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Asset Allocation under Hierarchical Clustering

Jin Zhang∗ Dietmar Maringer †

Abstract

This paper proposes a clustering asset allocation scheme which provides
better risk-adjusted portfolio performance than those obtained from tradi-
tional asset allocation approaches such as the equal weight strategy and
the Markowitz minimum variance allocation. The clustering criterion used,
which involves maximization of the in-sample Sharpe ratio (SR), is different
from traditional clustering criteria reported in the literature. Two evolu-
tionary methods, namely Differential Evolution and Genetic Algorithm, are
employed to search for such an optimal clustering structure given a clus-
ter number. To explore the clustering impact on the SR, the in-sample
and the out-of-sample SR distributions of the portfolios are studied using
bootstrapped data as well as simulated paths from the single index market
model. It was found that the SR distributions of the portfolios under the
clustering asset allocation structure have higher mean values and skewness
but approximately the same standard deviation and kurtosis than those in
the non-clustered case. Genetic Algorithm is suggested as a more efficient
approach than Differential Evolution for the purpose of solving the cluster-
ing problem.

Key words. Asset Allocation, Clustering Technique, Sharpe Ratio,
Evolutionary Approach, Heuristic Optimization.

1 Introduction

Generally speaking, traditional asset allocation strategies can be classified into two
categories: parametric approaches (e.g. the Markowitz allocations) and parameter-
free allocations (e.g. the equal weight strategy). According to the well-known
Markowitz theory, rational investors should always prefer the ‘efficient’ portfolios
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which yield the highest return at any given risk level. However, most of the time,
a precise estimation of asset return properties (such as expected return, variance
and covariance) may be difficult to obtain. As empirically observed financial data
is quite noisy, the estimates derived from such data may be unreliable. More-
over, the accuracy of estimates may rely on not only the number of assets but
also the available number of observations, which is particularly important to the
Markowitz allocations. If a portfolio contains hundreds of assets, the high di-
mensionality may hinder an accurate estimation of the dependence structure of
assets (i.e. the covariance under the Markowitz framework), which in the litera-
ture is usually referred to as the ‘curse of dimensionality’. The above problems
may result in suboptimal portfolios if investors still apply the traditional asset
allocations to manage portfolios, especially large ones. For instance, the Sharpe
ratio (SR) of portfolios, which is a risk-adjusted performance measure based on
the first two moments of returns, may not be optimal. Many researchers have
suggested different approaches for improving the estimation of return moments
and portfolio performance. For example, Harris and Yilmaz [2007] combined the
return-based and the range-based measures of volatility to improve the estimate of
the multivariate conditional variance-covariance matrix. On the other hand, prac-
titioners may simply adopt parameter-free allocations (e.g. the equal weight (EW)
investment strategy of Windcliff and Boyle [2004]) which are independent of those
return moment measures. In addition to methods from mathematics and finance,
approaches from computer science have also been considered by researchers. For
instance, Lisi and Corazza [2008] proposed an active fund management strategy
which performed portfolio selection after clustering equities. Pattarin et al. [2004]
employed a clustering technique to analyze mutual fund investment styles. The
clustering techniques considered in most financial applications still comply with
the traditional clustering criterion, i.e. minimizing the dissimilarity between the
cluster members while maximizing the dissimilarity between clusters.

This paper, however, proposes a different clustering criterion to the traditional
one. The proposed clustering criterion segments assets by maximizing the in-
sample SR of a portfolio. Two main benefits are expected from using this clustering
asset allocation scheme. First, the dimensionality in the asset allocation problem
will decrease, as the cluster size can be controlled by using a cardinality constraint.
Thus, when portfolio managers apply the Markowitz allocations to managing large
portfolios, the ‘curse of dimensionality’ problem may be avoided. Secondly, the
out-of-sample SR of a portfolio which is constructed under the clustering structure
shall be better than the portfolio SR from using the same asset allocation in the
non-clustered case.

Provided there is no structural break between the in-sample and the out-of-
sample periods, and the clustering structure is optimal, one should observe the
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same clustering impact on both the in-sample and out-of-sample SRs. The first four
moments of the SR distribution are considered in this paper in order to study the
clustering impact on the SR. A rational investor should prefer the SR distributions
with high mean, high skewness, low standard deviation and low kurtosis. To
study the four moments of the SR distribution, simulated portfolio returns are
generated by using the portfolio weights based on simulated asset returns. The
simulated SR values which are calculated from the portfolio returns then constitute
the SR distribution. The EW strategy and the Markowitz minimum variance
portfolio (MVP) allocation which belong to the non-parametric allocation and the
parametric allocation, are adopted to distribute asset weights. Two approaches
are used to provide the simulated asset returns for both the in-sample and out-
of-sample SR studies, i.e. the traditional bootstrap method and the single index
market model.

The proposed clustering asset allocation scheme is introduced starting with the
following technical terms. Assets within a cluster are called ‘cluster members’, the
portfolio which is constructed by using the members in the same cluster is referred
to as a ‘cluster portfolio’, and these cluster portfolios are combined to form a
‘terminal portfolio’. In other words, the proposed approach first segments assets
into a series of disjoint clusters according to the clustering structure. Next, a set
of cluster portfolios is constructed by using an asset allocation on the basis of the
cluster members in different clusters. Finally, the terminal portfolio is constructed
by adopting the same asset allocation based on those cluster portfolios. Figure 1
briefly describes this clustering asset allocation procedure in a case of three clusters
with eleven assets.

The paper is organized as follows. Sections 2 and 3 introduce the clustering
optimization problem and asset allocation approaches used. Section 4 describes
two evolutionary algorithms for tackling the clustering problem. The experimental
results are presented and discussed in Section 5. Section 6 summarizes the main
findings.

2 The Optimization Problem for Clustering As-

set Allocation

Supposed there are N stocks considered in the asset allocation problem. The op-
timization problem is to identify a clustering structure C (i.e. a union of subsets
C1, C2, ..., CG), so that the portfolio SR based on such a cluster structure is maxi-
mized given a cluster number G. In this paper, the cluster number G is manually
assigned, and G is an integer number within a range 1 ≤ G ≤ N as empty clusters
are not considered. When G is equal to the number of either 1 or N , there is
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no clustering effect, thus the clustering asset allocation problem becomes a simple
application of the traditional asset allocation. The optimization objective of the
clustering problem can be described as

max
C

SR =
rP − rf

σP

, (1)

where C denotes the optimal clustering structure, rP is the average daily return
of the portfolio, σP is the standard deviation of the portfolio return over the
evaluation period, and rf refers to as the risk-free return. As with traditional
clustering problems, the union of segmented assets U represents the collection of
assets, and there is no intersection between two different clusters. Let Cg denote
the g-th cluster of assets, then the above constraints can be written as

G⋃
g=1

Cg = U , (2)

Cg ∩ Ch = ∅, g 6= h. (3)

Let Ñmin and Ñmax denote the minimum and maximum asset numbers allowed in
a cluster respectively, then the following cardinality constraints are employed to
limit the dimensionality of clusters:

Ñmin ≤
N∑

j=1

Ij∈Cg ≤ Ñmax 1 ≤ g ≤ G, (4)

where Ij∈Cg =

{
1 if j ∈ Cg,

0 otherwise,
(5)

with

{
Ñmin = d N

2G
e,

Ñmax = d3N
2G
e. (6)

Eq. (4) is the cardinality constraint. Eq. (5) corresponds to an indicator function
showing whether asset j belongs to cluster g. Eq. (6) specifies the minimum and
maximum asset numbers in a cluster. The above optimization problem is hard
to solve by using traditional optimization methods. Brucker [1978] pointed out
that clustering problems turn out to be non-deterministic polynomial-time hard
(NP-hard) when the cluster number G becomes higher.
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3 Asset Allocation Methods

3.1 Weight Constraints

As with traditional asset allocation problems, the budget constraint must be met
while using the proposed clustering asset allocation. The sum of cluster member
weights in a cluster should be equal to 1, and likewise the sum of cluster portfolio
weights. As the current asset allocation problem does not consider short sales of
assets, the budget constraints can be written as

G∑
g=1

wg = 1, and
∑

i

wg,i = 1 for i ∈ Cg, (7)

with

wg ≥ 0, wg,i

{
≥ 0 i ∈ Cg, 1 ≤ g ≤ G,

= 0 otherwise.
(8)

wg denotes the weight of the g-th cluster portfolio, and wg,i represents the weight
of the i-th cluster member in the g-th cluster Cg. The actual weight of asset j is
denoted by wj, which is the product of its corresponding cluster member’s weight
wg,i in the cluster and the cluster portfolio weight wg

wj = wg · wg,i, i ∈ Cg, 1 ≤ g ≤ G, 1 ≤ j ≤ N. (9)

3.2 Equal Weight Allocation

In the equal weight (EW) allocation, the cluster portfolio weights are related to the
cluster number G, and the cluster member weights are dependent on the cluster
size. Although the cluster number G is manually assigned, the final weight of an
asset depends on the clustering structure since the weight of a cluster member is
actually decided by the clustering structure. In other words, the cluster portfolio
weight wg is given by 1 over the cluster number G, and the cluster member weight
wg,i in the subset Cg can be calculated by taking 1 over the number of members in
the cluster:

wg =
1

G
, (10)

wg,i =
1

]{Cg} , i ∈ Cg, 1 ≤ g ≤ G. (11)
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3.3 Minimum Variance Allocation

In the literature, the minimum variance portfolio (MVP) is regarded as the safest
portfolio due to its minimum variance at the Markowitz efficient frontier (see
Markowitz [1952]). Quadratic and concave programming are usually applied to
solve optimization problems which have quadratic objective functions with lin-
ear equality and inequality constraints. The objective function of traditional
Markowitz mean-variance allocation can be formulated as

max
w

ζr′w − (1− ζ)w′Σw, (12)

where w denotes the weight vector for either the cluster members or the cluster
portfolios, and Σ represents the variance-covariance matrix of either the cluster
portfolios or the cluster members. r is referred to as the expected return vector
of assets, and ζ is a risk aversion factor (or a weighting difference factor) with a
value of 0 for a minimum variance allocation.

4 Optimization Methods

4.1 Differential Evolution

Heuristic methods have been documented in the literature as they provide solu-
tions to tackle complex constrained optimization problems in economics (see Gilli
and Winker [2008]). Two population-based evolutionary methods (Differential
Evolution and Genetic Algorithm) are used to tackle the clustering problem for
the purpose of the SR maximization. The first evolutionary method used to tackle
the optimization problem is Differential Evolution (DE) proposed by Storn and
Price [1997], which is a population-based local search heuristic method for solving
optimization problems with a continuous solution space. This approach generates
new solutions by using mutation and crossover (i.e. a process of linear combination
with three current solutions). More specifically, let P denote the number of solu-
tions in each generation (i.e. the population size), then, for each current solution
ṡp, a new solution ṡc is generated by linearly combining the solution vectors of
three members (p1 6= p2 6= p3 6= p) of the current population

ṡc[i] :=

{
ṡp1 [i] + (K + z1[i]) · (ṡp2 [i]− ṡp3 [i] + z2[i]) with probability z1,
ṡp[i] otherwise,

(13)

where z1 is the crossover probability.

The algorithm is the ‘Dither’ and ‘Jitter’ version of the standard DE (see Price
et al. [1998]) which involves adding normally distributed random numbers to the

7



Algorithm 1 Differential Evolution
1: Randomly initialize population of vectors ṡp, p= 1,...,P
2: while the iteration number is not met do
3: for all current solutions ṡp, p=1,...,P do
4: Randomly pick three different solutions, i.e. p1 6= p2 6= p3 6= p

5: ṡc[i] ← ṡp1 [i]+(K+z1[i])(ṡp2 [i]−ṡp3 [i]+z2[i]) with probability z1, or ṡc[i] ← ṡp[i]
otherwise

6: Compute the fitness value of ṡp

7: end for
8: for the current solution ṡp, p = 1,...,P do
9: if Fitness(ṡc) > Fitness(ṡp) then ṡp ← ṡc end if

10: end for
11: end while

weighting factor K and the difference of the two solution vectors, in order to
increase the pool of potential trial vectors and minimize the risk of getting stuck
in local optima. Vectors z1 and z2 represent the two random noises which are
added to the weighting factor and the vector difference respectively. The two
vectors are actually generated by using random numbers, which are zeros at the
probabilities of z2 and z3 respectively or which follow normal distributions N (0, d2

1)
and N (0, d2

2) otherwise. After the above process, DE updates the population on
the basis of Charles Darwin’s concept of natural selection. Thus, if the fitness value
of ṡc is higher than that of ṡp, then ṡp is replaced by ṡc and the updated ṡp exists
in the current population; otherwise ṡp survives in the current population. The
fitness value is the SR value defined in Eq. (1). To meet the integer constraint,
the solutions are rounded to integers. Additionally, a punishment scheme has been
utilized to impair the fitness of solutions which violate the cardinality constraints.
The pseudo code in Algorithm 1 describes the DE procedure.

4.2 Genetic Algorithm

Genetic Algorithms (GAs) were first used by Holland [1975]. These algorithms
have been proposed and successfully applied in solving clustering problems in
computer science (see Krovi [1992] and Hruschka et al. [2009]). GAs are search
algorithms which adopt selection mechanics based on natural selection and genet-
ics. Each gene of a chromosome (or an individual solution) represents the cluster
an asset should belong to. GAs are usually inspired by biological evolution that is
normally developed in three steps: natural selection, crossover and mutation. In
the selection process, the algorithm chooses chromosomes from the current popu-
lation for mutation. In other words, the process applies natural selection (i.e. the
Darwinian survival rule of the fittest) to select the string representatives. Roulette
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Figure 2: The Uniform Crossover Scheme

wheel selection (see Holland [1975]) is usually employed to implement the propor-
tional selection in GAs. A suitable fitness evaluation could be the SR value defined
in Eq. (1). However, since the SR value can be negative (this is not desirable for
the canonical roulette wheel selection method), the actual fitness function used is
the one given by Eq. (14), where 1 is added to the SR value in order to guarantee
a positive fitness value in general cases

S̃R = 1 +
rP − rf

σP

. (14)

The fitness values are used to associate a probability of selection with each indi-
vidual chromosome. Let S̃Rp denote the fitness of the p-th individual chromosome
in the population, then its probability of being selected is decided by

zp =
S̃Rp∑P

n=1 S̃Rn

, p ∈ P, (15)

where P is the population size, i.e. the number of chromosomes in the population.

After the selection, a probabilistic process (crossover), which exchanges infor-
mation between two parent chromosomes is performed to produce child chromo-
somes. There are several crossover schemes available in the literature, such as the
single-point, the multi-point and the uniform crossover. The uniform crossover
scheme, which exchanges corresponding genes in the parent chromosomes with
probability zc, is adopted. After the crossover, genes in each chromosome undergo
a mutation process which introduces gene variation into the population. For a
binary representation of a gene, the mutation can be implemented simply by flip-
ping the binary value of genes. In this clustering optimization problem, the genes
are mutated with probability zm by replacing the original genes with uniformly
distributed random integer numbers between 1 and G. If a solution does not meet
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the cardinality constraints, the fitness value of the solution is impaired by using
a punishment mechanism. After mutation, each parent solution in the current

Figure 3: The Mutation Scheme

population is replaced by its offspring if the latter has a higher fitness value. The
above processes are repeated until a fixed number of generations reached. The GA
algorithm is described in Algorithm 2.

Algorithm 2 Genetic Algorithm for Clustering Optimization
1: Randomly initialize population of vectors ṡp, p= 1...P
2: Evaluate the initial population
3: while a fixed number of generations is not met do
4: Select parent chromosomes based on the roulette wheel selection with probability

zp =
fSRpPP

n=1
fSRn

5: Generate ṡc by applying the uniform crossover and the mutation scheme at prob-
abilities zc and zm

6: Evaluate the offspring ṡc

7: if Fitness(ṡc) > Fitness(ṡp)
8: then ṡp ← ṡc

9: end while

5 The Experiments

5.1 Data and Algorithm Settings

The in-sample and out-of-sample studies involve daily log-return of 85 stocks se-
lected from the FTSE market for the period January 2005 to December 2009. The
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Figure 4: Sharpe Ratio from Independent Restarts

proposed clustering asset allocation is applied to construct portfolios based on one
year’s data, and then the portfolios are held in the consecutive year for out-of-
sample studies. As a consequence, there are four in-sample and four out-of-sample
periods. The adjusted daily 1-year LIBOR rate is considered as the risk-free rate
in computing the SR.

To assess the performance of GA and DE in tackling the clustering problem,
fitness values from 100 independent restarts of the two algorithms are compared
with each other by using the same number of generations and the same population
size. DE has been used to explore the clustering impact on portfolio performance
by Zhang and Maringer [2009]; the parameters of DE used in this paper are same as
the DE settings in that paper. Figure 4 shows the fitness values, which reveals GA
outperforming DE in terms of higher fitness values from the independent restarts.
It is reasonable since DE was originally designed for optimization problems with
a continuous solution space. While using DE to solve the clustering problem, the
solutions are rounded to integers to meet the integer constraint which may slow
down the evolutionary procedure. In contrast to DE, GA directly uses integers
as chromosome representations. As a result, GA is able to obtain higher fitness
values and converge faster than DE by using the same generation number and the
same population size.
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Based on preliminary tests, the following parameters of the GA were found to
be suitable for solving the optimization problem. The settings were specified as
follows: each chromosome had 85 genes representing the 85 stocks; the population
size was set at 340; the number of generations was set at 8,000; the crossover
probability was 0.5; and the mutation probability was 0.2.

5.2 In-Sample Study

5.2.1 Sharpe Ratio from the Bootstrap Method

To reveal the clustering impact on SR, the in-sample SR distributions were con-
structed on the basis of simulated asset returns with the optimized weights from
the optimal clustering structure. The simulated asset returns were bootstrapped
from the in-sample asset returns, and the portfolio weights were distributed by us-
ing the EW strategy and the MVP allocation based on the in-sample asset returns.
The daily simulated asset returns of each in-sample period (2005, 2006, 2007 and
2008) were generated by using the historical asset returns of the corresponding
year with a length of 260 and a bootstrapped iteration number of 2,000.

Ideally, the first and the third moments (i.e. the mean value and the skewness)
of the portfolio SR distribution under the clustering asset allocation structure
should be higher than the moments of the SR distribution without the clustering
effect; the second and the fourth moments (i.e. the standard deviation and the
kurtosis) of the SR distributions under the clustering impact should stick close to
the two moments in the non-clustered case.

Table 1 shows the descriptive statistics of the bootstrapped SR distributions
on the basis of portfolio weights from the EW strategy. It is found that the mean
and the skewness (SK) of the SR distribution in the clustered cases are higher than
the two moments in the non-clustered case. Moreover, the standard deviation and
the kurtosis (KU) of the SR distributions are found to be approximately the same
as the two moments without the clustering effect. Table 2 provides the statistics
of the SR distributions when using the MVP allocation. In most cases, the mean
values and the skewness under the clustering impact, are higher than those in the
non-clustered case. Furthermore, the standard deviation and the kurtosis after
applying the clustering scheme, remain almost the same as the two moments of
the SR distribution in the non-clustered case.
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Table 1: Descriptive Statistics of Bootstrapped In-Sample SR with EW

2005 2006 2007 2008
MEAN STDV MEAN STDV MEAN STDV MEAN STDV

non-clustered 0.1317 0.0670 0.0571 0.0627 -0.0058 0.0641 -0.0752 0.0630
G = 3 0.1773 0.0681 0.0873 0.0631 0.0285 0.0645 -0.0587 0.0629
G = 5 0.1805 0.0680 0.0897 0.0632 0.0302 0.0645 -0.0580 0.0629
G = 7 0.1814 0.0678 0.0900 0.0633 0.0294 0.0645 -0.0582 0.0628
G = 9 0.1847 0.0682 0.0924 0.0632 0.0309 0.0644 -0.0571 0.0627

SK KU SK KU SK KU SK KU
non-clustered 0.0397 2.9414 0.1436 2.9354 0.0130 2.8143 -0.0363 2.9297

G = 3 0.0432 2.9260 0.1563 2.9864 0.0262 2.8350 -0.0265 2.9503
G = 5 0.0469 2.9096 0.1612 2.9923 0.0294 2.8383 -0.0242 2.9563
G = 7 0.0480 2.9186 0.1626 2.9852 0.0317 2.8342 -0.0238 2.9559
G = 9 0.0512 2.9247 0.1568 2.9838 0.0268 2.8279 -0.0216 2.9570

Table 2: Descriptive Statistics of Bootstrapped In-Sample SR with MVP

2005 2006 2007 2008
MEAN STDV MEAN STDV MEAN STDV MEAN STDV

non-clustered 0.0860 0.0651 0.0639 0.0621 0.0175 0.0643 -0.0216 0.0624
G = 3 0.1419 0.0664 0.0453 0.0624 0.0451 0.0643 -0.0095 0.0628
G = 5 0.0907 0.0655 0.0583 0.0622 0.0142 0.0642 -0.0028 0.0629
G = 7 0.1820 0.0668 0.1346 0.0637 0.0613 0.0642 0.0006 0.0629
G = 9 0.1865 0.0669 0.1422 0.0637 0.0629 0.0645 0.0008 0.0629

SK KU SK KU SK KU SK KU
non-clustered 0.0647 3.0133 0.0510 3.0264 -0.0165 2.8873 0.0198 3.0360

G = 3 0.1174 3.0225 0.0566 3.0703 -0.0166 2.8549 0.0215 3.0679
G = 5 0.0369 3.0159 0.0806 3.0565 -0.0124 2.8872 0.0310 3.0745
G = 7 0.0989 2.9719 0.1086 3.0452 -0.0021 2.8508 0.0261 3.0807
G = 9 0.0860 2.9855 0.0967 3.0383 0.0058 2.8647 0.0266 3.0996
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5.2.2 Sharpe Ratio from the Single Index Market Model

A classic market model was adopted in the second in-sample experiment in order
to provide asset return simulations for the clustering effect study. As the single
index market (SIM) model has been documented and discussed extensively in the
literature, it might be helpful to further explore the clustering effect in this paper.
The SIM model can be considered as a single-factor regression model of the asset
returns depending on the returns of a market portfolio

rj = αj + βj · rM + εj. (16)

By resorting to the least squares estimation, one can estimate the intercept αj

and the slope βj for asset j based on the asset return rj and the market portfolio
return rM . The FTSE index daily log-return was considered as the market portfolio
return. Since it is usually assumed that the residuals from the regression follow
normal distributions, simulations of daily asset return r̂j can be generated by using

the SIM model after estimating the intercept α̂j, the slope β̂j, the mean and the
standard deviation of the residual εj. In other words, for each in-sample period
(2005, 2006, 2007 and 2008), the asset returns and the FTSE return were used to
estimate the model parameters and the residual parameters for the four periods.
The simulated asset returns were then generated by using the SIM model with the
estimated model parameters and the artificially generated random noises. Each
artificially generated asset return series comprises an observation number of 260
and a simulation path of 2,000 in each period.

Table 3 provides the statistics of the SR distributions which are computed by
using the simulated returns from the SIM model and the portfolio weights from
the EW allocation. As the table shows, the mean value and skewness of the SR
distributions from using the clustering asset allocation are higher than the two
moments in the non-clustered case. The standard deviation and the kurtosis,
after applying the clustering scheme, are slightly higher than the two moments
in the absence of clustering impact. The above findings are consistent with those
observed in the previous in-sample bootstrap study. Table 4 reports the moment
statistics of the SR distributions when applying the MVP allocation. Generally,
these statistics agree with the clustering impact observed before, i.e. the mean
value are increased by using the clustering scheme while the standard deviation
and the kurtosis are kept almost the same as the two moments in the non-clustered
case. However, one should note that some skewness ratios are not improved under
the clustering impact (e.g. for the ratios in 2005 and 2008).
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Table 3: Descriptive Statistics of In-Sample SR with SIM and EW

2005 2006 2007 2008
MEAN STDV MEAN STDV MEAN STDV MEAN STDV

non-clustered -0.0576 0.0036 -0.0613 0.0033 -0.0698 0.0040 -0.0750 0.0079
G = 3 -0.0455 0.0044 -0.0506 0.0039 -0.0537 0.0048 -0.0582 0.0083
G = 5 -0.0447 0.0045 -0.0496 0.0039 -0.0529 0.0048 -0.0575 0.0084
G = 7 -0.0443 0.0044 -0.0496 0.0040 -0.0533 0.0047 -0.0578 0.0085
G = 9 -0.0433 0.0046 -0.0486 0.0041 -0.0526 0.0049 -0.0568 0.0087

SK KU SK KU SK KU SK KU
non-clustered -0.0324 2.8525 0.0224 3.0778 0.0137 2.9111 -0.0071 2.7766

G = 3 0.0168 2.9052 0.0615 3.2635 0.0169 2.9069 0.0600 2.7501
G = 5 0.0365 2.8824 0.0579 3.3206 0.0107 2.8708 0.0622 2.7550
G = 7 0.0071 2.9400 0.0490 3.3759 0.0415 2.8652 0.0349 2.6647
G = 9 0.0523 2.9454 0.0887 3.1736 0.0449 2.8167 0.0162 2.7722

Table 4: Descriptive Statistics of In-Sample SR with SIM and MVP

2005 2006 2007 2008
MEAN STDV MEAN STDV MEAN STDV MEAN STDV

non-clustered -0.0659 0.0092 -0.0546 0.0116 -0.0569 0.0128 -0.0233 0.0275
G = 3 -0.0523 0.0079 -0.0622 0.0107 -0.0437 0.0112 -0.0107 0.0301
G = 5 -0.0664 0.0065 -0.0581 0.0095 -0.0589 0.0109 -0.0037 0.0270
G = 7 -0.0416 0.0085 -0.0269 0.0107 -0.0352 0.0118 -0.0007 0.0291
G = 9 -0.0401 0.0084 -0.0229 0.0113 -0.0336 0.0126 -0.0005 0.0287

SK KU SK KU SK KU SK KU
non-clustered 0.0393 2.9252 -0.1472 3.2116 -0.0168 2.9697 0.0037 2.7621

G = 3 -0.0101 3.0362 -0.0942 3.1220 -0.0801 2.9141 -0.0307 2.8588
G = 5 0.0321 2.9459 -0.0617 3.0740 0.0426 3.0439 -0.0297 2.9463
G = 7 -0.0396 2.9370 -0.0217 2.8195 -0.0259 2.8228 -0.0523 2.9624
G = 9 -0.0341 2.9162 -0.0624 3.0335 0.0499 2.9149 -0.0466 2.9951
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5.3 Out-of-Sample Study

5.3.1 Sharpe Ratio from the Bootstrap Method

If the clustering design were to improve the risk-adjusted reward measure during
the in-sample period, one would expect a corresponding impact for the out-of-
sample period. Thus, it is necessary to study the clustering impact on the out-of-
sample SR distributions which are constructed by using the same approaches as
in the in-sample studies. The out-of-sample period was considered as the consec-
utive year of each in-sample period. In other words, each in-sample period (2005,
2006, 2007 and 2008) has a corresponding out-of-sample period (2006, 2007, 2008
and 2009) respectively. The portfolio weights which were optimized by using the
clustering asset allocation scheme, with different cluster numbers in the in-sample
periods, were held in the corresponding out-of-sample period. The simulated asset
returns series were generated by using the bootstrap approach on the basis of the
real asset returns in each out-of-sample period with a length of 260 observations
and 2,000 iterations.

Table 5 provides the moment statistics of the bootstrapped SR distributions
which were constructed by using the portfolio weights from adopting the EW
strategy and the bootstrapped out-of-sample asset returns. From the table, it can
be known that the mean values and the skewness under the clustering impact are
higher than the two moments in the non-clustered case, and that the standard
deviation and the kurtosis remain approximately the same as those in the non-
clustered case. The findings are consistent with those observed in the in-sample
studies. Table 6 reports the moment statistics of the out-of-sample bootstrapped
SR distributions based on the MVP weights. Although it is hard to observe a clear
clustering impact on the second, third and fourth moments of the distributions
(standard deviation, skewness and kurtosis), it can be seen that most of the mean
values in the clustered cases are still higher than that in the non-clustered case,
except for 2008, the U.S. financial crisis year.

5.3.2 Sharpe Ratio from the Single Index Market Model

The SIM model, which was introduced in the in-sample study, has been employed
again to simulate asset returns for the out-of-sample study. The simulated returns
in each out-of-sample period were generated by using the SIM model after estimat-
ing the model parameters and the residual parameters based on the asset returns
and the FTSE index return in each out-of-sample period. Each artificially gen-
erated asset return series in each out-of-sample period contains 260 observations
and 2,000 simulations.

Table 7 reports the moments of the SR distributions based on the weights from
the EW strategy and the simulated asset returns from the SIM model. It is clear
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Table 5: Descriptive Statistics of Bootstrapped Out-of-Sample SR with EW

2006 2007 2008 2009
MEAN STDV MEAN STDV MEAN STDV MEAN STDV

non-clustered 0.0583 0.0628 -0.0049 0.0626 -0.0811 0.0636 0.0523 0.0647
G = 3 0.0614 0.0632 -0.0013 0.0627 -0.0761 0.0637 0.0577 0.0648
G = 5 0.0590 0.0631 -0.0015 0.0627 -0.0771 0.0637 0.0572 0.0647
G = 7 0.0575 0.0632 -0.0012 0.0627 -0.0765 0.0637 0.0578 0.0647
G = 9 0.0579 0.0632 -0.0013 0.0628 -0.0755 0.0638 0.0597 0.0648

SK KU SK KU SK KU SK KU
non-clustered 0.1449 2.9360 0.1121 3.1714 -0.0882 3.0633 0.1241 2.9880

G = 3 0.1560 2.9011 0.1345 3.1834 -0.0795 3.0796 0.1250 2.9977
G = 5 0.1606 2.8994 0.1342 3.1869 -0.0776 3.0795 0.1263 3.0036
G = 7 0.1598 2.8836 0.1357 3.1763 -0.0762 3.0726 0.1291 3.0073
G = 9 0.1557 2.8870 0.1332 3.1930 -0.0783 3.0888 0.1273 3.0053

Table 6: Descriptive Statistics of Bootstrapped Out-of-Sample SR with MVP

2006 2007 2008 2009
MEAN STDV MEAN STDV MEAN STDV MEAN STDV

non-clustered 0.0542 0.0621 0.0164 0.0630 -0.0459 0.0646 0.0385 0.0647
G = 3 0.0575 0.0626 0.0186 0.0629 -0.0489 0.0646 0.0537 0.0637
G = 5 0.0594 0.0622 0.0018 0.0632 -0.0472 0.0646 0.0546 0.0635
G = 7 0.0545 0.0625 0.0203 0.0634 -0.0504 0.0645 0.0447 0.0639
G = 9 0.0579 0.0627 0.0221 0.0634 -0.0527 0.0644 0.0420 0.0640

SK KU SK KU SK KU SK KU
non-clustered 0.1353 2.9979 0.1087 3.1653 -0.0354 3.0608 0.0840 3.0271

G = 3 0.1412 2.9903 0.1117 3.1476 -0.0268 3.0626 0.0082 2.9122
G = 5 0.1223 3.0044 0.0930 3.1546 -0.0403 3.0499 0.0657 2.9605
G = 7 0.1372 2.9897 0.1584 3.1117 -0.0318 3.0836 0.0499 2.9248
G = 9 0.1579 3.0032 0.1533 3.1659 -0.0376 3.0659 0.0552 2.9157
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that the mean values and the skewness of the SR distributions under the clustering
impact are higher than the moments of the SR distributions without clustering.
The standard deviation and the kurtosis of the SR distributions in the clustered
cases are slightly higher than the moments without the clustering impact.

Table 8 shows the SR distribution statistics obtained from adopting the MVP
weights based on the simulated returns. Although the impact of the clustering
scheme on the SR distribution is not clear as those observed from the in-sample
studies, it is still found that the mean values of the SR distribution in 2007 and 2009
under the clustering impact are higher than those without clustering. It should be
noted that the mean values from the clustering asset allocation do not outperform
the non-clustered means in 2006 and 2008, and the standard deviations under
the clustering impact are correspondingly smaller than the non-clustered standard
deviations in the two years (which is also observed in the case of 2008 from Table 6).
This may imply, by utilizing the clustering design, statistical inference approaches
(such as the bootstrap and the simulation method) are able to provide better
confidence intervals for the population means than the approaches in the absence
of the clustering design when the market is experiencing a structural break. In
such cases, the mean values as well as the standard deviations may decrease after
using the clustering scheme. Regarding the other two moments, it seems that the
clustering scheme does not have any significant impact on the skewness and the
kurtosis of the SR distribution.

6 Conclusion

This paper presents an approach which utilizes a clustering technique with tradi-
tional asset allocation methods to improve the portfolio Sharpe ratio. The clus-
tering approach in question is different from traditional clustering techniques with
regards to the maximization of the in-sample SR being used as the clustering cri-
terion. The portfolio weights are determined by the weights of two parts (i.e. the
cluster portfolios and the cluster members), which are computed by adopting the
EW strategy and the Markowitz MVP allocation in this paper. The comparative
study on the performance of DE against GA shows that GA is more apt at finding
the optimal cluster structures.

To explore the clustering impact on the portfolio SR distribution, the tradi-
tional bootstrap approach and the single index model are used to provide simula-
tions of asset returns for the in-sample and out-of-sample studies. As the in-sample
experiment results show, the SR distributions become better after applying the
clustering asset allocation: higher mean and skewness values are able to achieve,
and changes in the standard deviation and kurtosis are small with the equal weight
investment strategy. With the minimum variance allocation, the mean value of the
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Table 7: Descriptive Statistics of Out-of-Sample SR with SIM and EW

2006 2007 2008 2009
MEAN STDV MEAN STDV MEAN STDV MEAN STDV

non-clustered 0.0603 0.0053 0.0357 0.0060 0.0299 0.0125 0.0517 0.0113
G = 3 0.0627 0.0061 0.0393 0.0066 0.0380 0.0136 0.0567 0.0113
G = 5 0.0614 0.0062 0.0384 0.0069 0.0363 0.0137 0.0561 0.0115
G = 7 0.0606 0.0061 0.0405 0.0070 0.0374 0.0136 0.0567 0.0115
G = 9 0.0609 0.0062 0.0397 0.0070 0.0390 0.0142 0.0586 0.0117

SK KU SK KU SK KU SK KU
non-clustered 0.0855 2.8542 -0.1609 2.7678 0.0142 3.1440 0.0592 3.0971

G = 3 0.0847 2.9164 -0.1173 2.8901 0.0144 3.1618 0.0865 3.1521
G = 5 0.0861 2.9054 -0.1084 2.8639 0.0145 3.1543 0.0643 3.0760
G = 7 0.0855 2.9168 -0.1371 2.8516 0.0146 3.2785 0.0620 3.0912
G = 9 0.0877 2.9471 -0.1407 2.9198 0.0140 3.2035 0.0824 3.1196

Table 8: Descriptive Statistics of Out-of-Sample SR with SIM and MVP

2006 2007 2008 2009
MEAN STDV MEAN STDV MEAN STDV MEAN STDV

non-clustered 0.0659 0.0157 0.0593 0.0168 0.0723 0.0298 0.0390 0.0379
G = 3 0.0615 0.0125 0.0615 0.0169 0.0695 0.0272 0.0558 0.0443
G = 5 0.0622 0.0125 0.0485 0.0152 0.0733 0.0268 0.0570 0.0416
G = 7 0.0599 0.0126 0.0626 0.0173 0.0667 0.0289 0.0471 0.0434
G = 9 0.0617 0.0128 0.0642 0.0173 0.0614 0.0301 0.0439 0.0428

SK KU SK KU SK KU SK KU
non-clustered 0.0745 2.8871 -0.0393 2.7884 0.0921 3.2321 0.0087 2.9595

G = 3 0.0034 2.8509 -0.0365 2.8268 -0.0162 3.1059 -0.0781 3.0963
G = 5 0.0705 2.9044 -0.0406 2.8870 0.1602 3.1859 -0.0647 3.0556
G = 7 -0.0477 2.7892 0.0042 3.0750 -0.1027 3.1043 -0.0421 3.1802
G = 9 -0.0526 2.7041 -0.0012 3.1214 -0.1057 2.8430 -0.0311 3.1605
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SR distributions is increased whereas the other three moments of the distributions
are not significantly improved by using the clustering scheme. The results from the
out-of-sample experiment further support the findings from the in-sample studies.
More importantly, this paper reveals that by using the clustering design with ex-
isting asset allocations, it is possible to obtain a portfolio with more beneficial
features by using a proper clustering criterion. For instance, the portfolio SR is
improved after adopting the SR maximization as the clustering criterion. Portfolio
managers may therefore apply the proposed asset allocation scheme by changing
the clustering criterion to obtain portfolios with desired properties which better
suit the preferences and demands of their clients.
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