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Abstract

In a fully micro-founded New Keynesian framework, we characterize analytically the re-

lation between average in�ation and oil price volatility by solving the rational expectations

equilibrium of the model up to second order of accuracy. Higher oil price volatility induces

higher levels of average in�ation. We also show that when oil has low substitutability and

the central bank responds to output �uctuations, oil price volatility matters for the level

of average in�ation. The model shows that when oil price volatility increases, average in-

�ation increases whereas average output falls: this implies a trade-o¤ also between average

in�ation and that of output. The analytical solution further indicates that for a given level

of oil price volatility, average in�ation is higher when marginal costs are convex in oil prices,

the Phillips Curve is convex, and the degree of relative price dispersion is also higher. We

perform a numerical exercise showing that the model with a empirically plausible Taylor

rule can replicate the level of average in�ation observed in the U.S. in 2000s.
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1 Introduction

This paper o¤ers a closed-form solution for the link between in�ation and oil price volatility:

higher oil price volatility induces higher levels of average in�ation. This link shifts with several

factors. We show that when oil has low substitutability and monetary policy reacts more

aggressively towards output �uctuations, oil price volatility has a larger impact over average

in�ation. Thus, both monetary policy and the properties of oil have important implications in

the determination of the link between oil price volatility and in�ation.

Very well known empirical evidence motivates our work. The past forty years were char-

acterized by many periods of oil price shocks with di¤erent implications on both economic

activity and in�ation. For instance, during the 1970s following the oil price shock (1973 and

1979), in�ation peaked substantially and GDP declined as well. Nevertheless, in the most

recent period (2002 onwards) the USA economy has experienced an oil price shock of similar

magnitude comparable to that of the 1970s, however, in distinction with the previous episode

both GDP growth and in�ation have remained relatively stable. Similarly, if we further explore

the link between oil price volatility (measured as the standard deviation of oil price) and both

average in�ation and output, we attain that larger oil price volatility was associated to high

levels of in�ation and low levels of output during the 1970s, whereas this link seems to be

broken down in the 2000s. These di¤erent episodes pose questions regarding the link between

oil price volatility and in�ation: Does oil price volatility matters for the level of in�ation?, why

the link between oil price volatility and in�ation has changed recently?, if oil price matters

what would be the role of monetary policy?

Blanchard and Gali (BG, 2008) addressed some of the above questions using a log-linear

New Keynesian model that includes the role of oil as both a production factor and a component

of the consumer price index. BG show that a monetary policy improvement, good luck, more

�exible labor markets and smaller share of oil in production have had an important role in

explaining the di¤erent macroeconomic performance between the 1970s and 2000s. The log-

linear approximation, however, might o¤er an inaccurate solution when shocks are relatively

large, substantially increasing the approximation error of the model´s solution. Indeed, as the

empirical evidence corroborates, oil price shocks are hefty compared to other shocks usually

appended in traditional new-Keynesian models (like monetary and productivity shocks). More

importantly, the log-linear solution misses crucial channels through which oil price a¤ect in�a-

tion, such as its own volatility, the precautionary behavior of price setters and the convexity of

the Phillips Curve. In a nutshell, a log-linear solution is incapable to tell us something about

a link between oil price volatility and average in�ation.

Thus, in this paper we complement BG work and deal with the aforementioned limitations
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arising from log-linear approximations by providing a tractable and uni�ed framework to ana-

lyze the e¤ects of oil price volatility on in�ation. Our framework allows us to shed additional

light beyond those o¤ered by log-linear solutions on the nature of the apparent changes in the

macroeconomic e¤ects of oil prices. In essence, we establish the link between oil price volatility

and average in�ation. In doing so, we use a standard New Keynesian micro-founded model

with staggered Calvo pricing where the central bank implements its policy following a Taylor

rule. We modify this simple framework considering oil as a production input for intermediate

good that is di¢ cult to substitute in production. Then, we solve up to second order of accuracy

the rational expectations equilibrium of this model using the perturbation method developed

by Schmitt-Grohé and Uribe (2004).

The second order solution has the advantage of incorporating the e¤ects of shocks volatility

in the equilibrium, which are absent in the linear solution. We implement this method both

analytically and numerically. As part of our contribution, we use an original strategy to obtain

an analytical solution. Thus, di¤erent from other papers in the literature such as Aruoba et.

al. (2006) and Schmitt-Grohé and Uribe (2005), in which the perturbation method is applied

directly to the non-linear system of equations, we �rst approximate the model up to second

order and then apply the perturbation method to the approximated model. This strategy

permits us to disentangle the key determinants of the relationship between oil price volatility

and in�ation and to quantify the importance of each determinant in general equilibrium.

Our basic �nding indicates that the second order analytical solution - by relaxing certainty

equivalence- permits us establishing a link between oil price volatility and average in�ation.

Just to highlight some parallelism, this level of in�ation generated by oil price volatility is

similar to the e¤ect of consumption volatility on the level of average savings studied in the

literature of precautionary savings. Indeed, the solution up to second order shows that oil price

volatility produces an extra level of in�ation by altering the way in which forward-looking �rms

set their prices. This mechanism is absent in log-linear solutions and the link arises from the

forward-looking behavior of the optimizing agents.

On the sources of the link between oil price volatility and in�ation, the analytical solution

shows the following: �rst, when oil has low substitutability, marginal costs are convex in

oil price, hence, its price volatility raises the expected value of marginal costs. Second, oil

price volatility in itself generates in�ation volatility, thus inducing price setters to be more

cautious to future expected marginal costs. In particular, producer relative prices become more

sensitive to marginal costs, amplifying the previous channel. Third, relative price dispersion,

by increasing the amount of labor required to produce a given level of output, increases average

wages, thus amplifying the e¤ect of expected marginal costs over average in�ation. Fourth,

in general equilibrium, the weights that the central bank assigns on in�ation and output
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are key determinants for the level of in�ation induced by oil price volatility. As a result, our

model predicts that the smaller (larger) the endogenous responses of a central bank to in�ation

(output) �uctuations, the greater the average in�ation (smaller average output). Thus, changes

in the way monetary policy was conducted may explain di¤erent responses of the economy to

oil price volatility and oil shocks. This �nding is consistent with the fact that, in the model,

oil price generates a monetary policy trade-o¤ between stabilizing in�ation and output, which

traduces to a policy trade-o¤ in means as well.

We also evaluate the implications of analytical results of the model by performing a �rst

pass numerical exercise calibrated for the U.S. economy. Overall, our results are broadly

consistent with predictions of the analytical solution. In addition, we are able to generate

a level of average in�ation similar to the one observed during the 2000s. We show that the

commitment of U.S. central bank to maintain low and stable levels of in�ation, helped to

improve the trade-o¤ between in�ation and output in 2000s, despite oil price volatility was of

similar magnitude to that observed in the 1970s. We further �nd others factors important in

explaining the link between in�ation and oil price volatility in the 2000s. For example, the

convexities of the Phillips curve and price dispersion explain 44 and 38 percent, respectively,

of the level of average in�ation in the 2000s. Last but not least, we devote a section to analyze

the accuracy of the second order approximation showing the gains of it, relative to the linear

solution, in terms of errors of the in�ation´s equation.

Other authors introduced the second order approach in closed and open economies; however,

most of the studies have mainly focused on welfare evaluations across di¤erent environments.

For example Benigno and Woodford (2003) implemented the second order solution to evaluate

optimal monetary and �scal policy in a closed economy. Benigno and Benigno (2005) used

the second order approach to evaluate the optimal policy in a two-country model with com-

plete markets. Two studies could be seen, methodologically, closer to our work. Evans and

Hnatkovska (2005) evaluated the role of uncertainty in explaining di¤erences in the holding of

assets in two-country models and Obstfeld and Rogo¤ (1998) developed an explicit stochastic

NOEM model relaxing the assumption of certainty equivalence. The latter authors, based on

simpli�ed assumptions, obtained an analytical solution for the level exchange rate premium.

Di¤erent from the aforementioned two studies, in this paper we obtain an analytical solu-

tion for the extra level of in�ation arising from the second order approximation using a fully

micro-founded New Keynesian model with oil prices.

The rest of the paper is organized as follows. Section 2 presents some basic facts for the

US economy to motivate on the link between oil price volatility and in�ation. In also provides

a simple model that supports the link. Section 3 presents the model. Section 4 explains the

mechanism at work in generating the link between oil prices and in�ation. Section 5 uses the
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model to analyze the role of oil price volatility and monetary policy for the level of average

in�ation and perform some numerical exercises. Section 6, for robustness, analyzes the degree

of accuracy of the second order solution. Finally section 7 concludes.

2 Motivation

2.1 Average in�ation and oil price volatility

Inspection of US in�ation and oil price data seems to suggest that both in�ation rate and oil

prices have moved together from 1970 until 1999. However, from 2000 onwards this positive co-

movement has broken down. Figure 1 displays the evolution of the real price of oil and in�ation

both in logs since 1970. We measure oil price as the log spot price West Texas Intermediate

minus log SA non-farm business sector de�ator and our measure of in�ation is the variation

of the consumer price index. The �gure shows that, from 1970 until the beginning of 2000s,

the dynamics of in�ation evolves closely to that of oil price. Thus, for the period 1970-1980

we observe a persistent initial increase in in�ation vis-à-vis a jump in oil price following the oil

price shock in 1974. From 1980 to 1999 we observe a steady decline in in�ation accompanied

by a persistent drop in oil price. Unlike the �rst two sub-samples, from 2002 onwards the

Figure shows a markedly upward trend in oil price and a moderate increase in in�ation. It

seems that the positive relationship between in�ation and oil price became weaker during the

more recent period.

This di¤erent dynamics witnessed during the 2002s is also evident when comparing the

standard deviation of oil price with average in�ation across the same sub-samples1.Table 1

reports the standard deviations and averages levels of both oil price and in�ation for the

three sub-samples, 1970-1983, 1984-2002 and 2002-2008. Again, by comparing the �rst and

second sub-samples, note that a high level of average in�ation and high volatility of oil price

characterizes the �rst one, whereas a lower level of both average in�ation and volatility of

oil price typi�es the second one. This very simple evidence indicates a positive relationship

between oil price volatility and average in�ation during the two �rst sub-samples. Nevertheless,

in the 2000s this relation has changed dramatically. From 2002-2008, oil price volatility is as

large as the one reported in the �rst sub-sample (1.49 in 2000s versus 1.55 in 1970s), however,

the average level of in�ation is three times smaller. The description of these stylized facts is

not altered if we use other measures of in�ation and oil price.
1BG identify four shocks using as a de�nition of oil shock as an episode involving a cumulative change in the

(log) price of oil above 50 percent, sustained for more than four quarters. Our two �rst sub-samples contain the
three �rst identi�ed shocks and the last sub-sample contains the fourth shock reported in BG.
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Figure 2.1: U.S. In�ation and Real Oil Price

Table 1: In�ation and Real Oil Price

(I) 1970-1983 (II) 1984-2002 (III) 2002-2008

S.D. In�ation 0.77 0.28 0.30

S.D. Real Oil Price 1.55 0.61 1.49

Mean In�ation 1.57 0.53 0.57

Mean Real Oil Price (1970=1) 2.87 2.17 4.30

We summarize the evidence reported above as follows: First, there is a positive link between

oil price volatility and average in�ation rate during the �rst two sub-samples. Second, this

positive link has broken down from 2002 onwards. The above two pieces of evidence are the

main motivation of our paper. In the next sections, �rst we develop a new Keynesian model

that permits us to obtain, analytically, a positive link between oil price volatility and average

in�ation. Second, with the model and the link at hand, we explore the reasons why this link

might have been broken down or has been less important during the 2000s.

2.2 The link in a simple model

Before moving to a general equilibrium analysis, in this section we use a simple model to

establish a link between average in�ation and oil price volatility. Suppose that �rms produc-

ing di¤erentiated goods set prices one period in advance. They also face a downward sloping
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demand function of the type, Yt(z) =
�
P �t (z)
Pt

��"
Y; where " represents the elasticity of sub-

stitution across goods and Y aggregate output, which is �xed. Under these assumptions, the

optimal pricing decision of a particular �rm z for time t is given by a mark-up over the expected

next period marginal cost,
P �t (z)

Pt�1
= �Et�1 [	tMCt] (2.1)

where �, MCt and 	t =
�"+1t
Et�1�"t

denote the mark-up, �rm´s marginal costs and a measure of

the responsiveness of the optimal price to future marginal costs, respectively. The previous

arguments are standard in new Keynesian frameworks. A second order Taylor expansion of

the expected responsiveness to marginal cost, 	t; is given by:

Et�1 [	t] = Et�1

�
�t +

1

2
(2"+ 1)�2t

�
(2.2)

From the above expression it is clear that Et�1	t is a convex function of expected in�ation.

This convexity implies that in�ation volatility increases the weight that a �rm assigns on

expected marginal costs. Thus, for the same level of marginal costs, an increase in in�ation

volatility generates a rise in in�ation.

To gain further insights, let us assume the following quadratic marginal cost function in

terms of oil prices (the only input for production is oil)

MCt = �1qt +
�2
2
q2t (2.3)

where qt denotes the real price of oil, �1 > 0 measures the linear e¤ect of oil over the marginal

cost and �2 accounts for the impact of oil price volatility on marginal costs. When �2 > 0,

marginal costs are convex in oil prices, hence expected marginal costs become an increasing

function of oil price volatility.2

Di¤erent forms of aggregation of sticky prices in the literature show that the in�ation rate is

proportional to the optimal relative price of �rms (equation (2.1)). Thus, when marginal costs

are convex, both the optimal relative price and in�ation are increasing in oil price volatility.

More importantly, other channels amplify the previous e¤ect. To the extent that oil price

volatility induces an increase in in�ation volatility, price setters react by augmenting the weight

on marginal costs, 	t, when setting their prices. As equation (2.2) indicates, up to second order,

the weight, 	t; depends not only on the level of expected in�ation but also on its volatility.

Nevertheless, it is fair to raise the question whether or not those second order e¤ects are

2 In section 4 we show that when the production function is a CES with an elasticity of substitution between
labor and oil lower than one, marginal costs are convex in oil prices, that is �2 > 0.
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important. As it will become clearer later in the paper, two special features of oil prices are

crucial to make those second order e¤ects quantitative sizable: a) its high volatility and b) its

low substitutability with other production factors.

A linear approximation that omits the role of both oil price and in�ation volatilities would

not capture the e¤ects of oil price volatility over average in�ation. In contrast, the second order

solution of the rational expectations equilibrium of the model allows us to include volatility

terms as determinants of the level of average in�ation.

So far we showed that a second order solution allows us to establish a positive link between

the volatility of oil prices and the average level of in�ation. Indeed, this positive relationship

can potentially explain the empirical evidence during the 1970s, that is, the higher the volatility

of oil price the higher the average level of in�ation.

Note also that in a micro-founded new Keynesian framework, �1 and �2 represent reduced

form parameters. For example, in such an environment, �2 measures the sensitivity of the

average level of in�ation to oil price volatility, and it will depend on deep parameters, among

them, those associated with the conduct of monetary policy (reaction function). Thus as an

example, if �2 falls due to a change in the central bank reaction function (i.e. more aggressive

towards in�ation), the e¤ect of oil price volatility, q2t , can be dampened and even completely

o¤set. This is consistent with the hypothesis that monetary policy has been more aggressive

in the late 1990s than in the 1970s. In the next section we formalize this link by deriving

a second order rational expectations solution of a New Keynesian general equilibrium model

with oil prices.

3 A new Keynesian model with oil prices

The model economy corresponds to the standard New Keynesian model. We follow Blanchard

and Gali (2008) in introducing a non-produced input M , represented in this case by oil. Q

denotes the real price of oil which is exogenous.

3.1 Households

We assume the following utility function on consumption and labour of the representative

consumer

Uto = Eto

1X
t=to

�t�to
�
C1��t

1� � �
L1+vt

1 + v

�
; (3.1)

where � and � represent the coe¢ cient of risk aversion and the inverse of the elasticity of labor

supply, respectively. The optimizer consumer takes decisions subject to a standard budget
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constraint which is given by

Ct =
WtLt
Pt

+
Bt�1
Pt

� 1

Rt

Bt
Pt
+
�t
Pt
+
Tt
Pt
; (3.2)

where Wt is the nominal wage, Pt is the price of the consumption good, Bt is the end of

period nominal bond holdings, Rt is the nominal gross interest rate , �t is the share of the

representative household on total nominal pro�ts, and Tt are transfers from the government.3

The �rst order conditions for the optimizing consumer´s problem are:

1 = �Et

"
Rt

�
Pt
Pt+1

��
Ct+1
Ct

���#
; (3.3)

Wt

Pt
= C�t L

�
t =MRSt: (3.4)

Equation (3:3) is the standard Euler equation that determines the optimal path of consump-

tion. At the optimum the representative consumer is indi¤erent between consuming today or

tomorrow, whereas equation (3:4) describes the optimal labor supply decision. MRSt denotes

the marginal rate of substitution between labor and consumption. We assume that labor mar-

kets are competitive and also that individuals work in each sector z 2 [0; 1]. Therefore, L
corresponds to the aggregate labor supply:

L =

Z 1

0
Lt(z)dz: (3.5)

3.2 Firms

3.2.1 Final goods producers

There is a continuum of �nal goods producers of mass one, indexed by f 2 [0; 1] that operate
in an environment of perfect competition. They use intermediate goods as inputs, indexed by

z 2 [0; 1] to produce �nal consumption goods using the following technology:

Y f
t =

�Z 1

0
Yt(z)

"�1
" dz

� "
"�1

; (3.6)

where " is the elasticity of substitution between intermediate goods. Then the demand function

of each type of di¤erentiated good, is obtained by aggregating the input demand of �nal good

3The government owns the oil´s endowment which is produced in the economy at zero cost and sold to the
�rms at an exogenous price. The government transfers all the revenues generated by oil to consumers, that is:
Tt
Pt
= QtMt.
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producers

Yt(z) =

�
Pt (z)

Pt

��"
Yt; (3.7)

where the price level is equal to the marginal cost of the �nal good producers and is given by:

Pt =

�Z 1

0
Pt (z)

1�" dz

� 1
1�"

; (3.8)

and Yt represents the aggregate level of output.

Yt =

Z 1

0
Y f
t df: (3.9)

3.2.2 Intermediate goods producers

There is a continuum of intermediate good producers indexed by z 2 [0; 1]. All of them have

the following CES production function

Yt(z) =
h
(1� �) (Lt(z))

 �1
 + � (Mt (z))

 �1
 

i  
 �1

; (3.10)

where M is oil which enters as a non-produced input;  represents the intratemporal elasticity

of substitution between labor-input and oil and � denotes the share of oil in the production

function. We use this generic production function to account for the fact that oil has few

substitutes ( < 1). Since oil has few substitutes an appealing functional form to capture this

feature is the CES production function. This function o¤ers �exibility in the calibration of

the degree of substitution between oil and labor.4 The oil price shock, Qt, follows an AR(1)

process in logs,

logQt = (1� �) logQ+ � logQt�1 + "t; (3.11)

where Q is the steady state level of oil price. From the cost minimization problem of the �rm

we obtain an expression for the real marginal cost given by:

MCt(z) =

"
(1� �) 

�
Wt

Pt

�1� 
+ � (Qt)

1� 
# 1
1� 

; (3.12)

4Some authors that have included oil in the analysis of RBC models and monetary policy, have omitted
this feature. For example, Kim and Loungani (1992) assume for the U.S. a Cobb-Douglas production function
between labor and a composite of capital and energy. Given that they calibrate their model considering that
oil has a small share on output, they found that the impact of oil in the U.S. business cycle is small. Notice
that when  = 1; the production function collapses to the standard Cobb-Douglas function as the one used by
Blanchard and Gali (2006): Yt(z) = (Lt(z))

1�� (Mt (z))
� :
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where MCt (z) ;Wt and Pt represents the real marginal cost, nominal wages and the consumer

price index, respectively. Note that since technology has constant returns to scale and factor

markets are competitive, marginal costs are the same for all intermediate �rms, i.e. MCt (z) =

MCt. The individual �rm´s labor demand is given by:

Ldt (z) =

�
1

1� �
Wt=Pt
MCt

�� 
Yt(z): (3.13)

Intermediate producers set prices following a staggered pricing mechanism a la Calvo. Each

�rm faces an exogenous probability of changing prices given by (1� �). The optimal price that
solves the �rm�s problem is given by

�
P �t (z)

Pt

�
=

�Et

� 1P
k=0

�k�t;t+kMCt+kF
"+1
t;t+kYt+k

�
Et

� 1P
k=0

�k�t;t+kF
"
t;t+kYt+k

� ; (3.14)

where � � "
"�1 is the price markup, �t;t+k = �k

�
Ct+k
Ct

���
Pt
Pt+k

is the stochastic discount factor,

P �t (z) is the optimal price level chosen by the �rm, Ft;t+k =
Pt+k
Pt

denotes the cumulative level

of in�ation and Yt+k is the aggregate level of output. Since only a fraction (1� �) of �rms
changes prices every period and the remaining share keeps its price �xed, thus the aggregate

price level -the price of the �nal good that minimize the cost of the �nal goods producers- is

given by the following equation:

P 1�"t = �P 1�"t�1 + (1� �) (P �t (z))
1�" : (3.15)

Following Benigno and Woodford (2005), equations (3:14) and (3.15) can be written recursively

introducing the auxiliary variables Nt and Dt (see appendix B:1 for details):

� (�t)
"�1 = 1� (1� �)

�
Nt

Dt

�1�"
; (3.16)

Dt = Yt (Ct)
�� + ��Et

h
(�t+1)

"�1Dt+1

i
; (3.17)

Nt = �Yt (Ct)
��MCt + ��Et [(�t+1)

"Nt+1] : (3.18)

Equation (3:16) comes from the aggregation of individual �rms prices. The ratio Nt=Dt repre-

sents the optimal relative price P �t (z) =Pt: Equations (3.16), (3.17) and (3.18) summarize the

recursive representation of the non- linear Phillips curve. Writing the optimal price setting

11



in a recursive way is necessary in order to implement both numerically and algebraically the

perturbation method.

3.3 Monetary policy

The central bank conducts monetary policy by targeting the nominal interest rate according

to the following Taylor-type rule

Rt = R
�r
t�1

"
R

�
Et�t+1

�

��� �Yt
Y

��y#1��r
; (3.19)

where, �� > 1 and �y > 0 measure the response of the nominal interest rate to expected future

in�ation and current output, respectively. The degree of interest rate smoothing is measured

by 0 � �r � 1: The steady state values are expressed without time subscript and with and

upper bar.

3.4 Market clearing

Labor, intermediate and �nal goods markets clear. Since there is neither capital accumulation

nor government sector, the economy-wide resource constraint is given by

Yt = Ct: (3.20)

The labor market clearing condition is given by:

Lt = Ldt : (3.21)

Where the demand for labor comes from the aggregation of individual intermediate producers

in the same way as the labor supply:

Ld =

Z 1

0
Ldt (z)dz =

�
1

1� �
Wt=Pt
MCt

�� Z 1

0
Yt(z)dz; (3.22)

Ld =

�
1

1� �
Wt=Pt
MCt

�� 
Yt�t;

where �t =
R 1
0

�
Pt(z)
Pt

��"
dz is a measure of price dispersion. Since relative prices di¤er across

�rms due to staggered price setting, input usage will di¤er as well. Thus, it is not possible to use

the usual representative �rm assumption. Therefore, the price dispersion factor, �t; appears

in the aggregate labor demand equation. From (3.22) note that higher the price dispersion the
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larger the labor amount necessary to produce a given level of output.

4 The second order representation

4.1 The second-order Taylor expansion

As previously mentioned, the special features of oil, such as its high price volatility and its low

substitutability in production, imply that oil prices can have meaningful second-order e¤ects on

in�ation in addition to those usually shown to be important in log-linear models. In log-linear

representations certainty equivalence holds, thus uncertainty does not play any role. Thus,

to gauge the link between oil prices and in�ation, a second-order solution is required. To

characterize this solution, we present a log-quadratic Taylor approximation of equations (3.3),

(3.4),(3.12), (3.16), (3.17), (3.18), (3.19 ) and (3.22) around the deterministic steady-state.5

The second-order Taylor-series expansion serves to compute the equilibrium �uctuations of

the endogenous variables of the model up to a residual of order O
�
kqt; �qk2

�
where �q is the

standard deviation of the real oil price and kqt; �qk denotes a bound on both the deviation
of oil price from its steady state and its volatility.6 We denote variables in steady state with

upper bar (i.e. X) and their log deviations around the steady state with lower case letters

(i.e. x = log(XtX )). After imposing the goods and labor market clearing conditions to eliminate

real wages and labor from the system, the dynamics of the economy is given by the following

equations:

5Appendix B:2 provides a detailed derivation of the log-quadratic Taylor approximations. See appendix A
for the derivation of the steady-state of the economy.

6Since we want to make explicit the e¤ects of changes in oil price volatility over the equilibrium of the
endogenous variables, we solve the policy functions as in Schmitt-Grohe and Uribe (2004) in terms of the shocks
(qt) and its volatility, (�q). This approach is di¤erent to the one undertook by Benigno and Woodford (2003),
for example, who considers a policy function in terms of the shocks only (et).
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Table 2: Second order Taylor expansion of the equations of the model

Marginal Costs
mct = � (� + �) yt + (1� �) qt +

1
2
(1� �)�2 1� 

1�� ((� + �) yt � qt)
2 + �v b�t +O

�
kqt; �qk3

�
(i)

where the price dispersion is de�ned by:b�t = � b�t�1 + 1
2
" �
1���

2
t +O

�
kqt; �qk3

�
(ii)

Phillips Curve
�t = �mct +

1
2
�mct (2 (1� �) yt +mct) +

1
2
"�2t + �Et�t+1 +O

�
kqt; �qk3

�
(iii)

where we have de�ned the auxiliary variables:

�t � �t +
1
2

�
"�1
1�� + "

�
�2t +

1
2
(1� ��)�tzt (iv)

zt � 2 (1� �) yt +mct + ��Et
�
2"�1
1����t+1 + zt+1

�
+O

�
kqt; �qk2

�
(v)

Aggregate Demand
yt = Etyt+1 � 1

�
(rt � Et�t+1)� 1

2
�Et

�
(yt � yt+1)� 1

�
(rt � �t+1)

�2
+
�
kqt; �qk3

�
(vi)

Policy Rule
rt = �rrt�1 + (1� �r)

�
��Et�t+1 + �yyt

�
(vii)

Oil process
qt = �qt�1 + ��qet (viii)

where � � 1��
1+v � , � � � 

�
Q

MC

�1� 
, � � 1��

� (1� ��), and Q, and MC denote the

steady-state value of oil price and marginal costs, respectively. The �rst �ve equations of table

2 summarize the second-order expansion of the aggregate supply curve, whereas the sixth

equation is the second-order expansion of the aggregate demand. We obtained equation (i) by

taking a second-order Taylor-series expansion to the real marginal cost equation after replacing

real wages with its equilibrium determinants. The term b�t , equation (ii), is the log-deviation

of the measure of price dispersion �t, which is a second order function of in�ation. Overall,

these equations indicate that in an economy with volatile oil prices, not only expected marginal

costs, expected oil price, and expected future in�ation matter for in�ation dynamics but also

their second moments. For instance, the second order approximation adds two new ingredients

to the determination of the marginal cost. The �rst one is related to the convexity of marginal

costs with respect to oil price. From equation (i) note that, when oil is di¢ cult to substitute,

 < 1, the marginal cost becomes a convex function of oil price, hence, oil price volatility

induces an increase in the expected marginal cost. This is an important channel through

which oil price generates higher in�ation rates absent when using Cobb-Douglas production

function : When  = 1; the marginal cost equation boils down to

mct = � (� + �) yt + (1� �) qt + �v b�t

Note that, in the above equation, the marginal cost does not depend directly on the volatility

of oil prices
�
q2t
�
, but only indirectly through its e¤ects on relative price dispersion term, b�t.
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The second new ingredient in equation (i) is the price dispersion term b�t. It is clear that

as price dispersion increases, the required number of hours to produce a given level of output

also increases. The higher labor demand further increases real wages and therefore marginal

cost also increase. This e¤ect is higher the lower the elasticity of labor supply, 1v ; and the

higher the share of oil in production.

The second order representation of the aggregate demand considers also the e¤ect of growth

rate of consumption volatility on savings. Thus, when the volatility of consumption increases,

consumption falls, since households increase their savings for precautionary reasons.

4.2 The canonical representation

Next we further simplify the model by plugging equations (i),(ii),(iv) and (v) in equation (iii),

and the policy rule of the central bank (vii) in equation (vi). To make the analysis analytically

tractable, we set the smoothing parameter in the Taylor rule equal to zero. Similarly, we

assume an small initial price dispersion such that b�to�1 � 0 up to second order.7 Thus,

the model collapses to a second- order system of two-equations as a function of in�ation and

output: an aggregate supply equation (4.1) and an aggregate demand equation (4.2) )

�t = �yyt + �qqt + �Et�t+1 +
1

2
!��

2
q +

1

2
(
mc +
� +
�) q

2
t +O

�
kqt; �qk3

�
(4.1)

yt = Et (yt+1)�
1

�

�
(�� � 1)Et�t+1 + �yyt

�
+
1

2
!y�

2
q +O

�
kqt; �qk3

�
(4.2)

where �y � � (� + �)� , and �q � (1� �)�. To get the above two equations, we write the
second-order terms of the endogenous variables as functions of �2q and q

2
t , using the �rst-order

solution of the model as in Sutherland (2002). As equation (4.1) shows, both the conditional

and unconditional variances of oil price are relevant for the determination of average in�ation.

The magnitude of the impact of these second moments on average in�ation depends on the

following �omegas� coe¢ cients: 
mc measures the impact of q2t on marginal costs, 
�, on �
2
t ,


� on �t , similarly, !� and !y measure the impact of �2q on in�ation and output, respectively.

Those coe¢ cients are derived in appendix B. Note that if the aforementioned coe¢ cients were

equal to zero the model would collapse to a standard version of a New Keynesian model

in log linear form. In the next section, we obtain the link between in�ation and oil price

volatility by solving the rational expectations equilibrium for f�tg and fytg using (4.1) and
(4.2). Yet, before moving to the analytical solution we perform some simulations showing how

7This notwithstanding, the numerical exercises consider the more general speci�cation of the model and
qualitatively results are broadly the same.
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the �omegas� coe¢ cients depend upon deep parameters. To perform the simulation we use

the benchmark parameterization of section 5.3.


mc coe¢ cient measures both the direct e¤ect of oil price volatility on marginal costs and

its indirect e¤ect through the labor market. Let�s �rst consider the direct e¤ect. When oil has

few substitutes,  < 1, the �rm´s marginal cost is convex in oil prices, hence, the expected

marginal cost becomes an increasing function of oil price volatility. To compensate any increase

in expected marginal costs triggered by oil price volatility, a forward looking �rm reacts by

optimally charging a higher price. In turn, this �rm´s response leads to higher aggregate

in�ation when prices are sticky.8 Interestingly, the smaller the elasticity of substitution between

oil and labor inputs, the larger the increase in both marginal costs and in�ation in response

to oil price volatility. Oil price volatility further a¤ects the marginal cost indirectly, through

its e¤ects on the labor market. Since oil price volatility generates in�ation volatility, which

is costly because it increases relative price distortions, e¢ ciency in production falls as the

volatility of oil prices rises. In particular, �rms require, at the aggregate level, more hours of

work to produce the same amount of output. Hence, the demand for labor rises, making labor

more expensive and consequently the marginal cost and in�ation augment even further.

Panels (a) and (b) in �gure 4.1 depict the relation between 
mc and the elasticity of substi-

tution between oil and labor inputs,  ; and the steady state level of oil prices, Q; respectively.

As shown in panel (a), the lower the elasticity of substitution,  ; the higher the direct e¤ect

of oil price volatility over marginal costs. Moreover, the higher the steady state level of oil

price, ceteris paribus, the higher the e¤ect of oil price volatility on marginal costs. Overall

these simulations suggest that economies where oil has less substitutes or oil price is large, oil

price volatility in itself would have a larger impact on average in�ation.

Coe¢ cient 
� accounts for the e¤ects of oil price volatility on the weight �rms assign

to movements in future marginal costs. When prices are sticky and �rms face a positive

probability of not being able to change prices, as in the Calvo price-setting model, the weight

that �rms assign to future marginal cost depends on both expected in�ation and in�ation�s

volatility. Thus, oil price volatility by raising in�ation volatility induces price-setters to put

a higher weight on future marginal costs. In a nutshell, oil price volatility not only increases

expected marginal costs but also it makes the �rms´ relative prices to be more sensitive to

future marginal costs. In fact, panel (c) in �gure 2 shows that the lower the degree of price

stickiness, �; the larger the e¤ect of oil price volatility over in�ation volatility, 
�. The previous

8This mechanism can be understood by observing equation (i), where @2mct
@q2t

= (1� �)�2 1� 
1�� . When  <

1( > 1), @
2mct
@q2t

> 0(< 0)
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Figure 4.1: Average in�ation components.
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relation comes from the fact that lower price rigidity makes the Phillips curve steeper and more

convex, making the e¤ect of in�ation volatility larger. Panel (d) shows that when the elasticity

of substitution of goods, "; increases, the e¤ect of in�ation volatility on the individual price of

�rms, 
�; increases.

Coe¢ cients 
� and !� account for the time variant and constant e¤ects of in�ation volatil-

ity on the composite of in�ation �t, respectively. Both mechanisms are similar to the ones

associated to 
�, however, both coe¢ cients are quantitatively small. Finally, the coe¢ cient

!y is negative and accounts for the standard precautionary savings e¤ect, by which oil price

volatility induces households to increase their savings to bu¤er future states of the nature when

income is low.

5 Oil price volatility and in�ation in general equilibrium

5.1 The equilibrium level of average in�ation

We use the perturbation method to obtain the second order rational expectations solution of

the model.9 Di¤erent from other papers which apply perturbation methods directly to the

non-linear system of equations, we �rst approximate the model up to second order and then

implement the perturbation method.10 Our approach has the advantage that makes it easier to

obtain clear analytical results for the link between the level of in�ation and oil price volatility.

We write the rational expectations second order solution of output and in�ation, in log-

deviations from the steady state, as quadratic polynomials in both the level and the standard

deviation of oil price shock:

yt =
1

2
ao�

2
q + a1qt +

1

2
a2 (qt)

2 +O
�
kqt; �qk3

�
(5.1)

�t =
1

2
bo�

2
q + b1qt +

1

2
b2 (qt)

2 +O
�
kqt; �qk3

�
(5.2)

where the a�s and b�s are the unknown coe¢ cients that we need to solve for and O
�
kqt; �qk3

�
9We implement the perturbation proposed by Schmitt-Grohe and Uribe (2004). This method was originally

developed by Judd (1998) and Collard and Julliard (2001). The �xed point algorithm proposed by Collard and
Julliard introduces a dependence of the coe¢ cients of the linear and quadratic terms of the solution with the
volatility of the shocks. In contrast, the advantage of the algorithm proposed by Schmitt-Grohe and Uribe is
that the coe¢ cients of the policy are invariant to the volatility of the shocks and the corresponding ones to the
linear part of the solution are the same as those obtained solving a log linear approximated model, which makes
both techniques comparable.

10Since a second order Taylor expansion is an exact approximation up to second order of any non-linear
equation, having the system expressed in this way will give us the same solution as the system in its non-linear
form.
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denotes terms on q and �q of order equal or higher than three.11 Notice that the linear terms

a1qt and b1qt correspond to the policy functions that we would obtain using any standard

method for linear models (i.e. undetermined coe¢ cients), whereas the additional elements

ao; b0; a2 and b2; account for the e¤ects of second moments. The quadratic terms in the policy

function of in�ation have two components: 1
2bo�

2
q , which is constant and

1
2b2 (qt)

2 ; which is

time varying. Taking the unconditional expectation to equation (5:1) we obtain the level of

average in�ation as a function of oil price shock volatility and deep parameters

E (�) =
1

2
(bo + b2)�

2
q

The perturbation method helps us to recover parameters bo and b2; thus allowing us to get an

expression for the level of average in�ation which reads as follows:

E (�) =
1

2

1

�0

�
�y (
mc +
� +
�) (1 + 	) + �y!� + ��y!y

�
�2q (5.3)

where �0 � (�� � 1)�y + (1� �)�y > 0: Equation (5.3) indicates that not only the �rst

moments of oil price a¤ect in�ation but also its volatility. According to the above equation, the

link between average in�ation and oil price volatility depends crucially on how monetary policy

is conducted and on the �omegas� coe¢ cients, where the latter are linked to the convexity of

both marginal costs and the Phillips curve. In Appendix B.4 we show that the parameter 	

is positive. Thus, if �0 > 0; average in�ation is always positive, when it holds that

�y > �!y��y= [!� + (
mc +
� +
�) (1 + 	)] > 0 (5.4)

since !y is negative, the right hand side is positive. In this case, average in�ation is increasing

on the �omegas� coe¢ cients.

5.2 The role of monetary policy

The way the central bank implements its monetary policy plays a crucial role on the positive

link between oil price volatility and average in�ation. First, a necessary condition for this link

to exist is that the central bank rises interest rates in response to output �uctuations, �y > 0.

This is so because in this case, a sharp increase in oil prices does not lead the central bank to

raise interest rates by so much, implicitly allowing the oil price shock to generate higher and

more volatile in�ation levels, which, as we described before, generates higher average in�ation.

Yet, if the central bank cares only about in�ation and does not react to output �uctuations,

11Schmitt-Grohe and Uribe (2004) show that the quadratic solution does not depend neither on �q nor on
qt�q . That is, they show that the coe¢ cients in the solution for those terms are zero.

19



that is �y = 0, the model predicts that average in�ation would be negative and small even if

oil prices are very volatile. In this case, the oil price shock generates a sharp fall in output

triggered by the precautionary savings behavior of households, which more than compensate

the impact of oil prices on in�ation through a fall in labor costs. This restriction, however is

weaken when households do not exhibit precautionary savings, !y = 0: In this case, the link

between oil price volatility and average in�ation is positive even when, �y = 0: Moreover, as

it is shown in Montoro (2010), in this setup it is optimal for the central bank to react both

to in�ation and output �uctuations, since oil prices generate an endogenous trade-o¤ between

stabilizing in�ation and the e¢ cient output gap. This endogenous trade o¤ emerges from the

combination of a distorted steady state and a CES production function.12

Second, there exist an interesting association between the size of average in�ation and the

well known Taylor principle. Note that the denominator of expression (5:3) ; �0; is not other

thing that the condition that guarantees uniqueness of the rational expectations equilibrium

in the canonical new Keynesian model, known as the Taylor principle. To the extent that

�y > 0 and above the small threshold needed for having positive average in�ation, the larger

the reaction to in�ation, ��; the larger �0; and consequently the smaller the level of average

in�ation. While the degree of average in�ation is larger when �y is larger, this relation weakens

when the central bank reacts more aggressively to in�ation (larger ��). Note also that for small

values of �� there are meaningful di¤erences in the levels of average in�ation when changing

the reaction to output �uctuations.

A fundamental implication of this analysis is that monetary policy can mitigate the e¤ects

of oil price volatility on in�ation by reacting more strongly to changes in expected in�ation,

but at the cost of lower average output. This result re�ects the existence of a trade-o¤ between

average in�ation and average output.

All in all, our exercise shows that a di¤erent response of monetary policy could explain

di¤erent responses of in�ation to oil price volatility and, in particular, it could also help to

explain why the positive link between oil price volatility and in�ation has weaken from 2002

onwards. Clarida, Gali and Gertler (2000) provided evidence of a stronger interest rate response

to variations in in�ation over the 1990s and 2000s, relative to 1970s. Thus, our analytical

framework supports the idea that the improvement of the conduct of monetary policy has

played a crucial role in explaining the broken link between oil price volatility and in�ation in

12Benigno and Woodford (2005) in a similar model but without oil price shocks have found an endogenous
trade-o¤ by combining a distorted steady state with a government expenditure shock. In their framework, is the
combination of a distorted steady state along with a non-linear aggregate budget constraint due to government
expenditure crucial for the existence of this endogenous trade-o¤. Analogous, in our paper, is the combination
of the distorted steady state and the non-linearity of the CES production function what delivers the endogenous
trade-o¤.
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the more recent period.

5.3 Some numerical experiments

In this section we perform some numerical exercises aimed at evaluating the ability of the model

to at least qualitatively account for the level of in�ation in 2000s. An extensive quantitatively

analysis is beyond the scope of the paper, we rather focus on the implication of monetary policy

and some properties of oil prices in shifting the link between average in�ation an oil prices. In

the model, we interpret oil price shocks as the main driven force of in�ation, although we are

aware that in order to closely match the moments of other macro variables, additional shocks

might be necessary.

Table 3 below summarizes the benchmark parameters values. We estimate an oil demand

equation for the U.S. to recover both the steady state share of oil prices in marginal costs

(� = 0:02875) and the elasticity of substitution between oil and labor ( = 0:02). See appendix

C for details on the calculations.13 The steady state level of oil price over marginal costs,

Q=MC; is set equal to �:14 We estimate the AR(1) process for the log of real oil prices during

the sample 2002 to 2008. The implied standard deviation of the oil price is equal to �q = 1:49:

Table 3: Benchmark parameterization

Technology Oil Taylor Rule Preferences Other

� 0.02875 Q=MC 0.02875 '� 1.54 � 0.99 � 0.66

 0.02 � 0.951 'y 0.99 � 1 " 7.88

�e 0.097 'r 0.72 v 0.5

We parameterize the Taylor rule according to Judd-Rudebush (1998). We set a quarterly

discount factor, �, equal to 0:99 which implies an annualized rate of interest of 4%. For

the coe¢ cient of risk aversion parameter, �, we choose a value of 1 and the inverse of the

elasticity of labor supply, v, is calibrated to be equal to 0:5, similar to those values used in

the RBC literature. The probability of the Calvo lottery is set equal to 0:66 which implies

that �rms adjust prices, on average, every three quarters. We choose a degree of monopolistic

competition, ", equal to 7:88; which implies a �rm mark-up of 15% over the marginal cost.

Table 4 below reports the mean of in�ation and output and their corresponding volatilities

13Other authors considered a larger share of oil in production or costs. For example, Atkeson and Kehoe
(1999) use a share of energy in production of 0.043 and Rotemberg and Woodford (1996) a share of energy equal
to 5.5% of the labour costs.
14We choose Q=MC = � because we cannot estimate directly Q=MC and neither we can disentangle the

composition of � between � and Q=MC. Changing Q=MC while maintaining constant � does barely change
the results.
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and for comparison we also report the values observed in the data.15 The second column of

table 4 reports the simulated values under the baseline parameterization. Note that the model

delivers a positive level of average in�ation similar to that observed in the data ( 0.50 versus

0.57) whereas a negative value of output, -0.27 in the model versus -0.20 in the data. Thus, our

baseline model does a reasonable job in getting close to the data. The third and fourth columns

illustrate the implications of changes in the properties of oil prices over in�ation and output.

As the third column shows, when the steady-state oil price doubles, average in�ation rises more

than three times, and average output also declines in similar proportion. Likewise, the fourth

column indicates that when oil price volatility increases from 0.1 to 0.4 (four times), average

in�ation (average output) increases (decreases) above �ve times compared to the baseline case.

These results are consistent with the analytical results and intuition explained in section 5.

Finally, columns 5 and 6 evaluates how average in�ation changes when monetary policy varies.

Overall the results demonstrate that the way in which monetary policy is conducted is crucial

to explain not only the cyclical behavior of in�ation and output but also its average levels.

Indeed, when �� rises from 1.2 to 2 average in�ation falls by 92 percent where as average output

moves from -0.47 to -0.18. The contrary occurs when �y falls. All in all, these results indicate

that the more aggressive towards in�ation the central banks is, the smaller the impact of oil

price volatility over in�ation and the larger the impact over output. Thus, the model predicts a

policy trade-o¤ in means similar to the traditional trade-o¤ that arises in the log-linear model.

Table 4: Unconditional Moments - Risk Analysis Exercise

Data (2002-2008) Model Q " �q " �� =1.2 ��=2.0

Mean In�ation 0.57 0.50 1.62 2.83 2.33 0.18

Mean Output -0.20 -0.27 -0.89 -1.55 -0.47 -0.18

S.D. In�ation 0.30 0.91 1.80 2.30 1.44 0.60

S.D. Output 0.98 0.47 0.93 1.23 0.44 0.53

To illustrate the importance of the di¤erent mechanisms that are behind the level of average

in�ation, table 5 reports the decomposition of average in�ation in terms of the �omegas�

parameters de�ned in the previous section. As previously stated, the determinants of average

in�ation, in general equilibrium, can be de-composed in four components: those arising from

the non-linearity (convexity) of the Phillips curve (
�), the non-linearity of the marginal costs

(
�), the auxiliary variable �t (!� and 
�) and the precautionary savings e¤ect (!y). Worth

15We use the data from the Haver USECON database (mnemonics are in parentheses). Our measure of the
price level is the non-farm business sector de�ator (LXNFI), the measure of GDP corresponds to the non-farm
business sector output (LXNFO) and our measure of oil prices is the Spot Oil Prices West Texas Intermediate
(PZTEXP). We express output in per-capita terms by dividing LXNFO by a measure of civilian non-institutional
population aged above 16 (LNN) and oil prices are de�ated by the non-farm business sector de�ator.
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noting is that the convexity of the marginal cost with respect to oil accounts for 59 percent.

Out of this e¤ect, the level of average in�ation attributed to price distortions represents about

38 percent. The second determinant in importance is the convexity of the Phillips curve with

respect to oil prices accounting for 43 percent of average in�ation. Finally, the precautionary

savings e¤ect is negative and almost negligible.

Table 5: Average in�ation - E¤ects decomposition (benchmark parameterization)

Average in�ation Percentage

Convexity of the Phillips curve (
�) 0.2164 43.6

Marginal costs (
mc) 0.2952 59.5

Indirect e¤ect: price dispersion 0.1845 38.2

Direct e¤ect: convexity respect to oil prices 0.1057 21.3

Auxiliary variable �t (!� and 
�) -0.00 -0.3

Precautionary savings (!y) -0.014 -2.8

Total 0.495 100.0

6 Accuracy

To evaluate the statistical importance of using a second order solution we perform some ac-

curacy analysis. Following Judd (1992) we determine the quality of the solution method

de�ning normalized in�ation equation errors. In the model the state variables are given by

st = [qt;�t�1; Rt�1]. Then, the solution of a endogenous variable xt in terms of the state

variables st is xt = x (st). Because in�ation is the variable of interest of the paper, we focus

on the residuals of the Phillips curve. We test the accuracy of a transformation of equation

(3.16) evaluated at di¤erent values of the state variables:

err (s) =
1

("� 1) ln[(1� (1� �) exp ((1� ") (n (s)� d (s))))=�]� � (s) (6.1)

If the approximated solution of the model is accurate, then err (s) should be equal (or close

enough) to zero for any value of s. The main advantage of considering an expression like (6.1)

is that it does not have units and the errors are expressed in terms of in�ation. We calculate

err (s) for di¤erent values of s using both the linear and quadratic solutions of the model. For

comparative purposes we use log 10 jerr (s)j, which indicates the number of decimals of the
error. The more negative this number the lower the residual and as a result the better the �t

of the approximation of the model.
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Figure 6.1: Approximation Errors on in�ation equation
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Figure 6.1 reproduces the residual term (6.1) on a grid of qt for di¤erent values of �t�1

and Rt�1 �xed at 0. We use the benchmark calibration, where the standard deviation of oil

shocks, �", is 0:10. The graph shows that the quadratic solution of the model gives a better

�t in terms of in�ation when the oil price is away from the steady state. However, the �t with

the linear solution is better around the steady state.

Figure 6.2 : Log 10 mean error of in�ation equation

Figure 6.2 plots the mean value of log 10 jerr (s)j for a grid over s as a a global measure of
accuracy. We calculate this indicator for di¤erent values of the standard deviation of oil price

shocks, �": Overall, results on accuracy support the second order approximation implemented

in the paper to attain the link between average in�ation and oil price volatility.

7 Conclusions

This paper provides an analytical relationship between oil price volatility and in�ation that

shows that when the central bank responds to output �uctuations, larger oil price volatility

generates higher average in�ation. This relationship is stronger when oil has few substitutes

and when the convexity of the Phillips curve, the convexity of marginal costs respect to oil and

the initial level of relative price dispersion are larger. A fundamental implication of this result

is that monetary policy can mitigate the e¤ects of oil price volatility on in�ation by reacting
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more strongly to changes in expected in�ation, but at the cost of lower average output. This

result re�ects the existence of a trade-o¤ between average in�ation and average output.

Furthermore, the second order solution fully characterizes the role that monetary policy

plays in shaping the link between in�ation and oil prices. In particular, it illustrates the

importance of the Taylor principle to account for the size of average in�ation. For rules that

are closer to the boundary of indeterminacy determined by the Taylor principle, the solution

shows that for the same level of oil price volatility, average in�ation is signi�cantly large.

Numerical exercises are broadly consistent with the analytical results. In particular, they

show that oil price volatility can generate sizeable levels of average in�ation, but also that a

more conservative monetary policy could mitigate those e¤ects.
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A Appendix: Equations of the Model

A.1 The system of equations

Using the market clearing conditions that close the model, the dynamic equilibrium of the

model described in section 3 is given by the following set of 10 equations:

AGGREGATE SUPPLY
Marginal Costs

MCt =
h
(1� �) (Wt=Pt)

1� + � (Qt)
1� 
i 1
1� 

A-i

Labor market
Wt
Pt
= Y �

t L
v
t A-ii

Lt =
�

1
1��

Wt=Pt
MCt

�� 
Yt�t A-iii

Price dispersion

�t = (1� �)
�
1��(�t)"�1

1��

�"=("�1)
+ ��t�1 (�t)

" A1-iv

Phillips Curve

� (�t)
"�1 = 1� (1� �)

�
Nt
Dt

�1�"
A-v

Nt = �Y 1��t MCt + ��Et [(�t+1)
"Nt+1] A-vi

Dt = Y 1��t + ��Et

h
(�t+1)

"�1Dt+1

i
A-vii

AGGREGATE DEMAND

1 = �Et

��
Yt+1
Yt

���
Rt
�t+1

�
A-vii

MONETARY POLICY

Rt = R
�
Et�t+1
�

��� �Yt
Y

��y
A-ix

OIL PRICES
Qt = QQ�t�1 exp (��qet) A-x

Table A.1: Equations of the model

The �rst block represents the aggregate supply, which consists on the marginal costs, the

labor market equilibrium and the Phillips curve, which has been written recursively using the

auxiliary variables Nt and Dt. The aggregate demand block is represented with the Euler

equation and Monetary Policy block is given by the Taylor rule. The last equation describes

the dynamics of oil prices. We use this set of ten non-linear equations to obtain numerically

the second order solution of the model.
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A.2 The deterministic steady state

The non-stochastic steady state of the endogenous variables is given by: where

In�ation � = 1

Auxiliary variables N = D = Y = (1� ��)
Interest rate R = ��1

Marginal costs MC = 1=�

Real wages W=P = �y
1
�

�
1� �F

� 1
1� 

Output Y = �y

�
1
�

� 1
�+� �

1� �F
� 1+ �
�+�

1
1� 

Labor L = � l

�
1
�

� 1
�+� �

1� �F
� 1�� 
�+�

1
1� 

Table A.2: The steady state

� = � 
�

Q

MC

�1� 
= � 

�
�Q
�1� 

� is the share of oil in the marginal costs, �y and � l are constants16. Notice that the steady

state values of real wages, output and labor depend on the steady state ratio of oil prices with

respect to the marginal cost. This implies that permanent changes in oil prices would generate

changes in the steady state of this variable. Also, as the standard New-Keynesian models, the

marginal cost in steady state is equal to the inverse of the mark-up (MC = 1=� = ("� 1) =").
Since monopolistic competition a¤ects the steady state of the model, output in steady state is

below the e¢ cient level. We call to this feature a distorted steady state.

B Appendix: The second order solution of the model

B.1 The recursive AS equation

We divide the equation for the aggregate price level (3.15) by P 1�"t and make Pt=Pt�1 = �t

1 = � (�t)
�(1�") + (1� �)

�
P �t (z)

Pt

�1�"
(B.1)

16More precisely: �y =
�

1
1��

�  
1� 

1+v
�+v

and � l =
�

1
1��

�  
1� 

1��
�+v
.
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Aggregate in�ation is a function of the optimal price level of �rm z. Also, from equation (3.14)

the optimal price of a typical �rm can be written as:

P �t (z)

Pt
=
Nt

Dt

where, after using the de�nition for the stochastic discount factor: �t;t+k = �C��t+k=C
��
t Pt=Pt+k,

we de�ne Nt and Dt as follows:

Nt = Et

" 1X
k=0

�(��)k+1F "t;t+kYt+kC
��
t+kMCt+k

#
(B.2)

Dt = Et

" 1X
k=0

(��)k+1F "�1t;t+kYt+kC
��
t+k

#
(B.3)

Nt and Dt can be expanded as:

Nt = �YtC
��
t MCt + Et

"
�"t+1

1X
k=0

�(��)kF "t+1;t+1+kYt+1+kC
��
t+1+kMCt+1+k

#
(B.4)

Dt = YtC
��
t + Et

"
�"�1t+1

1X
k=0

(��)kF "�1t+1;t+1+kC
��
t+1+kYt+1+k

#
(B.5)

where we have used the de�nition for Ft;t+k = Pt+k=Pt.

The Phillips curve with oil prices is given by the following three equations:

� (�t)
"�1 = 1� (1� �)

�
P �t (z)

Pt

�1�"
(B.6)

Nt = �Y 1��t MCt + ��Et (�t+1)
"Nt+1 (B.7)

Dt = Y 1��t + ��Et (�t+1)
"�1Dt+1 (B.8)

where we have reordered equation (B.1) and we have used equations (B.2) and (B.3) eval-

uated one period forward to replace Nt+1 and Dt+1 in equations (B.4) and (B.5).
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B.2 The second order approximation of the system

B.2.1 The second order approximation of the Phillips Curve

The second order expansion for equations (B:6), (B:7) and (B:8) are:

�t =
(1� �)
�

(nt � dt)�
1

2

("� 1)
1� � (�t)

2 +O
�
kqt; �qk3

�
(B.9)

nt = (1� ��)
�
at +

1

2
a2t

�
+ ��

�
Etbt+1 +

1

2
Etb

2
t+1

�
� 1
2
n2t +O

�
kqt; �qk3

�
(B.10)

dt = (1� ��)
�
ct +

1

2
c2t

�
+ ��

�
Etet+1 +

1

2
Ete

2
t+1

�
� 1
2
d2t +O

�
kqt; �qk3

�
(B.11)

Where we have de�ned the auxiliary variables at,bt+1,ct and et+1 as:

at � (1� �) yt +mct bt+1 � "�t+1 + nt+1

ct � (1� �) yt et+1 � ("� 1)�t+1 + dt+1

Subtract equations (B:10) and (B:11), and using the fact that X2 � Y 2 = (X � Y ) (X + Y ),

for any two variables X and Y :

nt � dt = (1� ��) (at � ct) +
1

2
(1� ��) (at � ct) (at + ct) (B.12)

+��Et (bt+1 � et+1) +
1

2
��Et (bt+1 � et+1) (bt+1 + et+1)

�1
2
(nt � dt) (nt + dt) +O

�
kqt; �qk3

�
Plugging in the values of at, bt+1, ct and et+1 into equation (B:12), we obtain (B:13)

nt � dt = (1� ��)mct +
1

2
(1� ��)mct (2 (1� �) yt +mct) (B.13)

+��Et (�t+1 + nt+1 � dt+1) +
1

2
��Et (�t+1 + nt+1 � dt+1) ((2"� 1)�t+1 + nt+1 + dt+1)

�1
2
(nt � dt) (nt + dt) +O

�
kqt; �qk3

�
Taking forward one period equation (B:9), we can solve for nt+1 � dt+1:

nt+1 � dt+1 =
�

1� ��t+1 +
1

2

�

1� �
("� 1)
1� � (�t+1)

2 +O
�
kqt; �qk3

�
(B.14)
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replace equation (B:14) in (B:13) and make use of the auxiliary variable zt = (nt + dt) = (1� ��)

nt � dt = (1� ��)mct +
1

2
(1� ��)mct (2 (1� �) yt +mct) (B.15)

+
�

1� ��
�
Et�t+1 +

�
"� 1
1� � + "

�
Et�

2
t+1 + (1� ��)Et�t+1zt+1

�
�1
2

�

1� � (1� ��)�tzt +O
�
kqt; �qk3

�
Notice that we use only the linear part of equation (B:14) when we replace nt+1 � dt+1 in the
quadratic terms because we are interested in capture terms only up to second order of accuracy.

Similarly, we make use of the linear part of equation (B:9) to replace (nt � dt) = �
1���t in the

right hand side of equation (B:15).

Replace equation (B:15) in (B:9):

�t = �mct +
1

2
�mct (2 (1� �) yt +mct) (B.16)

+�

�
Et�t+1 +

�
"� 1
1� � + "

�
Et�

2
t+1 + (1� ��)Et�t+1zt+1

�
�1
2
(1� ��)�tzt �

1

2

("� 1)
1� � (�t)

2 +O
�
kqt; �qk3

�
for

� � (1� �)
�

(1� ��)

where zt has the following linear expansion:

zt = 2 (1� �) yt +mct + ��Et
�
2"� 1
1� ���t+1 + zt+1

�
+O

�
kqt; �qk2

�
(B.17)

De�ne the following auxiliary variable:

�t = �t +
1

2

�
"� 1
1� � + "

�
�2t +

1

2
(1� ��)�tzt (B.18)

Using the de�nition for �t, equation (B:16) can be expressed as:

�t = �mct +
1

2
�mct (2 (1� �) yt +mct) +

1

2
"�2t + �Et�t+1 +O

�
kqt; �qk2

�
(B.19)

which is equation (4:3) in the main text.

Moreover, the linear part of equation (B.19) is:

�t = �mct + �Et (�t+1) +O
�
kqt; �qk2

�
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which is the standard New Keynesian Phillips curve, in�ation depends linearly on the real

marginal costs and expected in�ation.

B.2.2 The MC equation and the labor market equilibrium

The real marginal cost (3.12) and the labor market equations (3.4 and 3.22) have the following

second order expansion:

mct = (1� �)wt + �qt +
1

2
� (1� �) (1�  ) (wt � qt)2 +O

�
kqt; �qk3

�
(B.20)

wt = �lt + �yt (B.21)

lt = yt �  (wt �mct) + b�t (B.22)

Where wt and b�t are, respectively, the log of the deviation of the real wage and the price

dispersion measure from their respective steady state. Notice that equations (B:21)and (B:22)

are not approximations, but exact expressions.

Solving equations (B:21) and (B:22) for the equilibrium real wage:

wt =
1

1 + � 

h
(� + �) yt + � mct + v b�t

i
(B.23)

Plugging the real wage in equation (B:20) and simplifying:

mct = � (� + v) yt + (1� �) (qt) + �v b�t (B.24)

+
1

2

1�  
1� ��

2 (1� �) [(� + v) yt � qt]2 +O
�
kqt; �qk3

�
where � � (1� �) = (1 + v �) :This is the equation (i) in the main text. This expression is the
second order expansion of the real marginal cost as a function of output and the oil prices.

B.2.3 The price dispersion measure

The price dispersion measure is given by

�t =

Z 1

0

�
Pt (z)

Pt

��"
dz
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Since a proportion 1� � of intermediate �rms set prices optimally, whereas the other � set the
price last period, this price dispersion measure can be written as:

�t = (1� �)
�
P �t (z)

Pt

��"
+ �

Z 1

0

�
Pt�1 (z)

Pt

��"
dz

Dividing and multiplying by (Pt�1)
�" the last term of the RHS:

�t = (1� �)
�
P �t (z)

Pt

��"
+ �

Z 1

0

�
Pt�1 (z)

Pt�1

��"�Pt�1
Pt

��"
dz

Since P �t (z) =Pt = Nt=Dt and Pt=Pt�1 = �t, using equation (3:8) in the text and the de�nition

for the dispersion measure lagged on period, this can be expressed as

�t = (1� �)
 
1� � (�t)"�1

1� �

!"=("�1)
+ ��t�1 (�t)

" (B.25)

which is a recursive representation of �t as a function of �t�1 and �t.

Benigno and Woodford (2005) show that a second order approximation of the price disper-

sion depends solely on second order terms on in�ation. Then, the second order approximation

of equation (B.25) is: b�t = � b�t�1 +
1

2
"

�

1� ��
2
t +O

�
kqt; �qk3

�
(B.26)

which is equation (2 � ii) in the main text. Moreover, we use equation (B:26) to write the

in�nite sum:

1X
t=to

�t�to b�t = �
1X
t=to

�t�to b�t�1 +
1

2
"

�

1� �

1X
t=to

�t�to
�2t
2
+O

�
kqt; �qk3

�
(1� ��)

1X
t=to

�t�to b�t = � b�to�1 +
1

2
"

�

1� �

1X
t=to

�t�to
�2t
2
+O

�
kqt; �qk3

�
Dividing by (1� ��) and using the de�nition of � :

1X
t=to

�t�to b�t =
�

1� ��
b�to�1 +

1

2

"

�

1X
t=to

�t�to
�2t
2
+O

�
kqt; �qk3

�
(B.27)

The discounted in�nite sum of b�t is equal to the sum of two terms, on the initial price dispersion

and the discounted in�nite sum of �2t .
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B.2.4 The IS

Similarly, the second order expansion of the IS is:

yt = Etyt+1 �
1

�
(rt � Et�t+1)�

1

2
�Et

�
(yt � yt+1)�

1

�
(rt � �t+1)

�2
+
�
kqt; �qk3

�
(B.28)

Replacing the linear solution of yt inside the quadratic part of equation (B:28):

yt = Etyt+1 �
1

�
(rt � Et�t+1)�

1

2
�Et

�
yt+1 +

1

�
�t+1 � Et

�
yt+1 +

1

�
�t+1

��2
+
�
kqt; �qk3

�
(B.29)

where Et
�
yt+1 +

1
��t+1 � Et

�
yt+1 +

1
��t+1

��2
is the variance of

�
yt+1 +

1
��t+1

�
.
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B.3 The system in two equations

Since the quadratic terms of the second order Taylor expansions of the equations depend on

the linear solution, we can use the latter to solve for the formers. Let´s assume the linear

solution for output, in�ation and the auxiliary variable zt17

yt = a1qt +O
�
kqt; �qk2

�
�t = b1qt +O

�
kqt; �qk2

�
zt = c1qt +O

�
kqt; �qk2

�
Additionally, we have the transition process for the oil price:

qt = �qt�1 + ��qet

where e~iid (0; 1) and � =
p
1� �2:

B.3.1 The AS

Replacing the equation for the price dispersion in the equation for the marginal costs, the

latter can be expressed as:

mct = � (v + �) yt + (1� �) qt + �v b�t +
1

2
e
mcq2t +O �kqt; �qk3� (B.30)

where e
mc = (1� �)�2 1� 1�� ((� + �) a1 � 1)
2 + " �

1�� (b1)
2 :

Similarly, the Phillips curve equation can be expressed as:

�t = �mct + �Et�t+1 +
1

2

�q

2
t +O

�
kqt; �qk3

�
(B.31)

where 
� = " (b1)
2 + � [� (v + �) a1 + (1� �)] [2 (1� �) yt + � (v + �) a1 + (1� �)]. We have

used the linear solution of output and in�ation to express 
� in terms of a1 and b1:

Replace the equation for the marginal costs in the second order expansion of the Phillips

Curve and iterate forward, the Phillips curve can be expressed as the discounted in�nite sum:

�t =
1X
t=to

�t�to
�
�yyt + �qqt + ��� b�t +

1

2
�e
mcq2t + 12
�q2t

�
+
�
kqt; �qk3

�
(B.32)

17From the linear expansion of the de�nition of zt we can solve for c1, where c1 =
1

1����

n
[2 (1� �) + � (� + v)] a1 + (1� �) + �� 2"�11����b1

o
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where �y = �� (� + �) and �q = � (1� �). Make use of equation (B:27), the discounted
in�nite sum of b�t, �t becomes:

�t =

1X
t=to

�t�to
�
�yyt + �qqt +

1

2
"�v�2t +

1

2
�e
mcq2t + 12
�q2t

�
(B.33)

+
��v�

1� ��
b�t�1 +

�
kqt; �qk3

�
Assuming that we depart from an initial state where the price dispersion is small, that isb�t�1 ' 0 up to second order, then equation (B.33) can be expressed recursively as18:

�t = �yyt + �qqt +
1

2
"�v�2t +

1

2
�e
mcq2t + 12
�q2t + �Et�t+1 + �kqt; �qk3� (B.34)

Let´s consider the total second order terms coming from the marginal costs:


mcq
2
t = "���2t + �

e
mcq2t (B.35)

then, 
mc = "�v (b1)
2 + �e
mc:

The auxiliary variable �t is also a¤ected by second order terms:

�t = �t +
1

2
e
�q2t (B.36)

where e
� = h� "�11�� + "
�
b21 + (1� ��) b1c1

i
:Et�t+1 becomes:

Et�t+1 = Et�t+1 +
1

2
e
�Etq2t+1 (B.37)

= Et�t+1 +
1

2
e
� ��2q2t + �2�2q�

Replacing equations (B.35), (B.36) and (B.37) in (B.34), we obtain the equation (4.1) in the

text:

�t = �yyt + �qqt + �Et�t+1 +
1

2
(
mc +
� +
�) q

2
t +

1

2
!��

2
q +

�
kqt; �qk3

�
(B.38)

where 
� = �e
� �1� ��2� and !� = e!���2: 
mc;
�;
� and !� are respectively the second
order terms coming from the marginal costs, the Phillips Curve and the auxiliary variable �t:

18We make the assumption that the initial price dispersion is small to make the analysis
analytically tractable. However, in the numerical exercise we work with the general case and
the results are quantitatively similar.
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B.3.2 The aggregate demand

Replace the policy rule in the second order expansion of the IS (B.29), assuming there is not

interest rate smoothing (that is �r = 0) :

yt = Etyt+1 �
1

�

�
(�� � 1)Et�t+1 + �yyt

�
+ (B.39)

�1
2
�Et

�
yt+1 +

1

�
�t+1 � Et

�
yt+1 +

1

�
�t+1

��2
+O

�
kqt; �qk3

�
This can be expressed as:

yt = Et (yt+1)�
1

�

�
(�� � 1)Et�t+1 + �yyt

�
+
1

2
!y�

2
q +O

�
kqt; �qk3

�
(B.40)

where:

!y�
2
q = ��Et

�
a1qt+1 +

1

�
b1qt+1 � Et

�
a1qt+1 +

1

�
b1qt+1

��2
(B.41)

Similar to the previous sub-section, the IS risk premium can be written as a function of the

linear solution of in�ation and output:

!y = ��
�
a1 +

1

�
b1

�2
< 0 (B.42)

Note that the risk premium component of the IS is negative, capturing precautionary savings

due to output and in�ation volatility.

B.4 The perturbation method

The policy functions of the second order solution for output and in�ation can be written in

the following form:

yt =
1

2
ao�

2
q + a1qt +

1

2
a2 (qt)

2 +O
�
kqt; �qk3

�
(B.43)

�t =
1

2
bo�

2
q + b1qt +

1

2
b2 (qt)

2 +O
�
kqt; �qk3

�
where the a�s and b�s are the unknown coe¢ cients that we need to solve for and O

�
kqt; �qk3

�
denotes terms on q and �q of order equal or higher than 3: We express the dynamics of the oil

price as:

qt = �qt�1 + ��qet (B.44)
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where the oil shock has been normalized to have mean zero and standard deviation of one, i.e.

e~iid (0; 1) :Also, we set � =
p
1� �2 in order to express V (qt) = �2q .

In order to solve for the 6 unknown coe¢ cients, we use the following algorithm that consist

in solving recursively for three systems of two equations. This allows us to obtain algebraic

solutions for the unknown coe¢ cients. We follow the following steps:

1. We replace the closed forms of the policy functions (B.43) and the transition equation

for the shock (B.44) in the equations for the AS (B.38) and the AD (B.40).

2. Solve for a1 and b1: we take the partial derivatives with respect to qt to the two equations

of step 1, then we proceed to evaluate them in the non-stochastic steady state (i.e. when

qt = 0 and �q = 0). Then, the only unknowns left are a1 and b1 for two equations. We

proceed to solve for a1 and b1 as function of the deep parameters of the model.

a1 = � [(�� � 1) �]�q
1

�1
< 0

b1 =
�
� (1� �) + �y

�
�q
1

�1
> 0

3. Solve for a2 and b2: similar to step 2, we take successive partial derivatives with respect

to qt and qt to the two equations of step 1 and we evaluate them at the non-stochastic

steady state. Then, we solve for the unknowns a2 and b2:

a2 = �
�
(�� � 1) �2

�
(
� +
mc)

1

�2
< 0

b2 =
�
�
�
1� �2

�
+ �y

�
(
� +
mc)

1

�2
> 0

4. Solve for a0 and b0: similar to steps 2 and 3, we take successive partial derivatives with

respect to �q and �q to the two equations of step 1 and we evaluate them at the non-

stochastic steady state. Then, we solve for the unknowns a0 and b0: The solution for the

coe¢ cients is given by:

ao = � (�� � 1)
��
b2�

2 + !�
�
�� (1� �)

�
a2�

2 + !y
�� 1
�0

bo = �b2�2+
�
�y
�
b2�

2 + !�
�
+��y

�
a2�

2 + !y
�� 1
�0
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where we have de�ned the following auxiliary variables:

�0=(�� � 1)�1+(1� �)�y
�1=(�� � 1) ��y+(1� ��)

�
� (1� �) + �y

�
�2=(�� � 1) �2�y+

�
1� ��2

� h
� (1� �)2 + �y

i
where �0, �1, and �2 are all positive.

B.4.1 The In�ation premium

The in�ation premium is given by:

E (�) =
1

2
(bo + b2)�

2
q

replace the solution for bo:

bo + b2 = b2�
2 +

�y
�
b2�

2 + !�
�
+ ��y

�
a2�

2 + !y
�

�0
(B.45)

Replace the solution of a2 and the de�nition of �; and collect for b2 :

bo + b2 =
1

�0

�
b2

�
�2�o +

�
�y � ��y

�� � 1
� (1� �2) + �y

��
1� �2

��
+ �y!� + ��y!y

�
(B.46)

After some algebra, it can be expressed as:

bo + b2 =
1

�0

�
b2�y

� (1� �2) + �y

h
�2 + 2

�
1� ��2

�
� (1� �)2

i
+ �y!� + ��y!y

�
(B.47)

Replace the de�nition for b2 :

bo + b2 =
1

�0

�
�y (
� +
mc +
�) (1 + 	) + �y!� + ��y!y

	
(B.48)

where 	 = 2
�
1� ��2

�
� (1� �)2 =�2. 	 is positive and very small for � close to 1
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C Appendix: Calculation of share and elasticity

C.1 Calculation of �

From the steady state demand for oil we can obtain the following:

M

Y
= � 

�
Q=MC

�� 
= � 

�
Q=MC

�1� 
=
�
Q=MC

�
= �=

�
Q=MC

�
Then, from this equation, � is equivalent to:

� = �
QM

Y

We use data from IO tables the National Income Product accounts (www.bea.gov) for the

U.S. to obtain an estimate of QM
Y
as the ratio of Oil and other fuels used for production/ Value

added. To compute this ratio we follow Blanchard and Galí (2008) methodology, considering

the U.S. economy as having two sectors, an oil-producing sector and a non-oil producing sector.

The oil producing sectors considers the sum of the "oil and gas extraction" sector (NAIC code

211) and "petroleum and coal" sector (NAIC code 324). The non-oil producing sector considers

the rest of the economy. Because of availability, we use data for the following years: 1972, 1977,

1987, 1992 and 1997 to 2006. The average value of QM
Y
from 1972 to 2006 is 2:5%. Considering

an average mark-up of 15% (� = 1:15), the estimated value of � is 2:875%.

C.2 Calculation of  

The log-linearization of the demand for oil (mt) is the following:

mt = � (qt �mct) + yt; (C.1)

which after replacing the de�nition of marginal costs and the equilibrium real wages, it becomes:

mt = � �qt + (1 +  � (� + �)) yt: (C.2)

We estimate equation (C.2) in di¤erences, considering the following data mt : log SA

quarterly petroleum consumption in the US in numbers of barrels per day - sum of all sectors

(Energy Information Administration, July 2008 Monthly Energy Review). qt : log spot oil price
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West Texas Intermediate (PZTEXP) minus log SA non-farm business sector de�ator (LXNFI).

yt : log SA non-farm business sector output (LXNFO) - log civilian non-institutional population

aged above 16 (LNN). Our data is quaterly and corresponds to the period 1970.1-2005.4

The estimated equation is :

�mt = �0:0027 �0:0207 �qt +0:4999 �yt

(0:1610) (0:0629) (0:007)

p� values in parenthesis. Because the value of � is very close to 1, the estimated value of the
elasticity of substitution of oil is  � 0:02: To avoid well known bias associated to the endo-
geneity of output and oil demand, we estimate the previous regression using as instrumental

variables lags of the changes of output.
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