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Abstract 

 

This paper examines the inclusion of the dollar/euro exchange rate together with four 

important and highly traded commodities - aluminum, copper, gold and oil- in symmetric 

and asymmetric multivariate GARCH and DCC models. The inclusion of exchange rate 

increases the significant direct and indirect past shock and volatility effects on future 

volatility between the commodities in all the models. Model 2, which includes the 

business cycle industrial metal copper and not aluminum, displays more direct and 

indirect transmissions than does Model 3, which replaces the business cycle-sensitive 

copper with the highly energy-intensive aluminum. The asymmetric effects are the 

greatest in Model 3 because of the high interactions between oil and aluminum. Optimal 

portfolios should have more euro currency than commodities, and more copper and gold 

than oil.  

 

JEL: C51, E27, Q43 
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1. Introduction 

Commodity and other asset markets have been highly volatile in recent years. 

Commodities like oil and copper have had significantly greater volatility than other 

commodities such as gold. Volatility brings risk and opportunity to traders and investors, 

and thereby should be examined. There are many reasons for volatility to occur in 

commodity markets. Market participants form different expectations of profitable 

opportunities, process information at different speeds, perform cross-market hedging 

across different asset classes and build and draw inventories at different levels. These 

factors contribute volatility to commodities over time, as well as volatility spillovers 

across commodity markets 

 Shocks or news can also create, transmit and exacerbate volatility in commodity 

markets. Shocks to the US dollar, for example, may exacerbate commodity fluctuations 

in the long-run equilibrium, and hence lead to volatility transmission across markets. Oil 

and gold are also more sensitive to changes in the dollar than are copper and aluminum. 

On the other hand, copper seems to be the most sensitive to the business cycle 

(Hammoudeh, Sari and Ewing, 2008). This heterogeneous sensitivity to news should also 

spawn and spill over different volatilities among commodities. 

The tradability and liquidity of futures contracts usually affect commodity 

fluctuations. The more liquid are the contracts, the smoother will be commodity 

movements. Oil, gold, aluminum and copper are all exchange traded, but it is not known 

if they all have the same contract liquidity and similar fluctuations during trading.  Even 

within global oil benchmarks which belong to “one common pool”, liquidity, tradability 

and volatility can vary. For example, the contracts of the light crude benchmarks, WTI 
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and Brent oil, are more liquid at NYMEX and ICE than their own contracts and the 

contracts of the medium crude benchmark Dubai/Oman at the Dubai Mercantile 

Exchange (DME). Moreover, WTI is less volatile than non-exchange traded Maya, the 

Mexican heavy crude benchmark (Hammoudeh, Ewing and Thompson, 2008). If gold 

contracts, for example, are more liquid than those of copper or aluminum, then gold 

should have less volatile fluctuations.  

The same argument applies to the LME-traded copper, which is particularly 

sensitive to economic activity. Copper may be more volatile because its market 

participants do not significantly stockpile this metal, and do not speculate heavily relative 

to other metals because it is cheap, heavy and plentiful. On the other hand, the price of 

copper generally represents an accurate barometer of its demand in the real world, rather 

than an irrational bet on its future value. 

Changes in, and the availability of, commodity inventories may also affect 

volatility, depending on whether the change will add to or subtract from inventories, and 

on the size of the build-up compared with their long-run averages.  Moreover, owners of 

oil storage tankers can use their knowledge of the fullness or emptiness of the tanks to 

spread news to induce traders to act quickly on false information, and may affect the 

speed and direction of adjustments. Oil companies, for example, can use their 

information of future production to trade during positive and negative shocks. Varying 

inventories and the backwardation/contagion state of commodity markets may also affect 

volatility. 

In this paper, we concentrate on representatives of four types of fuel and industrial 

commodity classes, namely aluminum, copper, gold and oil. Aluminum represents an 
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energy-intensive commodity class, copper represents base metals, gold represents 

precious metals, and oil represents energy commodities. We also include a major 

macroeconomic variable, the dollar/euro exchange rate, as a link and policy variable. The 

dollar/euro exchange rate is widely used and recognized by both academics and 

practitioners as a mover of commodity markets.  It is much more relevant representative 

of all exchange rates as far as commodities are concerned. 1  There are three recognized 

channels that link the dollar/euro exchange rate to the US dollar-priced commodities. 

They are the purchasing power and cost of the dollar-priced commodities in non-US 

dollar currencies, asset plays which makes commodities as an investment class more 

attractive than the dollar-denominated financial assets, and monetary easing outside the 

US in response to a sinking dollar which results in demand stimulus. At certain times, 

commodities dominate asset trading, have stronger linkages with the macro economy, 

and/or influence, or are influenced by, policy decisions.  

As we are interested in volatility spillovers across commodities and the 

macroeconomy, we use multivariate symmetric and asymmetric GARCH models to 

estimate simultaneously the means and variances of the four commodity price and 

exchange rate returns to analyze volatility and its transmission mechanism. Asymmetry is 

relevant for commodities because positive and negative shocks of equal magnitude may 

have different impacts on commodity returns. Furthermore, we use the symmetric and 

asymmetric BEKK specifications which do not impose the restriction of constant 

conditional correlations across the commodity shocks. This procedure allows an 

                                                 
1 In an MBA class experiment that included the major industrial commodities and seven measures of dollar 
exchange rates and indices, students found the dollar/euro exchange rate followed by the broad index to 
have the highest correlations with commodity prices. 
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examination of covariance spillovers across commodities, as well as a computation of 

hedge ratios. The BEKK model is more appealing than the more heavily restricted DCC 

model, which purports to estimate conditional correlations, but is unable to address 

spillovers. In this context, Caporin and McAleer (2008) evaluated the empirical 

performance of the scalar versions of BEKK and DCC, and found they were very similar. 

Caporin and McAleer (2009) defined targeting as an aid in estimating matrices 

associated with large numbers of financial assets, analyzed the similarities and 

dissimilarities between alternative versions of BEKK and DCC, both with and without 

targeting, on the basis of structural derivation, the analytical forms of the sufficient 

conditions for the existence of moments, and the sufficient conditions for consistency and 

asymptotic normality, and computational tractability for very large numbers of financial 

assets, presented a consistent two step estimation method for the DCC model, 

and suggested that BEKK should be preferred in practical applications. However, we still 

use the symmetric and asymmetric DCC models as a diagnostic check of the results of 

the symmetric and asymmetric BEKK models.  The DCC method also enables us to 

examine the conditional volatility and correlation cross-effects with meaningful estimated 

parameters and fewer computational complications that characterize alternative 

multivariate GARCH models. 

This paper fills the empirical void in the literature on commodity volatility in four 

important areas. First, it uses multivariate conditional volatility models to determine 

volatility progression and transmission among the four commodities across different 

classes. Second, it uses symmetric and asymmetric models to gauge the sensitivity of the 

different commodities to positive and negative shocks. Third, it examines the bi-
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directional impacts between the exchange rate and commodities, taking into account 

flight to safety, asset reallocation and responsiveness to policy decisions. Fourth, it uses 

the volatility results to calculate dynamic hedge ratios and risk-minimizing optimal 

portfolio weights for two commodities, or for one commodity and the exchange rate. 

The remainder of the paper is organized as follows. Section 2 provides a review 

of the literature. Section 3 presents the empirical model and Section 4 discusses the data 

and descriptive statistics. Section 5 discusses the empirical results. Section 6 gives some 

concluding comments. 

 

2. Review of the Literature 

The literature on commodities has concentrated on their price co-movements and 

their roles in transmitting information on returns. The research on commodity volatility 

has been considerably less than on their counterparts in commodity prices and returns. 

This research has typically focused on volatility behavior for a single commodity over 

time, and not on volatility transmissions across commodities and over time, due to 

methodology complexities. The single commodity volatility research has used univariate 

models of conditional volatility (or GARCH) to examine the behavior of volatility over 

time, with a focus on own shocks and volatility dependencies over time, while ignoring 

volatility interdependencies across commodity markets and/or classes.  

 Bracker and Smith (1999) and Smith and Bracker (2003) apply the GARCH and 

EGARCH models to copper futures prices, and find these specifications to better explain 

volatility behavior for copper than do other models. McKenzie et al. (2001) explored the 

applicability of the univariate power ARCH (PARCH) model to precious metals futures 
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contracts traded at the London Metal Exchange (LME), and found that asymmetric 

effects are not present, and the model did not provide an adequate explanation of the data. 

Tully and Lucey (2007) used the univariate asymmetric power GARCH (APGARCH) 

model to examine the asymmetric volatility of gold. They concluded that the exchange 

rate is the main macroeconomic variable that influences the volatility of gold, with few 

other macroeconomic variables having an impact.  

Batten and Lucey (2007) studied the volatility of gold futures contracts traded on 

the Chicago Board of Trade (CBOT) using intraday and interday data. They used the 

univariate GARCH model to examine the volatility properties of the futures returns and 

the alternative nonparametric volatility static model of Garman and Klass (1980) to 

provide further insights into intraday and interday volatility dynamics of gold. The results 

of both measures provided significant variations within and between consecutive time 

intervals. They also found a low correlation between volatility and volume. Bhar et al. 

(2008) used the univariate GARCH model to examine the behavior of the short-run 

stationary components of four oil benchmarks  

In terms of nonlinearity and chaotic structure, Yang and Brorsen (1993) 

concluded that palladium, platinum, copper and gold futures have chaotic structures. In 

contrast, Adrangi and Chatrath (2002) found that the nonlinearity in palladium and 

platinum is inconsistent with chaotic behavior. They concluded that ARCH-type models, 

with controls for seasonality and contractibility, explained the nonlinear dependence in 

their data for palladium and platinum.  

In comparison with other studies on commodities, Plourde and Watkins (1998) 

compared the volatility in the prices of nine non-oil commodities to the volatility in oil 
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prices. On the basis of several non-parametric and parametric tests, they found that oil 

prices tend to be more volatile than the prices of gold, silver, tin and wheat, and argued 

that the differences are more evident in the case of precious metals. Hammoudeh and 

Yuan (2008) used three different univariate GARCH models to investigate the volatility 

and leverage properties of two precious metals (gold and silver) and one base metal 

(copper). They found that in the standard univariate GARCH model, gold and silver have 

almost the same conditional volatility persistence, which is higher than that of the pro-

cyclical copper. In the EGARCH model, they found that only copper has an asymmetric 

effect, and the transitory component of volatility converges to equilibrium faster for 

copper than for gold and silver in the CGARCH model. Using a rolling AR(1)-GARCH 

model, Watkins and McAleer (2008) showed that the conditional volatility for two 

nonferrous metals, namely aluminum and copper, is time-varying over a long horizon.  

Finally, there are few studies that have used multivariate GARCH to examine 

volatility transmissions across commodities. Hammoudeh et al. (2004) use a trivariate 

BEKK model to examine the volatility between oil prices and oil industry equity indices. 

Ewing et al. (2002) employ a bivariate BEKK model for the oil and natural gas sectors to 

examine how volatility changes over time and across the two sectors. Moschini and 

Myers (2002) develop a different bivariate GARCH parameterization for cash and futures 

markets, with a flexible functional form for time-varying volatility that is suitable for 

testing whether the optimal hedge ratio is constant, and whether the time variations in the 

optimal hedge ratios are due solely to deterministic seasonality and time-to-maturity 

effects. Statistical tests reject both null hypotheses. 
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Thus, these studies, except for the last three, do not examine cross-volatility and 

shock effects between commodities using multivariate GARCH models. Even these three 

studies did not use a four variable GARCH model. This could be a major shortcoming 

when one considers that real world applications such as hedging, portfolio diversification 

and inter-commodity volatility predictions are conducted in multivariate settings. In this 

regard, we are interested in ascertaining to what extent commodity volatility 

interdependencies across markets and over time exist, and what role hedging and optimal 

portfolio formation play in mitigating their risks. Policy makers, traders and portfolio 

managers, as well as manufacturers, would be interested in this information because 

precious and industrial metals are investment assets, feed into inflation, and have 

important and diversified industrial uses in the jewelry, electronic and autocatalytic 

industries.  

 

3. Empirical Models 

 In this section we present four different multivariate volatility models to achieve 

the four goals of the paper. The first two models are the symmetric and asymmetric 

BEKK models, while the second two models are the symmetric and asymmetric DCC 

models. 

The commodities and the exchange rate in our empirical systems are indexed by i, 

and n is the total number of commodities and the exchange rate when the latter is 

included in the various models.  Each system, whether all commodities or a combination 

of commodities and the dollar/euro exchange rate, has four variables, so that n = 4.  The 
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mean equation for commodity i (or the exchange rate) in this system is given as an AR(1) 

process, as follows: 

, , 1 ,03i t i i i t i i tR a b R c D                                                (1) 

  1/ 2
,i t t tH  � ~ iid N(0,I)t  

where Ri,t is the return on the ith commodity (or exchange rate) of the nx1 vector Rt , 

which is defined as a log difference. The innovation t  is an nx1 vector of i.i.d. random 

shocks, and tH  is the conditional covariance matrix of commodities (and exchange rate) 

at time t. D03 denotes the dummy variable for the 2003 Iraq War. 

Commodities are affected by common macroeconomic variables and they also 

feed on themselves in terms of volatility. Therefore, we follow Engle and Kroner (1995) 

to form the evolution of the conditional covariance matrix as the multivariate BEKK 

model, which permits an examination of the cross-commodity effects. This specification 

is also more practicable than the VECH specification given in Bollerslev, Engle and 

Wooldridge (1988), which is highly over-parameterized. Commodity prices face both 

positive and negative shocks which may have different impacts on their volatilities. We 

will use both the symmetric and asymmetric versions of the BEKK model, which has the 

practical advantage that it restricts the estimated covariance matrix to be positive definite. 

The symmetric BEKK model is given as: 

 

1 ' ' ' 't t t tH C C A A B H B     ,           (2) 

 

for which the coefficient matrices are given as: 
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11 12 13 14 11 12 13 14 11

21 22 23 24 21 22 23 24 21 22

31 32 33 34 31 32 33 34 31 32 33

41 42 43 44 41 42 43 44 41 42 43 44

0 0 0

0 0

0

a a a a b b b b c

a a a a b b b b c c
A B C

a a a a b b b b c c c

a a a a b b b b c c c c

     
     
       
     
     
     

 

 

where C is a 4 �4 lower triangular matrix with 10 parameters. The 4 �4 matrices A and 

B represent the effects of past shocks and past conditional variances and covariances on 

their current counterparts of the various commodities/foreign exchange rate, respectively. 

The total number of estimated elements for the covariance equation (2) in the four-

variable system is 42.  

The interpretations of the basic estimated elements are not obvious. Ignoring the 

constant term, the conditional variance equations can be re-expressed as: 

 

4 3 4 4 3 4
2 2 2

, 1 , , , , ,
1 1 1 1 1 1

2 2 1, 2,3, 4ii t ji j t ji ki j t k t ji jj t ji ki jk t
j j k j j j k j

h a a a b h b b h i  
       

                  (3) 

 

Equation (3) shows how shocks and volatilities are transmitted across commodity/foreign 

exchange markets and over time.  

 The symmetric BEKK model assumes that negative and positive shocks of equal 

magnitude have identical effects on the conditional variance. An extension of the BEKK 

model that accommodates asymmetric effects of positive and negative shocks is the 

BEKK–AGARCH model. An extension of equation (2) that accommodates the shock 

asymmetries would include an asymmetric term in this equation.  Define  
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0( )
tt t tv I    

where   denotes the element-by-element Hadamard product of the vectors. Thus, tv  is a 

vector in which t = t  if t <0 and t =0 if t  0. Equation (2) then becomes  

 

1 ' ' ' ' ' 't t t t t tH C C A A B H B D v v D              (4) 

 

where the matrix D captures the asymmetric effects of negative shocks on volatilities. 

We maximize the following likelihood function, assuming the errors are normally 

distributed: 

1

1

1
( ) ln(2 ) (ln ' )

2

T

t t t t
t

L T H H   



    , 

where T is the number of observations and θ is the estimated parameter vector. Numerical 

maximization techniques are used to maximize the non-linear log-likelihood function. 

Initial conditions are obtained by performing several initial iterations using the simplex 

algorithm, as recommended in Engle and Kroner (1995). The Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm was then used to obtain the final estimate of the 

covariance matrix, with corresponding standard errors for the commodity/exchange rate 

models. 

The assumption that the random shocks 1, 2, , ,, , ]'[t t t n t     have a constant 

correlation matrix may not be well supported in commodity markets because of high 

uncertainty, structural changes and geopolitical events. Moreover, some researchers 

prefer to use an MGARCH model of multiple equations, in which each equation follows 

a univariate process and does not include any spillovers across variables. The results of 
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this model can be used as diagnostic tests of BEKK-type models. Therefore, we use 

Engle’s (2002) DCC-MGARCH model to examine the time-varying conditional 

correlations among the commodities (or exchange rate). Furthermore, in contrast to the 

specification of the interdependent conditional variance in equation (2) of BEKK-

MGARCH and equation (4) of BEKK-MAGARCH, the symmetric DCC-MGARCH 

model assumes that the conditional variance of each precious metal (or exchange rate) 

follows a univariate GARCH process: 

 

             

2
, , , , ,

1 1

p q

i t i i k i t k i s j t s
k s

h c h   
 

                                                                         (5) 

where Σαi,k2
i,t-k is the short-run persistence of precious metal (or exchange rate) i’s own 

past shocks, and Σi,shi,t-s is the long-run persistence of the GARCH effects of past 

volatilities. It is worth noting that in equation (3) the conditional variances of precious 

metals (and exchange rate) are assumed to be independent of one another. 

The estimation of the dynamic conditional covariance matrix of DCC-MGARCH 

entails two steps. First, the matrix Qt used to calculate the dynamic conditional 

correlation is assumed to be time-varying and to be governed by two parameters, namely 

1 and 2: 

                    1 2 0 1 1 1 2 1(1 ) 't t t tQ Q Q                                                                 (6) 

 

where Q0 is the conditional correlation matrix of t , which is a consistent estimator of the 

conditional correlation matrix of the commodities, Qt is a weighted average of positive 

definite and positive semidefinite matrices, which is used to provide the dynamic 
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correlation matrix, and 1  and 2 are parameters. 1 represents the impact of past shocks 

on the current conditional correlation, while 2 captures the impact of the past conditional 

correlations. If the estimates of both 1 and 2 are statistically significant, then the 

conditional correlations are not constant. The dynamic conditional correlation 

coefficients ( ( )ij t ) between commodities (or exchange rate) i and j are calculated by: 

                

( )
( )

( ) ( )
ij

ij

ii jj

Q t
t

Q t Q t
                                                                                 (7) 

 

Second, the sequence of dynamic conditional covariance matrices is then computed by 

( )ij t , and the estimated univariate conditional variances: 

    
( ) ( ) ( ) ( )ij ij ii jjH t t H t H t                                                                  (8) 

 

11, 12, 1,

21, 2 ,

1, 2, ,

( )

t t n t

t n t

n t n t nn t

h h h

h h
H t

h h h

 
 
 
 
 
 



 

   



 

 

where hii,t=hi,t is for convenience of notation, which is estimated based on the univariate 

GARCH process, as shown in equation (3). The elements hii,t and hij,t are the estimated 

conditional variance and conditional covariance, respectively, at time t and hij,t = hji,t.   

As the GARCH effects are assumed to follow a univariate process in the DCC-

MGARCH model, the asymmetric effects are, therefore, directly incorporated in equation 

(5), as follows: 
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2 2
, , , , , , , ,

1 1 1

( 0)
p q p

i t i i k i t k i s j t s i k i t k i t k
k s k

h c h I        
  

                                             (8) 

where the parameter   captures the asymmetric effects in the DCC-MGARCH model. 

 

4. Data Description 

We use daily time series data (five working days per week) for the four commodity 

(aluminum, copper, gold and oil) closing spot prices and the US dollar/euro exchange 

rate for the period 4 January 1999 to 5 November 2007. The exchange rate is the value of 

the US dollar to one euro, suggesting that a rise in the rate implies devaluation of the 

dollar, and vice-versa. Aluminum, gold and oil are traded at COMEX in New York. 

Copper is traded at LME. Oil is represented by the benchmark West Texas Intermediate 

(WTI). The daily US dollar/euro exchange rate series is obtained from the database of the 

Federal Reserve Bank of Saint Louis. All commodity and exchange rate series are 

modeled in natural logarithms, and are depicted in Figure 1. 

 The ADF and PP unit root tests for both the drift and without drift specifications 

demonstrate that the commodity and exchange rate variables have unit roots with and 

without drift.2 Therefore, we will examine and model the returns instead of the levels for 

the five variables. Table 1 provides the descriptive statistics for the variables. Among the 

four commodities, oil followed by copper yielded the highest average return, while gold 

had the lowest return over the sample period. Oil also has the highest volatility, as 

defined by standard deviation, while gold has the lowest.  It is not surprising that oil has 

the highest volatility because it is periodically managed by OPEC, and is also sensitive to 

                                                 
2 The results are available from the authors upon request. 
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weather, frequent inventory changes and  political tensions and military conflicts in the 

oil-producing countries.  

Some studies have interpreted volatility as a proxy for information flow, in the 

sense that increases in information should translate into greater volatility (Lin and 

Chiang, 2005).  Moreover, gold has been subdued due to low inflation during much of the 

sample period. All the series are leptukortic, that is, have fat tails, which requires testing 

the individual mean equations for ARCH effects.  The results show that there are strong 

ARCH effects for the four commodities and the exchange rate, thereby warranting 

estimation of the GARCH model. 

 

5. Empirical Results 

 We will estimate three sets of four empirical multivariate volatility models for 

three combinations of the four commodities and the exchange rate because of the well 

known convergence limitations of the BEKK models.3  Each set of models includes the 

symmetric MGARCH, asymmetric MAGARCH, and DCC models. Model 1 will be 

considered as the basic model, and will include the four commodities, namely aluminum, 

copper, gold and oil. Model 2 consists of copper, gold, oil and the dollar/euro exchange 

rate. Finally, Model 3 is comprised of aluminum, gold, oil and the exchange rate. We 

included copper with the exchange rate in Model 2, and aluminum and exchange rate in 

Model 3, because copper is a base metal and aluminum is an industrial metal. Moreover, 

                                                 
3 The BEKK model did not converge with five variables. We then estimated the DCC model for all five 
variables combined. The results show that the conditional correlation coefficients for the shocks are less 
than 1%, which implies that the DCC matrix converges to a constant matrix in the long run. We also 
estimated the VARMA-GARCH model of Ling and McAleer (2003), but did not obtain convergence. 
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aluminum is more energy-intensive compared with copper. Both commodities are 

included in Model 1. 

 

Basic Models 1: 

 We will examine the statistically significant estimates in the four basic models for 

this group and the extent of past volatility and volatility interdependence effects. We first 

examine the results for the symmetric and asymmetric MGARCH models, and then for 

the symmetric and asymmetric DCC models for this group. The number of symmetric 

past volatility and volatility interdependence effects that are significant in each of two 

MGARCH models is seven, and those symmetric results for both models are similar. On 

the other hand, the number of asymmetric effects in MAGARCH that reflect negative 

shocks is only two, and both affect aluminum in this commodity setting, making the 

asymmetric MGARCH model the better of the two. We will first examine the symmetric 

part, which is similar in the two models, and followed by the asymmetric part. Finally, 

we use the results of the DCC model as a diagnostic check. 

We start by examining the conditional variance (volatility), h11, for aluminum in 

Tables 2a and 2b. This highly energy-intensive and industrial metal is significantly and 

positively affected by news (unexpected shocks), 2
1, from its own market without being 

affected by any news spillovers from the other three markets. In terms of sensitivity to 

own past volatility, h11, aluminum is also significantly and positively affected by its past 

volatility. The aluminum ambivalence to news and volatility in both oil and copper is 

surprising, and may underline the different nature of this metal as both an industrial and 
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energy-intensive metal, thereby placing it in a separate metal class from the others, even 

from the basic industrial metal copper. 

Copper volatility, h22, is significantly and positively affected by news or shocks 

generated in its own market, 2
2. In contrast to aluminum, the copper volatility is 

significantly and positively impacted by news in the gold market, 2.3. Considering the 

effects of past volatility, copper is impacted only by its own shocks, as is the case of the 

aluminum market. 

The volatility of gold, h33, is much more heavily impacted by news from other 

markets than are the other three commodities. Specifically, it is significantly and 

positively affected by news from its own market, 2
3. The interaction term, (2.3), for 

shocks emanating from the copper and gold markets, significantly reduces the conditional 

volatility of the gold market. For example, news about power deficiency in major copper-

producing countries, associated with news about explosions in a major gold mine, 

indirectly affects volatility in the gold market. This indirect impact is due to cross-market 

hedging, or sharing common information between the two markets. The volatility in the 

gold market is influenced by news because it is a safe haven in times of high risk and 

rising inflation. During bad times, investors dump copper and aluminum, and buy gold as 

part of a risk hedging asset reshuffling strategy.  

When it comes to sensitivity to past volatilities, gold volatility is indirectly 

affected by the interaction of volatilities in the aluminum and copper markets, aluminum 

and own market, and copper and own market. It is also affected directly by its own 

market. It seems that gold volatility is impacted by other commodity volatility because 

traders and investors revert to it as a safe haven during times of high volatility in other 
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markets. It is interesting that gold volatility is not impacted by volatility in the oil market, 

which is also involved in the flight to safety when the dollar exchange rate is impacted. 

Oil is, however, periodically managed by OPEC, and has its own trajectory. It is also 

possible that oil is overplayed by speculators. 

 The oil market volatility in this model seems to be independent of the volatility in 

the other three metals markets, where volatility is significantly and directly affected only 

by its own past shocks and volatility, as is the case with aluminum volatility. Oil has the 

highest unconditional volatility, as shown in Table 1, due to its manipulation by OPEC 

and sensitivity to its own fundamentals, speculators and the geopolitics of its supply. 

 The two significant asymmetric effects reflect the differential impacts of negative 

shocks relative to positive on current volatilities. There are small asymmetric effects of 

the interactions between aluminum and copper, and between aluminum and gold, on 

aluminum. 

 In summary, gold receives more symmetric shocks and volatility spillovers than 

any other commodity, with copper second. Moreover, gold and copper receive no 

asymmetric commodity shocks. On the other hand, aluminum and oil are explained by 

their own symmetric markets. However, negative shocks coming from the interactions 

with copper and gold have greater effects on aluminum than do positive shocks. 

Therefore, aluminum is more sensitive to negative than to positive shocks. Finally, there 

are limited volatility independencies among those commodities in both BEKK models. 

The results of the two symmetric and asymmetric DCC models are intended as a 

diagnostic check on the symmetric and asymmetric MGARCH models as a constant 

conditional correlation matrix may not be well supported in commodity markets. There 
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are 11 significant shock and volatility effects in the symmetric DCC model, while there 

are 10 symmetric and three asymmetric significant results in the two DCC models, 

making the latter the better model. Nevertheless, the shock, volatility and persistence 

results are very similar for both DCC models. The estimates mirror, to a large extent, 

those of the MGARCH models, underpinning the robustness of the MGARCH results. 

The ARCH (α) and GARCH (), own past (unexpected) shocks and volatility effects for 

both DCC models, respectively, are significant. The degree of volatility persistence is the 

highest for copper, followed by aluminum, and the lowest is for gold, followed by oil. 

The asymmetry appears for aluminum, copper and gold, but not for oil, which is greater 

than in the asymmetric MGARCH model. 

 Figure 2 shows the variation in the estimated dynamic conditional correlations for 

the four commodities over time. It is clear that all six pairs, aluminum-copper, aluminum-

gold, aluminum-oil, copper-gold, copper-oil and gold-oil, display marked variations over 

time. Five of the six pairs have conditional correlations that are both positive and 

negative, which could assist in formulating hedging strategies, and four of the six pairs 

have a large range of variation, with three having a range that exceeds one. 

 

Models 2 

  These models contain copper, gold, oil and the dollar/euro exchange rate, with the 

highly energy-intensive industrial metal, aluminum, included in Model 3. As mentioned 

above, the exchange rate is included to account for a feedback mechanism between 

dollar-denominated metals and oil, and the exchange rate. The exchange rate is used as an 
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accounting unit and a medium of exchange for trading commodities, and it also reflects 

expectations about future prices and speculation on commodities. 

A comparison of the results of the two BEKK models reveals that the symmetric 

MGARCH model has 60 significant effects, while the asymmetric MAGARCH model 

has 51 such effects. The inclusion of the exchange rate weakens the symmetric impacts 

on oil in the MAGARCH model. 

The symmetric MGARCH model shows that the inclusion of the exchange rate in 

this model increases substantially the direct and indirect effects of past shocks and 

volatilities on future volatility of the three commodities, compared with their effects in 

Model 1 (the basic model), as displayed in Table 3. 

There are direct effects (i
2) of news from and to own markets for all four 

commodities. Moreover, the direct news effects from the other markets on the own 

market are as follows: gold on copper, and vice-versa; oil on exchange rate, and vice-

versa; exchange rate on gold, and vice versa; and gold on oil. It is interesting to find that 

news (shock) impacts are bidirectional between gold and the exchange rate, in lieu of the 

fact that gold, dollar and euro are used for foreign reserves. Furthermore, gold news 

unidirectionally affects oil volatility, despite the fact that gold and oil are dollar-

denominated assets, and are considered safe havens and hedges against inflation and a 

depreciating dollar. 

There are also indirect effects (i.j) from news interactions between markets on 

own markets. The most notable of these indirect effects is for the exchange rate and oil. 

There are not, however, as many indirect effects for copper and gold.  
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When we focus on the direct and indirect effects of past volatilities on future 

volatilities, we can see more significant relationships than in the shock effects, indicating 

that commodity volatility is predictable, even in a simultaneous setting. The results show 

that there are significant volatility effects (hii) on the own market volatility for all four 

markets in this model. 

Direct volatility effects from other markets to the own market are: copper on three 

markets; exchange rate on three markets; gold on three markets; and oil on the exchange 

rate and gold markets, which is different from the case of shocks. These volatilities are 

affected simultaneously by fundamental forces, such as macroeconomic factors and 

cross-market hedging. 

Finally, there are many indirect volatility transmissions, representing interactions 

of volatilities between markets. There are transmissions of volatility interactions in 

exchange rate and gold on all four markets; between exchange rate and oil on the foreign 

exchange, gold and oil markets; and between gold and oil on the foreign exchange, gold 

and oil markets. It seems that transmissions of indirect volatility interactions are the 

strongest among the exchange rate, gold and oil, and weakest for copper, which is more 

sensitive to the business cycle. 

Some of the simultaneous direct results indicated above are consistent with those 

of the univariate GARCH model, which had an impact of the exchange rate on 

commodity volatility, particularly that of the exchange rate on gold (Tully and Lucey, 

2006). Other effects are different from the univariate transmissions for oil, gold and 

copper (Hammoudeh and Yuan, 2006). These arise because of the inherent shortcoming 
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of the univariate GARCH model, in that they block simultaneous feedbacks and 

spillovers.  

The asymmetric items are five significant effects in the asymmetric MAGARCH 

Model 2 compared with two in the asymmetric Model 1, indicating greater responses to 

negative rather than positive shocks. While each commodity is more sensitive to one bad 

shock, gold is affected by two bad shocks as a result of interactions between copper and 

the exchange rate, and between copper and gold. Oil responds asymmetrically to 

interaction between copper and oil, while the exchange is sensitive to interaction between 

gold and oil. 

The results of the two symmetric and asymmetric DCC models are also very 

similar, and are close to those of their MGARCH counterparts. The number of significant 

shock and volatility effects are eight in the symmetric DCC model, while there are seven 

in the symmetric part and two in the asymmetric part, making the asymmetric DCC 

model the better model. The degree of volatility persistence in these models is slightly 

higher than their counterparts in the other models. This has to do with the presence of the 

exchange rate, which has the highest volatility followed by aluminum. The lowest 

persistence is for gold by oil, as is the case in the previous models. 

Models 3 

 The composition of the symmetric and asymmetric MGARCH and DCC Model 3, 

which replaces copper with aluminum but retains the other variables, differs from that of 

Model 2. The models examine the simultaneous interactions and transmissions when the 

business cycle-sensitive copper is replaced by a highly energy-intensive aluminum, 
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which does not have the same economic interactions with the overall economy, as in the 

case of copper. 

The results of the two MGARCH models reveal that there are 21 significant 

effects in the symmetric model, while there are 53 significant symmetries and 18 

significant asymmetries in the asymmetric counterpart, making the MAGARCH the 

better model for this group. This should not be surprising because Model 1 reveals that 

aluminum is sensitive to asymmetric shocks from copper, gold and itself. Despite this, the 

simultaneous symmetric relationships are not as significant as in Model 2. Copper is 

known to have many more linkages with various economic sectors, and it is more directly 

sensitive to business cycles than is aluminum. Some economists call it Dr. Copper 

because of its ability to predict business cycles (Lahart, 2006).  Copper also seems to 

share a greater sensitivity with gold and oil for common macroeconomic factors than 

with other commodities, including aluminum.  

The empirical findings reveal that the direct shocks and volatility transmissions 

between the markets are still strong in this model compared with the all commodity 

model, but the indirect transmissions are much weaker than in Model 2. There are direct 

effects of news from and to own markets for the four markets in this model, as for Model 

2. On the other hand, the direct news effects from other markets on own markets are 

evident only from the exchange rate to gold. Even in this direct news spillover case, there 

is no reciprocal news impact from gold to exchange rate as is the case in Model 2. The 

indirect effects from news interactions (i.j) between markets on own markets are also 

limited compared with the previous model. There are transmissions of (indirect) news 
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interactions in the exchange rate and gold on the gold market, and between the exchange 

rate and oil on the oil market, as in Model 2. 

The direct volatility transmissions from and to own markets are the same for all 

four markets, as in Model 2, but the direct volatility transmissions from other markets to 

own are concentrated primarily on the exchange rate and gold, and to a lesser extent on 

oil. This is largely due to cross hedging among these asset classes, but these 

transmissions are irrelevant for the aluminum market. The same analysis applies to 

indirect volatility transmissions. 

There are 18 significant asymmetric effects in the asymmetric MAGARCH 

model, indicating greater responses to bad shocks in the asymmetric MGARCH Model 3 

than in the asymmetric Model 2. While gold is the most sensitive to bad shocks in the 

previous asymmetric model, oil is the most responsive to asymmetric shocks, coming 

mostly from aluminum. This is also not surprising as aluminum is more energy-intensive 

than is copper.   

The results of the two symmetric and asymmetric DCC models are also very 

similar, and are close to those of their MGARCH counterparts. However, the symmetric 

DCC model has 6 significant effects, while the asymmetric DCC has 9 significant 

symmetric and asymmetric effects. The patterns of volatility and volatility persistence are 

similar to what was observed in the DCC Model 2. 

 

5.  Implications for Portfolio Designs and Hedging Strategies 

We now provide two examples using the estimates of the symmetric and 

asymmetric GARCH models (Model 2) for the copper, foreign exchange, gold and oil 
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markets, and for the aluminum market and the others in the symmetric and asymmetric 

Model 3, to analyze portfolio design and hedging strategies.  The results are virtually 

identical for both the symmetric and asymmetric models in group 2 and group 3.  

 

5.1. Portfolio weights 

The first example follows Kroner and Ng (1998) by considering a portfolio that 

minimizes risk without lowering expected returns. If we assume the expected returns to 

be zero, the optimal portfolio weight of one commodity (or asset) relative to the other in a 

two commodity (asset) portfolio is given by: 
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where w12,t  is the portfolio weight for, say, commodity (asset) 1 relative to commodity 

(asset) 2 in one dollar portfolio of the  two commodities (assets) 1 and 2 at time t, h12,t is 

the conditional covariance between commodity returns, or assets 1 and 2, and h22,t is the 

conditional variance of the commodity, or asset 2. The portfolio weight of the second 

commodity, or asset, in the one dollar portfolio is 1-w12,t.  

The average values of w12,t  for the commodities or assets in Model 2 are reported 

in Table 5. For instance, the average value of w12,t of a portfolio comprising copper and 
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exchange rate is 0.14.4 This suggests that the optimal holding of copper in one dollar of 

copper/euro portfolio in Model 2 is 14 cents, compared with 86 cents for the euro. 

Similar results are obtained for gold/euro and oil/ euro in Model 2, and for 

aluminum/euro in Model 3. These optimal portfolio weights suggest that investors should 

own more euro than commodities in their portfolios. For purely commodity portfolios, 

investors should hold more copper and gold than oil, and hold more gold than copper and 

aluminum in their portfolios. 

 

5.2. Hedge ratios 

As a second illustration, we follow the example given in Kroner and Sultan 

(1993) regarding risk-minimizing hedge ratios, and apply it to these markets. In order to 

minimize risk, a long position of one dollar taken in one commodity/asset market should 

be hedged by a short position of $t in another market at time t. The t is given by: 
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where t is the risk-minimizing hedge ratio for two commodities/assets, h12,t is the 

conditional covariance between markets 1 and 2, and h22,t  is the conditional variance of 

the second market.  

                                                 
4 Hassan and Malik (2007) used the BEKK model and estimated the average weight between the financial 
and technology sectors at 0.66, while the average risk-minimizing hedge ratio between these sectors was 
0.64. 
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The second column of Table 5 reports the average values of t for the markets.  

By following this hedging strategy, one dollar long in the copper market, for example, 

should be shorted by 31 cents in the foreign exchange market, 34 cents in the gold 

market, and by 9 cents in the oil market. Similarly, one dollar long in the gold market 

should be shorted by 4 cents in the oil market. It seems that the most effective hedging is 

by shorting oil. 

 

6. Conclusions 

A significant amount of research has modeled simultaneous transmissions of 

returns among commodity markets using VARs. A growing number of studies have also 

examined the behavior of shocks and volatility of oil and industrial commodities using 

univariate versions of the GARCH family of volatility models. These studies did not 

examine the transmission of shocks and volatility shocks, shock asymmetries and 

hedging strategies for commodities in a simultaneous setting. Commodity markets 

employ cross-market hedging, share common information that affects future volatilities 

simultaneously, and have asymmetric sensitivity to positive and negative shocks. These 

markets lag behind stock markets in this regard. With the increasing globalization of the 

world’s economies and commodity markets, analyzing commodity volatility spillovers, 

asymmetry to different shocks and hedging strategies is both important and useful. We 

have tried to fill these gaps for commodities in this paper. 

While univariate volatility models examine the impacts arising from markets such 

as foreign exchange on another market, such as gold, the simultaneous 

commodity/foreign exchange multivariate volatility models found many direct and 



 30

indirect shock and volatility transmissions, while confirming the direct impacts estimated 

in the univariate GARCH model, particularly between gold and the exchange rate. 

Including the exchange rate in the commodity model increases the direct and 

indirect shocks and volatility transmissions, particularly between the exchange rate, gold 

and oil. Replacing the business cycle sensitive copper with the energy intensive 

aluminum diminished the transmission, but affected the spillovers between the exchange 

rate and gold, and oil to a lesser extent. Traders, investors and the policy market should 

be aware of the strong transmissions of shocks and volatilities between the exchange rate, 

gold and oil.  

The industrial metals, copper and aluminum, have more asymmetric effects than 

do gold and oil. This makes them more volatile in a deep recession like the 2007-2009 

Global Financial Crisis. The industrial metals also have greater volatility persistence than 

do oil and gold. Therefore, hedging is more warranted for industrial commodities than for 

precious metals like gold, and also oil. A dollar-based flexible exchange rate has more 

volatility persistence than industrial metals, gold and oil. The presence of this flexible 

exchange also increases the volatility persistence of both oil and gold.  

In a two-asset portfolio, optimal portfolios hold a greater weight of the euro than 

of commodities, and more gold than aluminum, copper and oil. It would seem that the 

most effective way of hedging long positions with a shorting position is to short with oil.  
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 Figure 1. Historical Trajectories of the Four Commodities 
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Note: The graphs are for the log of the variables.
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Figure 2. Dynamic Conditional Correlations for Model 1 
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Table 1. Descriptive Statistics 

 
Statistics Aluminum Copper Exch. Rate Gold WTI Oil 

 Mean 0.0003  0.0007  0.0001  0.0004  0.0009  
 Median 0.0000  0.0000  0.0000  0.0001  0.0008  
 Maximum 0.0520  0.1155  0.0271  0.0701  0.1244  
 Minimum -0.0826  -0.1036  -0.0247  -0.0625  -0.1709  
 Std. Dev. 0.0123  0.0153  0.0058  0.0098  0.0236  
 Skewness -0.3288  -0.0957  0.0090  0.1160  -0.5517  
 Kurtosis 6.3808  8.1807  4.0321  8.9191  7.0413  
      
 Jarque-Bera 1139.294 2581.253 102.3437 3370.049 1685.484 
 Probability 0 0 0 0 0 
      
ARCH Effect 11.75 18.09 18.4 4.05 8.38 
      
 Sum 0.7422  1.6463  0.2029  1.0305  2.0246  
 Sum Sq. Dev. 0.3509  0.5389  0.0782  0.2199  1.2802  
      
 Observations 2305 2305 2305 2305 2305 

 
Notes: All commodity and dollar/euro exchange rate variables are log differences. The 
ARCH effect test was conducted on the AR(1) mean equations for up to 12 lags. The 5% 
critical value for this test is 1.75. 
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Table 2a. MGARCH Basic Model 1 for Aluminum, Copper, Gold and Oil 

Independent Variable 


 
 

  


 0.0198 a 2.00E-06  8.47E-04  5.20E-04  

 -5.95E-04  1.65E-04  0.0020  -6.63E-04  

 0.0043  8.40E-05  -0.0097  2.78E-04  

 0.0011  -3.00E-06  -1.11E-04  0.0052   

 1.80E-05  0.0173 a 0.0047  8.45E-04  

 -1.28E-04  0.0088 a -0.0229 a -3.54E-04  

 -3.30E-05  -3.39E-04  -2.64E-04  -0.0066   

 9.17E-04  0.0045 c 0.1108 a 1.48E-04  

 2.33E-04  -1.72E-04  0.0013  0.0028   

 5.90E-05  7.00E-06  1.50E-05  0.0520  a 

h 
0.9615 a 7.30E-05  3.73E-04  8.60E-05  

h 
0.0036  -0.0085  3.23E-04 a 6.00E-05  

h 
0.0049  1.20E-04  0.0174 b 1.50E-05  

h 
-0.0017  -8.00E-06  -5.70E-05  0.0086   

h 
1.30E-05  0.9883 a 2.80E-04  4.20E-05  

h 
1.80E-05  -0.0139  0.0151 b 1.10E-05  

h 
-7.00E-06  0.0010  -5.00E-05  0.0061   

h 
2.50E-05  1.95E-04  0.8114 a 3.00E-06  

h 
-9.00E-06  -1.30E-05  -0.0027  0.0015   

h 
3.00E-06  1.00E-06  9.00E-06   0.8697  a 

J.B. Stat 3074.2340 a 2888.5800 a 5156.0460 a 3252.5600  



Breusch–Godfrey LM 
stat 

0.0119  0.0765  0.0051  1.0294  


Durbin–Watson stat 2.0002  1.9996  1.9993  2.0003   

Log likelihood 27467.66  
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AIC -23.80  

#Obs. 2304  
Notes: Market subscripted by: 1 is aluminum, 2 is copper, 3 is gold, and 4 is oil. Hii refers to the variance in market I, while hij is the 
covariance of market i in response to past volatility in market j. Shocks are defined similarly. The likelihood value for this model is 
27500.74. a, b and refers to statistical significance at 1%, 5% and 10% levels. 



 39

 
Table 2b. MAGARCH Basic Model 1 for Aluminum, Copper, Gold and Oil 

Independent Variable 


 
 

  


 0.0142 b 2.26E-03  1.11E-04  7.26E-03  

 4.99E-03 b -8.44E-03  0.0009  8.81E-04  

 0.0046 c -2.59E-03  -0.0037  7.33E-04  

 0.0000  9.60E-05  -1.10E-05  -0.0004  

 1.75E-03  0.0315 a 0.0072 b 1.07E-04  

 1.60E-03  0.0097 a -0.0297 a 8.90E-05  

 -8.00E-06  -3.57E-04  -8.90E-05  0.0000  

 1.47E-03  0.0030  0.1233 a 7.40E-05  

 -8.00E-06  -1.10E-04  0.0004  0.0000  

 0.00E+00  4.00E-06  1.00E-06  0.0000  

h 
0.9595 a 0.00E+00  6.85E-04  7.70E-05  

h 
-0.0001  0.0002  4.19E-04 a 2.00E-06  

h 
-0.0065  -5.00E-06  0.0232 a -1.33E-04  

h 
-0.0040 c 0.00E+00  1.40E-04  -0.0086  

h 
0.00E+00  0.9715 a 2.56E-04  0.00E+00  

h 
1.00E-06  -0.0185 c 0.0142 a -4.00E-06  

h 
0.00E+00  -0.0008  8.60E-05  -0.0002  

h 
4.30E-05  3.51E-04  0.7842 a 2.30E-04  

h 
2.70E-05  1.50E-05  0.0047 c 0.0148  

h 
1.60E-05  1.00E-06  2.90E-05  0.9524 a


Asymmetric

 1.89E-02 c 2.69E-02 b 1.89E-03  0.0039  

 -1.65E-02 b -9.14E-03  -1.60E-03  0.0014  
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 -1.29E-02 b -1.56E-02 c -2.30E-03  -0.0004  

 -9.03E-04  8.07E-04  -1.70E-04  -0.0138  

 1.44E-02 b 3.10E-03  1.35E-03  0.0005  

 1.13E-02 a 5.28E-03  1.94E-03  -0.0001  

 7.88E-04  -2.74E-04  1.44E-04  -0.0049  

 8.79E-03  8.98E-03  2.80E-03  0.0000  

 6.16E-04  -4.66E-04  2.07E-04  0.0013  

 4.30E-05  2.40E-05  1.50E-05   0.0497 a

J.B. Stat 2994.2820 a 3232.4320 a 4952.0300 a 3370.5660 a 

Breusch–Godfrey LM stat 0.0380  0.1790  0.0379  0.6707  

Durbin–Watson stat 2.0003  1.9994  1.9993  2.0005  

Log likelihood 27522.56  

AIC -23.83  

#Obs. 2304  

 
Notes: Market subscripted by: 1 is aluminum, 2 is copper, 3 is gold, and 4 is oil. Hii refers to the variance in market I, while hij is the 
covariance of market i in response to past volatility in market j. Shocks are defined similarly. a, b and c refers to statistical significance 
at 1%, 5% and 10% levels. 
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Table 2c. Symmetric DCC Basic Model 1 for Aluminum, Copper, Gold and Oil  
  Aluminum Copper Gold Oil 

 Mean Equation 

C 0.0000 0.0000  0.0000  0.0011  

AR(1) -0.0355 -0.0131  0.0242  -0.0566 
b 

D03 0.0002 0.0009 
c 0.0007 

b -0.0001  

 Variance Equation 

C 1.00E-06 1.00E-06 
a 6.00E-06 

a 1.20E-05  

(t-1) 0.0360 0.0337 
a 0.1202 

a 0.0400 
a 

h(t-1) 0.9564 0.9614 
a 0.8168 

a 0.9385 
a 

 0.9923 0.9951  0.9370  0.9785  

 DCC Coefficients 

DDC(1) 0.01       

DDC(2) 0.99      

J.B. Stat 3358.7330 3144.3900 a 5277.9040 a 3280.5270 a 

Breusch–Godfrey LM stat 0.2709 0.5226  0.1035  0.7965  

Durbin–Watson stat 1.9990 1.9990  1.9996  2.0004  

Log Likelihood 27497.28  

AIC -23.84  

#Obs. 2304  

Notes: a, b and c refers to statistical significance at 1%, 5% and 10% levels. 
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Table 2d. Asymmetric DCC Basic Model 1 for Aluminum, Copper, Gold and Oil  
  Aluminum Copper Gold Oil 

 Mean Equation 

C 0.0004 


0.0004  0.0003   0.0015 
b 

AR(1) -0.0392 



-0.0161  0.0231   -0.0610 
a 

D03 -0.0003 


0.0004  0.0003   -0.0010  

 Variance Equation 

C 2.00E-06 



1.00E-06 
a 3.00E-06 

a 1.50E-05  

(t-1) 0.0586 



0.0369 
a 0.1523  

a 0.0215  

h(t-1) 0.9505 



0.9658 
a 0.8800  

a 0.9354 
a 

 -0.0359 



-0.0144 
b -0.1253  

a 0.0305 
c 

 0.9912 


0.9955  0.9697   0.9721  

 DCC Coefficients 

DDC(1) 0.01 



      

DDC(2) 0.99 



     

J.B. Stat 2856.3420 a 2936.3920 a 5109.9900  a 3353.8920 a 

Breusch–Godfrey LM stat 0.4333  0.7165  0.0930   0.9954  

Durbin–Watson stat 1.9988  1.9989  1.9996   2.0004  

Log Likelihood 27530.09 

AIC -23.84  

#Obs. 2304  

Notes: a, b and c refers to statistical significance at 1%, 5% and 10% levels. 
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Table 3a. Symmetric MGARCH Model 2 for Copper, Exchange Rate, Gold and Oil  

Independent Variable 


 
 

  


 0.0218 a 2.00E-06  4.33E-04 b 0.00E+00  

 -0.0032 a -1.35E-04  0.0044 a 1.08E-04  

 0.0084 a -1.70E-05  -0.0072 a 3.50E-05  

 0.0006 c 4.00E-06  -3.40E-05  6.10E-05  

 4.72E-04  0.0115 a 0.0439 a 0.0234 a

 -0.0012 a 0.0014 a -0.0723 a 0.0077 a

 -9.20E-05  -3.80E-04 a -3.47E-04  0.0132 a

 0.0033 a 1.73E-04 a 0.1190 a 0.0025 b

 2.41E-04  -4.70E-05 a 5.71E-04  0.0043 a

 1.80E-05  1.30E-05 b 3.00E-06  0.0074 a

h 
0.9750 a 1.00E-06 a 1.01E-04 a 2.80E-05 a

h 
0.0064 a 7.23E-04 a 3.46E-04 a -2.33E-04 a

h 
-0.0130 a -4.00E-06 a 0.0092 a -1.37E-04 a

h 
1.13E-04  2.00E-06 a 2.50E-05 a 0.0053 a

h 
4.30E-05 a 0.9892 a 0.0012 a 0.0019 a

h 
-8.60E-05 a -0.0052 a 0.0317 a 0.0011 a

h 
1.00E-06  0.0022 a 8.70E-05 a -0.0435 a

h 
1.74E-04 a 2.80E-05 a 0.8451 a 6.66E-04 a

h 
-2.00E-06  -1.20E-05 a 0.0023 a -0.0256 a

h 
1.30E-08  5.00E-06 a 6.00E-06 a 0.9880 a

J.B. Stat 3290.9100 a 1372.3180 a 5232.2520 a 3133.8780 a 

Breusch–Godfrey LM stat 0.4243  6.5452 a 0.0201  0.4847  

Durbin–Watson stat 1.9987  1.9998  1.9994  2.0004  

Log Likelihood 28915.49 

AIC -25.05 
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#Obs. 2304  
Notes: Market subscripted by: 1 is copper, 2 is dollar/euro foreign exchange,3 is gold, and 4 is oil. hii refers to the variance in market i, 
while hij is the covariance of market i in response to past volatility in market j. Shocks are defined similarly. a, b and c refers to 
statistical significance at 1%, 5% and 10% levels. 
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Table 3b. MAGARCH Model 2 for Copper, Exchange Rate, Gold and Oil  

Independent Variable 


 
 

  


 0.0209 a 3.00E-06  8.92E-04 a 2.92E-04  

 -4.63E-03 a -2.05E-04 c 0.0041 a 3.64E-03 b 

 0.0094 a -1.90E-05 c -0.0105 a 3.45E-04  

 0.0003  -2.00E-06  1.25E-04  0.0006  b 

 1.03E-03 b 0.0138 a 0.0189 a 4.53E-02 a 

 -2.09E-03 a 0.0013 a -0.0484 a 4.30E-03  

 -5.90E-05  1.42E-04  5.76E-04  0.0069  a 

 4.24E-03 a 0.0001 a 0.1241 a 4.09E-04  

 1.19E-04  1.30E-05  -0.0015  0.0007   

 3.00E-06  1.00E-06  1.80E-05  0.0010   

h 
0.9745 a 1.00E-06 a 1.39E-04 a 1.00E-06  

h 
0.0097 a 0.0008 a 4.44E-04 a -3.50E-05  

h 
-0.0150 a -4.00E-06 a 0.0107 a 2.00E-06  

h 
0.0009 b 1.00E-06 a 4.10E-05 a 0.0009   

h 
9.70E-05 a 0.9845 a 1.42E-03 a 1.55E-03 a 

h 
-1.50E-04 a -0.0046 a 0.0343 a -8.50E-05  

h 
9.00E-06 b 0.0006 a 1.33E-04 a -0.0384  a 

h 
2.30E-04 a 2.10E-05 a 0.8283 a 5.00E-06  

h 
-1.40E-05 b -3.00E-06 a 0.0032 a 0.0021   

h 
1.00E-06  0.00E+00 b 1.20E-05 b 0.9551  a 


Asymmetric

 7.30E-05  4.60E-05  1.03E-02 a 0.0041   

 -2.14E-04  3.96E-04 c -3.21E-02 a -0.0102  b 
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 -8.98E-04  -8.60E-05  6.76E-03 a 0.0014   

 1.22E-04  -6.00E-06  1.09E-03 c -0.0126  a 

 6.27E-04  3.45E-03 a 1.00E-01 a 0.0254  a 

 2.63E-03  -7.51E-04 b -2.11E-02 a -0.0034   

 -3.56E-04  -5.40E-05  -3.42E-03 c 0.0315  a 

 1.10E-02 a 1.63E-04  4.45E-03  0.0005   

 -1.49E-03 a 1.20E-05  7.20E-04  -0.0042   

 2.02E-04 b 1.00E-06  1.17E-04   0.0390  a 

J.B. Stat 3382.2970 a 1359.0920 a 4515.9870 a 3037.5550  



Breusch–Godfrey LM 
stat 

0.4136  5.7907 a 0.0444  0.6715   

Durbin–Watson stat 1.9987  1.9999  1.9995  2.0004   

Log Likelihood 28951.36 

AIC -25.07 

#Obs. 2304  

Notes: Market subscripted by: 1 is copper, 2 is dollar/euro foreign exchange,3 is gold, and 4 is oil. hii refers to the variance in market i, 
while hij is the covariance of market i in response to past volatility in market j. Shocks are defined similarly. a, b and c refers to 
statistical significance at 1%, 5% and 10% levels. 
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Table 3c. Symmetric DCC Model 2 for Copper, Exchange Rate, Gold and Oil  
 
  Copper Exchange Rate Gold Oil 

 Mean Equation 

C 0.0002 


-0.0001  -0.0001   0.0011 
c 

AR(1) -0.0186 


-0.0466 
b 0.0281   -0.0577 

a 

D03 0.0010 



0.0004 
c 0.0008  

b -0.0001  

 Variance Equation 

C 1.00E-06 



0.00E+00  6.00E-06 
a 1.40E-05  

(t-1) 0.0375 



0.0179 
a 0.1235  

a 0.0432 
a 

h(t-1) 0.9580 



0.9812 
a 0.8135  

a 0.9325 
a 

 0.9955  0.9991  0.9370   0.9757  

 DCC Coefficients 

DDC(1) 0.01 



      

DDC(2) 0.99 



     

J.B. Stat 3524.0620 a 1385.6650 a 5244.0990  a 3282.0560 a 

Breusch–Godfrey LM stat 1.7719  6.0609 a 0.0681   0.9622  

Durbin–Watson stat 1.9975  1.9998  1.9995   2.0003  

Log Likelihood 28529.47 

AIC -24.74  

#Obs. 2304  

Notes: a, b and c refers to statistical significance at 1%, 5% and 10% levels. 
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Table 3d. Asymmetric DCC Model 2 for Copper, Exchange Rate, Gold and Oil 
  Copper Exchange Rate Gold Oil 

 Mean Equation 

C 0.0004 


0.0000  0.0002   0.0014 
b 

AR(1) -0.0208 


-0.0482 
b 0.0276   -0.0621 

a 

D03 0.0007 


0.0003  0.0005   -0.0008  

 Variance Equation 

C 1.00E-06 



0.00E+00  3.00E-06 
a 1.70E-05  

(t-1) 0.0400 



0.0176 
a 0.1523  

a 0.0242  

h(t-1) 0.9655 



0.9812 
a 0.8799  

a 0.9269 
a 

 -0.0183 



0.0004  -0.1233  
a 0.0330 

c 

 0.9964  0.9988  0.9705   0.9676  

 DCC Coefficients 

DDC(1) 0.01 



      

DDC(2) 0.99 



     

J.B. Stat 2952.3270 a 1381.9830 a 5123.5450  a 3354.5930 a 

Breusch–Godfrey LM stat 2.1688  6.4804 a 0.0582   1.1930  

Durbin–Watson stat 1.9973  1.9998  1.9996   2.0003  

Log Likelihood 28557.22 

AIC -24.76  

#Obs. 2304  

Notes: a, b and c refers to statistical significance at 1%, 5% and 10% levels. 
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Table 4a. Symmetric MGARCH Model 3 for Aluminum, Exchange Rate, 
 Gold and Oil 

Independent Variable 


 
 

 


 0.0229 a 6.00E-06  3.29E-04  2.49E-04  

 2.32E-04  2.76E-04  0.0038  0.0029  

 0.0053 c 3.00E-05  -0.0063  5.70E-04  

 0.0014  -9.00E-06  3.70E-05  0.0015  

 2.00E-06  0.0118 a 0.0444 a 0.0347  

 5.40E-05  0.0013 c -0.0733 a 0.0067  

 1.40E-05  -3.94E-04  4.33E-04  0.0173  b

 0.0012  1.44E-04  0.1211 a 0.0013  

 3.15E-04  -4.40E-05  -7.15E-04  0.0034   

 8.10E-05  1.30E-05  4.00E-06  0.0086  a

h 
0.9655 a 3.58E-07  4.07E-04 c 4.00E-06  

h 
0.0022  6.17E-04  7.68E-04 a -9.20E-05  

h 
-0.0028  -3.00E-06  0.0184 a -3.60E-05  

h 
-0.0018  1.00E-06  7.80E-05  0.0020   

h 
5.00E-06  0.9895 a 0.0014 a 0.0021 b

h 
-7.00E-06  -0.0053 b 0.0347 a 8.10E-04  

h 
-4.00E-06  0.0021 a 1.47E-04  -0.0454  a

h 
8.00E-06  2.90E-05  0.8312 a 3.13E-04  

h 
5.00E-06  -1.10E-05 c 0.0035 c -0.0176   

h 
3.00E-06  5.00E-06 b 1.50E-05  0.9852  a

J.B. Stat 2937.2460 a 1366.9720 a 5270.5190 a 3222.5400  a 
Breusch–Godfrey LM 
stat 

0.5824  5.5120 a 0.0077  0.6051   

Durbin–Watson stat 1.9989  1.9998  1.9994  2.0003   

Log Likelihood 28528.88 
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AIC -24.71 

#Obs. 2304  

Notes: Market subscripted by: 1 is aluminum, 2 is dollar/euro foreign exchange, 3 is gold, and 4 is oil. hii refers to the variance in 
market i, while hij is the covariance of market i in response to past volatility in market j. Shocks are defined similarly. a, b and c refers 
to statistical significance at 1%, 5% and 10% levels.  
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Table 4b. MAGARCH Model 3 for Aluminum, Exchange Rate, Gold and Oil 

Independent Variable 


 
 

  


 0.0203 a 5.00E-06  3.55E-04  3.00E-03  

 3.87E-03 a 2.32E-04 c 0.0038 a -9.87E-03 a

 0.0048 a 3.00E-05 c -0.0066 a -7.12E-04  

 0.0013 b 6.00E-06  9.10E-05  0.0046 a

 7.36E-04 b 0.0104 a 0.0403 a 3.24E-02 a

 9.07E-04 a 0.0013 a -0.0699 a 2.34E-03  

 2.43E-04 c 2.48E-04  9.71E-04  -0.0150 a

 1.12E-03 a 0.0002 a 0.1214 a 1.69E-04  

 3.00E-04 b 3.20E-05  -0.0017  -0.0011  

 8.00E-05  6.00E-06  2.30E-05  0.0069 b

h 
0.9678 a 1.00E-05 a 6.84E-04 a 2.51E-04 a

h 
-0.0039 a 0.0031 a 9.00E-04 a -9.89E-04 a

h 
-0.0016  -1.40E-05 a 0.0237 a 5.56E-04 a

h 
-0.0042 a -1.90E-05 a -5.50E-05 c 0.0141 a

h 
1.60E-05 b 0.9805 a 1.19E-03 a 3.90E-03 a

h 
6.00E-06  -0.0046 a 0.0312 a -2.19E-03 a

h 
1.70E-05 a -0.0061 a -7.20E-05 c -0.0557 a

h 
3.00E-06  2.10E-05 a 0.8205 a 1.23E-03 a

h 
7.00E-06  2.90E-05 a -0.0019 c 0.0313 a

h 
1.80E-05 a 3.80E-05 a 4.00E-06  0.7951 a


Asymmetric

 2.74E-03 a 2.60E-05  1.24E-02 a 0.0129  

 -1.24E-04  3.46E-04  -1.52E-02 a -0.1063 a
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 2.56E-03 a -5.20E-05  2.86E-03  0.0198 b

 -8.37E-04 a 2.50E-05  -6.00E-06  -0.0346 a

 6.00E-06  4.69E-03 a 1.85E-02 a 0.8725 a

 -1.16E-04  -7.08E-04  -3.50E-03  -0.1624 a

 3.80E-05  3.36E-04 a 7.00E-06  0.2842 a

 2.40E-03 b 1.07E-04  6.61E-04  0.0302  

 -7.82E-04 a -5.10E-05  -1.00E-06  -0.0529 a

 2.55E-04 c 2.40E-05  0.00E+00  0.0926 a

J.B. Stat 2959.5220 a 1360.9660 a 4909.7820 a 2608.1460 a 

Breusch–Godfrey LM stat 0.4916  5.6479 a 0.0721  1.2870  

Durbin–Watson stat 1.9990  1.9997  1.9996  2.0005  

Log Likelihood 28569.28 

AIC -24.73 

#Obs. 2304  

Notes: Market subscripted by: 1 is aluminum, 2 is dollar/euro foreign exchange, 3 is gold, and 4 is oil. hii refers to the variance in 
market i, while hij is the covariance of market i in response to past volatility in market j. Shocks are defined similarly.   
Table 4c. Symmetric DCC Model 3 for Aluminum, Exchange Rate, Gold and Oil 
 
  Aluminum Exchange Rate Gold Oil 

 Mean Equation 

C 0.0001 


-0.0002  -0.0001   0.0011  

AR(1) -0.0533 



-0.0427 
b 0.0302   -0.0583 

a 

D03 0.0003 


0.0004 
c 0.0008  

b -0.0001  

 Variance Equation 

C 2.00E-06 



4.20E-05 
a 6.00E-06 

a 1.30E-05 
a 

(t-1) 0.0413 



-0.0041  0.1245  
a 0.0413 

a 

h(t-1) 0.9482 



-0.2343  0.8107  
a 0.9354 

a 

 0.9895    0.9352   0.9767  

 DCC Coefficients 

DDC(1) 0.01 



      

DDC(2) 0.99 



     

J.B. Stat 3180.2570 a 1384.5390 a 5283.5860  a 3277.4050 a 
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Breusch–Godfrey LM stat 0.9710  5.4346 a 0.0302   0.9120  

Durbin–Watson stat 1.9987  1.9998  1.9995   2.0003  

Log Likelihood 28837.23 

AIC -25.01  

#Obs. 2304  

Notes: a, b and c refers to statistical significance at 1%, 5% and 10% levels. 



 54

 
Table 4d. Asymmetric DCC Model 3 for Aluminum, Exchange Rate, Gold and Oil 
  Aluminum Exchange Rate Gold Oil 

 Mean Equation 

C 0.0004 


0.0000  0.0002   0.0015 
b 

AR(1) -0.0589 



-0.0511 
b 0.0246   -0.0631 

a 

D03 0.0000 


0.0003  0.0005   -0.0009  

 Variance Equation 

C 2.00E-06 



0.00E+00  3.00E-06 
a 1.50E-05  

(t-1) 0.0644 



0.0174 
a 0.1533  

a 0.0214  

h(t-1) 0.9442 



0.9813 
a 0.8775  

a 0.9343 
a 

 -0.0398 



0.0005  -0.1239  
a 0.0313 

c 

 0.9888  0.9987  0.9689   0.9713  

 DCC Coefficients 

DDC(1) 0.01 



      

DDC(2) 0.99 



     

J.B. Stat 2942.3220 a 1381.5270 a 5151.0190  a 3333.4030 a 

Breusch–Godfrey LM stat 1.0368  5.7998 a 0.0138   1.1084  

Durbin–Watson stat 1.9986  1.9998  1.9995   2.0004  

Log Likelihood 28946.91 

AIC -25.10  

#Obs. 2304  

Notes: a, b and c refers to statistical significance at 1%, 5% and 10% levels. 
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Table 5a. Optimal Portfolio Weights and Hedge Ratios 
 

Portfolio 

Weight (w12,t) of First 
Commodity/Asset  in 1$ 

Portfolio (Kroner and Ng,  
1998) 

Short/Long Beta t 
(Kroner and 
Sultan,1993) 

                                          Model 2 

Copper/Euro 0.14  0.31  

Copper/Gold 0.27  0.32  

Copper/Oil 0.72  0.09  

Euro/Gold 0.78  0.22  

Euro/Oil 0.95  0.01  

Gold/Oil 0.87  0.04  

       Model 3 

Aluminum/Euro 0.17  0.30  

Aluminum/Gold 0.35  0.24  

Aluminum/Oil 0.80  0.07  

 
Notes: w12,t is the portfolio weight of commodity or asset 1 relative to commodity or asset 2 in a two-commodity/asset holding  
at time t, while average t is the risk-minimizing hedge ratio for the two commodities/assets. 
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Table 5b. Symmetric and Asymmetric MGARCH Optimal Portfolio Weights and Hedge 
Ratios 
 

Portfolio 

Weight (w12,t)  
of First 

Commodity in 
1$ Portfolio 
(Kroner and 
NG (1998) 

Short/Long 
Beta t 
(Kroner 

and Sultan 
(1993) 

Weight (w12,t)  
of First 

Commodity in 
1$ Portfolio 
(Kroner and 
NG (1998) 

Short/Long 
Beta t 
(Kroner  

and Sultan 
(1993) 

 Symmetric Asymmetric 
 Model 1 

Aluminum/Copper 0.756  0.602  0.776  0.597  
Aluminum/Gold 0.348  0.235  0.349  0.235  
Aluminum/Oil 0.804  0.060  0.792  0.067  
Copper/Gold 0.266  0.314  0.266  0.311  
Copper/Oil 0.730  0.080  0.715  0.084  
Gold/Oil 0.875  0.041  0.869  0.043  
 Model 2 
Copper/EURO  0.140  0.311  0.144  0.319  
Copper/Gold 0.266  0.317  0.264  0.314  
Copper/Oil 0.723  0.088  0.719  0.084  
EURO/Gold 0.776  0.223  0.772  0.227  
EURO/Oil 0.950  0.010  0.946  0.009  
Gold/Oil 0.869  0.042  0.870  0.046  
 Model 3 
Aluminum/EURO  0.174  0.301  0.177  0.303  
Aluminum/Gold 0.346  0.237  0.346  0.240  
Aluminum/Oil 0.800  0.068  0.795  0.069  
EURO/Gold 0.778  0.225  0.776  0.228  
EURO/Oil 0.950  0.011  0.950  0.013  
Gold/Oil 0.869  0.042  0.866  0.044  

Notes: w12,t is the portfolio weight of commodity or asset 1 relative to commodity or asset 2 in a two-commodity/asset holding at time 
t, while average t is the risk-minimizing hedge ratio for the two commodities/assets. 
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Table 5c. Symmetric and Asymmetric DCC Optimal Portfolio Weights and Hedge Ratios 
 

Portfolio 

Weight (w12,t) 
of First 

Commodity in 
1$ Portfolio 
(Kroner and 
NG (1998) 

Short/Long 
Beta t  
(Kroner  

and Sultan 
(1993) 

Weight (w12,t) 
of First 

Commodity 
in 1$ 

Portfolio 
(Kroner and 
NG (1998) 

Short/Long 
Beta t 
(Kroner  

and Sultan 
(1993) 

 Symmetric Asymmetric 
 Model 1 

Aluminum/Copper 0.746  0.607  0.743  0.607  
Aluminum/Gold 0.350  0.269  0.347  0.273  
Aluminum/Oil 0.799  0.064  0.799  0.063  
Copper/Gold 0.263  0.364  0.262  0.371  
Copper/Oil 0.725  0.079  0.725  0.078  
Gold/Oil 0.868  0.041  0.867  0.041  
 Model 2 
Copper/EURO  0.146  0.309  0.146  0.305  
Copper/Gold 0.262  0.354  0.260  0.361  
Copper/Oil 0.724  0.084  0.724  0.084  
EURO/Gold 0.780  0.203  0.771  0.206  
EURO/Oil 0.947  0.008  0.947  0.008  
Gold/Oil 0.870  0.043  0.870  0.043  
 Model 3 
Aluminum/EURO  0.176  0.254  0.179  0.283  
Aluminum/Gold 0.346  0.258  0.343  0.263  
Aluminum/Oil 0.798  0.066  0.799  0.066  
EURO/Gold 0.778  0.205  0.769  0.205  
EURO/Oil 0.945  0.010  0.946  0.008  
Gold/Oil 0.870  0.043  0.870  0.043  

Notes: w12,t is the portfolio weight of commodity or asset 1 relative to commodity or asset 2 in a  
two-commodity/asset holding at time t, while average t is the risk-minimizing hedge ratio for the  
two commodities/assets. 

 
 
 
 

 


