hicksian consumer surpluses is 
the unbiased estimate of the sample’s unconditional expected Hicksian consumer surplus.

Solve for the virtual prices ( ) and demands ( ) for the changed state.

A. Begin by solving for the implied notional demands conditional on all market prices.

B. If all demands are nonnegative and the analyst is considering the $20 price increase scenario, proceed to step 4.

CS = .

a second simulation algorithm was developed. 
As Table 4 describes, the demands for all goods
were first simulated using the correctly specified
structural model. The simulated demand for x1
was then modeled as a linear function of the four
goods’ normalized prices and a constant term [i.e.,
the same structure as (15) except for market prices
replacing virtual prices]. To account for the
empirical regularity that some individuals in the

simulated sample do not consume x1, a censored
regression model with a normal distribution for
the unobserved determinants of choice was
employed. The parameter estimates from the 
censored regression model were then used to 
construct welfare estimates for the three policies.
These procedures were replicated 500 times and
the results are reported in Table 5.
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Table 4. Description of Simulation Algorithm for Constructing Hicksian Consumer  
               Surplus Estimates from the Misspecified Econometric Model

1. Generate simulated demands for all four sites using the correctly specified model, the simulated prices, 
and steps 1 and 2 in Table 3. 

Save the coefficient (

otherwise.

) and scale (s) parameter estimates.

3. Beginning with the first individual, simulate 1 using a pseudo random number generator and the N (0, s 2 ) distribution. 
Using the equations from step 2 above with the estimated parameter values, calculate the demand for x1 at , .

4. If , the Hicksian consumer surplus for both policy scenarios is 0. Go to step 7.

5. If , use the equations from step 2 above with the estimated parameter values, calculate 
the demand for x1 at , . For the loss of x1  scenario,  must equal zero. Conditional on , 
solve for the corresponding virtual price, i.e., the price that drives the consumer’s demand to :

1
1 = 1

ˆ
11

a1 + c1l ql
l=1

N 1
+ 1 x1

1

6. For each simulation and policy scenario, the Hicksian consumer surplus now takes the form:

CS =
1
2

(x1
0 x1

1) ( p1
0

1
1) + x1

1 ( p1
0

1
1)  if x1

0 > 0

0

Save simulated welfare estimate to an auxiliary data set.

7. Replicate steps 3-6 500 times. The mean across the 500 simulations serves as an estimate of the individual’s
unconditional expected Hicksian consumer surplus. Repeating this procedure for all 500 observations and 
averaging generates an estimate of the sample’s unconditional expected Hicksian consumer surplus for
the loss of    x1.

8. Go to step 1 and repeat the above procedure 500 times.  

2. Estimate censored regression model with the quantity demanded of x1 as the dependent variable and 
market prices for all four goods as covariates, i.e.;

otherwise

.
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Table 5 suggests that using market prices in
place of virtual prices can result in parameter 
estimates that are much larger than what would be
expected from a correctly specified model esti-
mated through maximum likelihood. In particular,
the mean estimates of the own price effect, b11,
are biased towards zero for all specifications
except (1) (when r = – 0.5), while all estimates 
of cross price effects are consistently biased
towards zero. Except for the specification (1), the
estimates of the intercept term, a1, are signifi-
cantly biased downwards, and all standard error
estimates (s) are consistently and significantly
biased upwards. 

Turning to the welfare estimates reported in
Table 6, one finds that the mean percentage biases
arising from using market prices in place of 
virtual prices are negligible for the $20 price
increase scenario. For all five correlation specifi-
cations, the percentage bias is less than 4 percent
in absolute value. For the site loss scenario, how-
ever, the percentage biases vary substantially
across the five specifications and are as large as
35.2 percent in absolute value. In general, the
biases are smallest when prices are orthogonal
and largest when prices are strongly correlated.
These findings suggest that when: 1) corner solu-
tions are prevalent, 2) prices are highly correlated,
and 3) the analyst is attempting to evaluate the
welfare implications of relatively large price
changes, using market prices in place of behav-
iorally relevant virtual prices can result in
substantially biased policy inference. 

Conclusion

This paper uses both an analytical model and a
Monte Carlo experiment to illustrate how corner
solutions raise difficulties for empirical applica-
tions of the incomplete demand system frame-
work. The analytical model highlights the
potential biases arising from the standard empiri-
cal practice of applying the incomplete demand
system framework to disaggregate consumption
data. These biases arise during the estimation of
the structural parameters and the calculation of
Hicksian welfare measures. For relatively small

price changes, the results from the Monte Carlo
experiment suggest that these biases may not 
significantly compromise the integrity of the 
derived welfare measures. However, when the 
analyst considers scenarios involving large price
changes such as those arising from the elimina-
tion of a good, these biases may be substantial.
These results cast doubt on the ability of the 
incomplete demand system framework to 
recover consistent welfare measures for site loss
scenarios in the recreation demand context.

Although corner solutions raise similar 
difficulties for both complete and incomplete
demand system applications, estimation and 
welfare calculation techniques to consistently
handle them only exist in the complete demand
system context (e.g., Wales and Woodland 1983,
Lee and Pitt 1986, von Haefen, Phaneuf, and 
Parsons 2004). In the incomplete demand system
framework, similar techniques have not been
developed and, as emphasized above, raise 
formidable challenges. Thus the central implica-
tion of this paper is that, barring significant
modeling innovations, the only fully consistent
approach to recovering welfare measures for 
policies that impact the prices of a subset of goods
entering preferences is through the complete
demand system framework. 

In practice, however, empirically estimating a
complete demand system may not be possible due
to data limitations, modeling complexities, or the
inappropriateness of necessary separability or 
aggregation assumptions. In these cases, the 
analyst is left with a difficult decision of how best
to proceed, and any choice can be criticized as ad
hoc and inherently second best. One possible
strategy is discussed here in closing. Instead of
modeling consumer demand with traditional
RUM-based microeconometric models that 
consistently account for interior and corner 
solutions, the analyst could instead model 
expected consumer demand. As discussed in von
Haefen and Phaenuf (2003), this representative
consumer approach is implicitly used in the count
data demand literature (e.g., Ozuna and Gomez
1994, Gurmu and Trivedi 1996) where the 
behavioral restrictions implied by economic 
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theory are applied to the system of expected
demands. Since expected demands are strictly
positive, the difficulties raised by corner solutions
are avoided. Whether such a representative 
consumer approach generates more accurate 
welfare measures relative to RUM-based incom-
plete demand system models is an empirical
question for which the answer will likely vary
from application to application. For example,
Table 7 reports additional results from the Monte
Carlo experiment that suggest log-linear repre-
sentative consumer incomplete demand models,
estimated via nonlinear least squares, generate
average welfare estimates with slightly more bias
than those reported in Table 6. By contrast, empir-

(1)
r = -0.5
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r = 0.25
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r = 0.5

$20 Increase in Price of Good 1 
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     Welfare Estimate

Misspecified Log-Linear
Econometric Model  

Specified Model
     Welfare Estimate

Misspecified Log-Linear
Econometric Model  

     Welfare Estimate

     Welfare Estimate

  Percentage Bias

Loss of Good 1

  Percentage Bias

1 Mean for the 500 simulations.
2 Standard error for the 500 simulations.
3 Range over the 500 simulations.

Alternative Specifications

Table 7. Welfare Estimates from Count Data Models
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-29.7 -5.5 16.6 37.4 61.8

  

ical results reported in von Haefen and Phaneuf
suggest that welfare measures derived from 
representative consumer and traditional RUM-
based microeconometric models can be similar in
magnitude. In light of these conflicting results and
the lack of theoretical guidance on how best to
proceed, it is probably best in such second-best
settings for analysts to consider alternative 
estimation strategies, such as the incomplete
RUM-based and representative consumer demand
system frameworks. The derived welfare 
measures from these models could then be used
to identify a range of potential (albeit flawed) 
estimates that may nonetheless be sufficiently
informative for policy purposes. 



36 February 2010 Agricultural and Resource Economics Review

Ozuna, T., and I.A. Gomez. 1994. “Estimating a System of
Recreation Demand Functions using a Seemingly 
Unrelated Poisson Regression Approach.” Review of 
Economics and Statistics 76(2): 356-360.

Phaneuf, D.J. 1999. “A Dual Approach to Modeling Corner
Solutions in Recreation Demand.” Journal of Environ-
mental Economics and Management 37(1): 85-105.

Phaneuf, D.J., J.A. Herriges, and C.L. Kling. 2000. “Estima-
tion and Welfare Calculations in a Generalized Corner 
Solution Model with an Application to Recreation 
Demand.” Review of Economics and Statistics 82(1): 
83-92.

Phaneuf, D.J., C.L. Kling, and J.A. Herriges. 1998. “Valuing
Water Quality Improvements using Revealed Preference
Methods When Corner Solutions Are Present.” American
Journal of Agricultural Economics 80(5): 1025-1031.

Phaneuf, D.J., J.C. Carbone, and J.A. Herriges. 2009. 
“Non-Price Equilibria for Non-Market Goods.” Journal 
of Environmental Economics and Management 57(1): 
45-64.

Pudney, S. 1989. Modeling Individual Choice: The Econo-
metrics of Corners, Kinks, and Holes. Oxford, UK: Basil
Blackwell.

Rosenthal, D.H. 1987. “The Necessity for Substitute Prices 
in Recreation Demand Analyses.” American Journal of
Agricultural Economics 69(4): 828-837.

Smith, V.K. 1993. “Welfare Effects, Omitted Variables, and
the Extent of the Market.” Land Economics 69(2): 121-
131.

von Haefen, R.H., and D.J. Phaneuf. 2003. “Estimating 
Preferences for Outdoor Recreation: A Comparison 
of Continuous and Count Data Demand System Frame-
works.” Journal of Environmental Economics and 
Management 45(3): 612-630.

von Haefen, R.H., D.J. Phaneuf, and G.R. Parsons. 2004. 
“Estimation and Welfare Analysis with Large Demand
Systems.” Journal of Business and Economic Statistics
22(2): 194-205.

von Haefen, R.H. 2007. “Empirical Strategies for Incorpor-
ating Weak Complementarity into Consumer Demand 
Models.” Journal of Environmental Economics and 
Management 54(1): 15-31.

Wales, T.J., and A.D. Woodland. 1983. “Estimation of 
Consumer Demand Systems with Binding Non-Negativity
Constraints.” Journal of Econometrics 21(3): 263-285.

References

Boardman, A., D. Greenberg, A. Vining, and D. Weimer. 2006.
Cost Benefit Analysis: Concepts and Practice (3rd 
edition). Upper Saddle River, NJ: Prentice Hall.

Bockstael, N.E., W.M. Hanemann, and I.E. Strand. 1986.
“Measuring the Benefits of Water Quality Improvements
Using Recreation Demand Models.” Report prepared 
for the U.S. Environmental Protection Agency under Co-
operative Agreement CR-811043-01-0. Washington, D.C.

Caulkins, P.P., R.C. Bishop, and N.W. Bouwes. 1985. “Omit-
ted Cross-Price Variable Biases in the Linear Travel 
Cost Model: Correcting Common Misperceptions.” Land
Economics 61(2): 182-187.

Eom, Y.S., and D.M. Larson. 2006. “Improving Environmen-
tal Valuation Estimates through Consistent Use of 
Revealed and Stated Preference Information.” Journal 
of Environmental Economics and Management 52(1):
501-516.

Epstein, L.G. 1982. “Integrability of Incomplete Systems of
Demand Functions.” Review of Economic Studies 49(3):
411-425.

Gum, R.L., and W.E. Martin. 1975. “Problems and Solutions
in Estimating the Demand for and Value of Rural Outdoor
Recreation.” American Journal of Agricultural Economics
57(4): 558-566.

Gurmu, S., and P. Trivedi. 1996. “Excess Zeros in Count 
Models for Recreation Trips.” Journal of Business and
Economic Statistics 14(4): 469-477.

Herriges, J.A., and C.L. Kling (eds.). 1999. Valuing Recreation
and the Environment. Northampton, MA: Edward Elgar.

Hof, J.G., and D.A. King. 1982. “On the Necessity of Simul-
taneous Recreation Demand Equation Estimation.” Land
Economics 58(4): 547-552.

Kling, C.L. 1989. “A Note on the Welfare Effects of Omitting
Substitute Prices and Quality from Travel Cost Models.”
Land Economics 65(3): 290-296.

LaFrance, J.T., and W.M. Hanemann. 1989. “The Dual Struc-
ture of Incomplete Demand Systems.” American Journal
of Agricultural Economics 71(2): 262-274.

Lee, L.F., and M.M. Pitt. 1986. “Microeconometric Demand
Systems with Binding Nonnegativity Constraints: The
Dual Approach.” Econometrica 54(5): 1237-1242.

Neary, J.P., and K.W.S. Roberts. 1980. “The Theory of House-
hold Behavior under Rationing.” European Economic 
Review 13(1): 25-42.




