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Exact Maximum Likelihood Estimation for
Copula Models

Jin Zhang∗ Wing Long Ng †

Abstract

In recent years, copulas have become very popular in financial research
and actuarial science as they are more flexible in modelling the co-movements
and relationships of risk factors as compared to the conventional linear cor-
relation coefficient by Pearson. However, a precise estimation of the copula
parameters is vital in order to correctly capture the (possibly nonlinear)
dependence structure and joint tail events. In this study, we employ two
optimization heuristics, namely Differential Evolution and Threshold Ac-
cepting to tackle the parameter estimation of multivariate t distribution
models in the EML approach. Since the evolutionary optimizer does not
rely on gradient search, the EML approach can be applied to estimation
of more complicated copula models such as high-dimensional copulas. Our
experimental study shows that the proposed method provides more robust
and more accurate estimates as compared to the IFM approach.

Key words. Copula Models, Parameter Inference, Exactly Maximum
Likelihood, Differential Evolution, Threshold Accepting.

1 Introduction

Nowadays, copulae have been widely applied by practitioners to model the de-
pendence structure of financial risk factors, such as equities and exchange rates.
The popularity of copulae is mainly due to their flexibility as they can be used to
model both the linear and non-linear dependence structure of a multivariate dis-
tribution. The linear correlation by Pearson is not only insufficient in describing
the dependence of risk factors which moving away from elliptical distributions, but
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also inconsistent under nonlinear strictly increasing transformations of risk factors
(see McNeil et al. [2005]). Therefore, using copula-based dependence measures
will be more accurate in capturing the dependence structure than calculating the
linear correlation.

However, a precise estimation of parameters in copula models is crucial to de-
pendence modelling. In the literature, several ways based on the statistical infer-
ence theory were developed to estimate the parametric and non-parametric copula
models (see Joe [1997]). These approaches can be mainly classified into three
types: parametric approaches (e.g. the maximum likelihood estimation), semi-
parametric estimation and non-parametric methods. The maximum likelihood
estimations usually include the exact maximum likelihood method (EML) and the
inference for margins method (IFM). The EML method for the parameter estima-
tion of complex copula models, such as a high-dimensional copula model, could
be computationally intensive while using traditional numerical methods. Further-
more, since the EML jointly estimates the marginal distribution parameters and
the dependence structure (copula) parameters, the solutions from traditional op-
timization approaches tend to stuck in local optima. Joe [1997] proposed the IFM
approach, a computationally simpler approach that first estimates the marginal
distribution parameters and then the copula parameters. However, the estimators
from the IFM method do not hold with that from the EML estimation in gen-
eral. Due to this reason, the former set of estimates are usually used as a starting
guess for the latter, leading a cumbersome procedure, i.e. a ‘two-step’ maximum
likelihood.

Two evolutionary methods, namely Differential Evolution (DE) and Threshold
Accepting (TA), are used to tackle the parameter inference problem of the multi-
variate t copula models under the EML framework in this paper. By resorting to
the evolutionary approaches, the parameter inference can be realized in a one-step
estimation procedure for the EML estimation, and the approaches do not require
any starting guess of decision variables. The proposed approach is particularly
suitable for the inference of complicated copula models by using the EML esti-
mation, traditional optimization procedures tend to stop at local optima in such
cases.

The structure of this paper is organized as follows. Section 2 introduces the
copula model and the parameter inference problem. Section 3 presents the opti-
mization problem and the evolutionary methods for solving the problem. Section
4 reports the experiment results and Section 5 summarizes the paper.
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2 Copula Theory

Copula has become an important tool in finance with various applications, e.g.,
risk management, derivatives pricing, portfolio management, etc. In fact, copulae
were initially introduced by Sklar [1959]. Let H denote a joint distribution of
function with margins F1, ..., Fd, then there exists an unique copula C

H(x1, ...xd) = C(F1(x1), ..., Fd(xd)), (1)

if F1, ..., Fd are continuous. The copula model interprets multivariate distributions
by coupling the marginal distribution function Fx1(x1), ..., Fxd

(xd) with the depen-
dence structure C (Nelsen [1998]). In other words, the joint distribution can be
expressed by combining the marginal distributions with the dependence structure,
yielding

C(u1, ..., ud) = H(F−1
1 (u1), ..., F

−1
d (ud)), (2)

with u ∈ [0, 1]d, and F−1
i (·) denoting the inverse of the marginal distribution

Fi(·). In this paper, the general Student t distribution and Student t copula are
used to model the marginal distribution Fi(·) and the dependence structure C(·),
respectively.

Particularly in finance and risk management, the Student t distribution has
been used instead of the normal distribution, because of its fat tail behavior,
which can be applied to capture financial extreme events (Bollerslev [1987]). The
marginal distributions of a multivariate t distribution are univariate Student t dis-
tributions. The probability density function f(·) of general Student t distributions
can be written as

f t
η,µ,σ(x) =

Γ(η+1
2

)

Γ(η
2
)

1√
ηπσ2

(
1 +

1

η

(x− µ)2

σ2

)− η+1
2

, (3)

where Γ(·) is the Gamma function, η denotes the marginal degrees of freedom
(DoF), µ and σ represent location and dispersion of the marginal distribution
respectively (see Meucci [2005]).

According to Sklar [1959], the Student t copula of the random vector u can be
expressed as

Ct
ν,ρ(u) = tν,ρ(t−1

ν (u1), ..., t
−1
ν (ud)), (4)

where ρi,j = Σi,j/
√

Σi,iΣj,j, with i, j ∈ 1, ..., d. Σ is the variance-covariance matrix,
tν,ρ(·) denotes the distribution function H(·), and t−1

ν (·) represents the inverse of
the marginal t distribution function F−1

i (·). The corresponding Student t copula

density c(u1, ..., ud) = ∂dC(u1,...,ud)
∂u1...∂ud

can be written as

ct
ν,ρ(u1, ...ud) =

1√
|ρ|

Γ(ν+d
2

)Γ(ν
2
)d−1

Γ(ν+1
2

)d

∏d
j=1(1 +

y2
j

ν
)

ν+1
2

(1 + y′ρ−1y
ν

)
ν+d
2

. (5)
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One should note that, if the DoF η of the marginal distribution of Eq. (3) is
consistent with the DoF ν in the copula function in Eq. (5), the multivariate
distribution is referred to as a multivariate t distribution (see McNeil et al. [2005]).

The complete copula model has two parts, the marginal cumulative distri-
butions Fj(·) and a joint cumulative distribution H(·). Ideally, the distribution
parameters of the complete copula models should be estimated jointly according
to the exact maximum likelihood (EML) method. The log-likelihood function `m

j

of the j-th Student t marginal distribution can be written as

`m
j = −no ·

[
log(σj) + log(

√
ηj) + log(

√
π) + log

(
Γ

(ηj

2

))
+ log

(
Γ

(
1 + ηj

2

))]

−
(

ηj + 1

2

)
·

no∑
i=1

log

(
1 +

(xj,i − µj)
2

σ2
j · ηj

)
, (6)

where no is the observation number; and µj, σj, ηj denote location, dispersion and
DoF of the j-th marginal distribution, respectively. The log-likelihood function `C

of the Student t copula density in Eq. (5) can be written as

`C = no ·
[
−1

2
· log(|ρ|)− 2 · log

(
Γ

(
ν + 1

2

))
+ log

(
Γ

(
ν + 2

2

))
+ log

(
Γ

(ν

2

))]

+
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j=1

no∑
i=1

ν + 1

2
· log

(
1 +

y2
j,i

ν

)
− ν + 2

2
·

no∑
i=1

log

[
1 +

1

ν
yi
′ · ρ−1 · yi

]
, (7)

where d denotes the dimension of the risk factors; yj,i represents the inverse trans-
form of Student t with ν DoF for the i-th observation of the j-th risk factor after a
strictly increasing transform (i.e. the Student t cumulative distribution function)
of the original observation xj,i.

Since the EML estimation for complex copula models could be computation-
ally burdensome, the literature suggests the inference for margins (IFM) approach,
which can obtain the estimates more simply – but at the cost of a higher bias. The
IFM approach first estimates the parameters of marginal distributions, such as the
one in Eq. (6). Then the variables xj,i are transferred into yj,i based on the es-
timated parameters of the marginal distribution. After that, the inference of the
copula parameters in Eq. (7) is performed while taking the yj,i as input observa-
tions. The IFM approach is a two-step procedure and it can be implemented by
using traditional numerical approaches, such as the Newton-Raphson algorithm.
However, the IFM approach cannot guarantee the parameter ηj in Eq. (6) and
the ν in Eq. (7) being consistent. In contrast to the IFM approach, the EML
estimation overcomes the barrier since it estimates the marginal distributions and
the copula density jointly. The objective function used in the EML approach is

4



simply defined as

` = `C +
d∑

j=1

`m
j , (8)

which has been discussed in the work of Zhang and Ng [2010].

3 Maximum Likelihood for Parameter Estima-

tion

3.1 Optimization Problem

Estimation of the copula parameters is based on the maximization of the objective
function, i.e. the log-likelihood functions from the complete copula model defined
in Eq. (8). The fitness of the final objective function is defined as the sum of log-
likelihood values of both the marginal and copula density functions. The fitness
value of the objective function O depends on µj, σj, ρ and ν, thus the optimization
problem can be simply formulated as

max
µ,σ,ρ,ν

O = ` (9)

subject to

1 > ρ > −1, ν > 3.

In practice, when ν is greater than 30, the Student t copula can be approximated
by using the Gaussian copula, which does not consider any tail dependence (see
Fantazzini [2009]). When ν is smaller than 3, the third and fourth moments of
the distribution are not defined. Therefore, the minimum value of ν is constrained
as grater than 3 in the maximum likelihood estimation. In order to solve the
optimization problem, two population based evolutionary methods are utilized to
search optimal solutions for the copula model while taking the marginal distribu-
tions and the dependence structure into account simultaneously.

3.2 Differential Evolution

Heuristic methods provide ways of tackling combinatorial optimization problems.
Differential Evolution (DE) which was originally proposed by Storn and Price
Storn and Price [1997], is a population based heuristic method for solving the op-
timization problems with continuous space. The approach generates new solutions
by linear combination and cross-over based on current solutions. The resulting so-
lution would replace the current best solution if the new solution has a higher
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Algorithm 1 Differential Evolution.
1: randomly initialize population of vectors ıp, p= 1,...,P
2: while the halting criterion is not met do
3: for all current solutions ıp, p=1,...,P do
4: randomly pick three different solutions, i.e. p1 6= p2 6= p3 6= p
5: ıc[i] ← ıp1 [i]+(K+z1[i])(ıp2 [i]−ıp3 [i]+z2[i]) with probability π1, or ıc[i] ← ıp[i]

otherwise
6: compute the fitness value of ıp, i.e. the sum of log-likelihood value of the

marginal and copula density functions
7: end for
8: for the current solution ıp, p = 1,...,P do
9: if Fitness(ıc) > Fitness(ıp) then ıp ← ıc end if

10: end for
11: end while

fitness value. For each current solution ıp, a new solution ıc is generated from
the following procedure: randomly selecting three different members from the cur-
rent population (p1 6= p2 6= p3 6= p); linearly combining the solution vectors at
probability π1, or inheriting the original p-th solution otherwise. We use the ‘Dit-
ter’ and ‘Jitter’ version of the standard DE (see Price et al. Price et al. [1998]),
which considers adding normally distributed random numbers to the weighting
factor K, and the difference of two solution vectors respectively. Vectors z1 and
z2 represent the extra noise in the algorithm; they contain random numbers being
zero with probability π2 and π3 respectively, or independently follow the normal
distributions N(0, d2

1) and N(0, d2
2).

The DE algorithm is described by the pseudo code in Algorithm 1. π1 is the
cross-over probability. After the linear combination and cross-over, DE updates
the population. More specifically, if the fitness value of ıc is higher than the one
of ıp, the solution ıp is replaced by ıc, and the updated ıp exists in the current
population; otherwise ıp survives.

The parameter settings of the DE algorithm used for solving the optimization
problem are listed as follows. Population size and iteration number were set at 50
and 500; the value of K was set at a value 0.5; and the crossover probability z1

was at 60%. The parameters used for generating the extra noises z1 and z2 were :
z2 = 50%, z3 = 10%, d2

1 = 0.1 and d2
2 = 0.1. Repair functions are used to translate

these solutions to values which meet the following constraints

ν = 3 + |ν̇| (10)

ρ =

{
exp −0.15

|ρ̇| if ρ̇ > 0,

− exp −0.15
|ρ̇| if ρ̇ < 0,

(11)
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where ν̇ and ρ̇ are used to represent the solutions from the DE. The above repair
mechanism was utilized to guarantee that the two parameters from DE met the
parameter requirement from the copula model: 1 > ρ > −1, ν > 3. Eq. (11)
is analogous to the logistic function in the literature which maps real numbers to
values within a specified range.

3.3 Threshold Accepting

Dueck and Scheuer [1990] introduced Threshold Accepting (TA), and Winker
[2001] gave a comprehensive discussion of TA and its applications in economics.
TA is a refined version of the standard local search procedure, mainly it differs
from the standard approaches in its acceptance criterion. Given a minimization
problem, let ṡc denote an initial solution and ṡn represent a candidate solution in
the neighborhood of the initial element N(ṡc), TA will accept ṡn as a new solu-
tion if and only if the solution is better than ṡc in terms of an objective function,
i.e. O(ṡn) − O(ṡc) < T for some pre-assigned non-negative threshold value T.
The threshold T is decreased gradually and reaches the value of zero after a given
number of steps ns. This algorithm was applied to solve the optimization problem
by simply changing the sign of the objective function, which turned the original
maximization problem to minimization.

To generate a candidate solution in the neighborhood of ṡc, normally dis-
tributed randomness from N (0, d2

3) was added to each gene in the chromosome
of the ṡc at a probability of z4; otherwise the gene of the new solution ṡn inher-
its the one of ṡc. The parameter d2

3 and z4 were assigned with values of 0.1 and
0.5. The sequence of threshold Fi, i = 1, ..., ns was decided by using a data-driven
approach suggested by Winker [2001] as a standard approach in deciding the se-
quence. The data-driven approach is briefly described as follows. First, a distance
measure is defined as the absolute difference in the fitness values of a solution
and a candidate solution from its neighborhood. The empirical distribution of the
distance is then constructed on the basis of the distance values between a number
of randomly chosen solutions and their neighborhood solutions. After that, the
empirically observed distance measures are sorted in decreasing order, and the k-
th quantile of the sorted distance is taken as the threshold value for the k-th step.
The TA algorithm is described in Algorithm 2.

4 Experimental Results

In order to tell which evolutionary approach is more efficient and stable for solving
the optimization problem, the fitness values, i.e. the log-likelihood values, from
independent restarts of the DE and TA algorithms were compared with each other.
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Algorithm 2 Threshold Accepting.
1: Initialize threshold sequence Ti, with i = 1, ..., ns and
2: Randomly generate an initial solution ṡc

3: for i = 1 to ns do
4: Choose ṡn ∈ N(ṡc)
5: if O(ṡn)−O(ṡc) < Ti, then
6: ṡc ← ṡn

7: end if
8: end for

The two algorithms have been restarted 150 times. The fitness values i.e., the
log-likelihood values defined in Eq. (8) from restarting the two algorithms, are
provided in Figure 1. The figure shows that the DE yields higher and more stable
fitness values than that from the TA in each run. The suboptimal performance of
the TA is possible due to the simple way used for defining the local neighborhood
structure. As Winker [2001] pointed out, the performance of TA highly depends
on the construction of local neighborhood structure and the threshold sequence.
DE is simpler than TA for implementation as the algorithm only requires a fine
tune of the weighting factor K and the crossover probability z1. Most of the time,
the solutions from DE are insensitive to small changes of its parameter settings.
Due to the above reasons, DE was employed as the EML optimizer in the following
simulation study.

To assess the accuracy of the estimated parameters from the EML estimation
against the IFM approach, a set of 200 × 2 random variables from the bivariate
Student t distribution was generated at a total iteration number of nS = 5, 000.
The true distribution parameters used for generating the random numbers were
set as µ1 = 0, µ2 = 0, σ1 = 0.2548, σ2 = 0.2250, ρ = 0.43 and ν = 6. Since the
standard hill-climbing algorithm such as the Newton-Raphson approach for the
EML estimation did not generate any results but only for the IFM approach, the
results from the IFM were compared with that from the DE procedure applied
for the EML estimation. Table 1 shows the numerical results with the standard
descriptive statistics of the estimated parameters based on the nS bootstrap sam-
ples. As expected, the EML estimators, obtained by maximizing the log-likelihood
function with the DE, are often (i) closer to the true values, (ii) less biased, (iii)
less skewed and (iv) less kurtotic as compared to the IFM alternatives.

Figure 2 compares the kernel densities of the estimated distribution parame-
ters from EML and IFM. As discernible, the differences between the distribution
of estimators for µ1, µ2 (top panels) and ρ (bottom left panel) are negligible. More
interestingly, the middle panels reveal that the dispersion parameters σ1 and σ2

can be more accurately estimated with the EML approach as their kernel densities
are higher in the centered region and lower in the tail regions. Finally, the bottom
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Figure 1: Log-likelihood Value from Independent Restarts

right panel shows that the estimate for the degree of freedom ν that controls the
probability of tail events in the distribution is even biased from the IFM method
as the peak of its kernel density is not localized at the true parameters position.
Overall, it can be seen that the parameters responsible centered moments of the
distribution, i.e. σ1, σ2 and ν can be better estimated with the EML approach.
These results are indeed essential as they reveal that the IFM approach often pre-
ferred in the financial literature is more likely to provide less reliable estimators of
the underlying joint distribution. Hence, the IFM approach based on the gradient
search is less able to correctly capture the tail dependence of risk factors (e.g., the
extreme losses) than the EML estimation which is powered by the DE algorithm.
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Table 1: Comparison of Sample Moments of the Parameters for EML and IFM

EML

θ True Value Mean(θ̂) SD(θ̂) SK(θ̂) KU(θ̂)
µ1 0.0000 0.0000 0.0105 0.0390 2.9275
µ2 0.0000 0.0000 0.0092 0.0051 3.0494
σ1 0.2548 0.2551 0.0095 0.0080 3.0637
σ2 0.2252 0.2255 0.0086 0.0863 3.0170
ρ 0.4300 0.4374 0.0330 -0.0950 3.0309
ν 6.0000 6.2589 1.1123 1.2754 6.2565

IMF

θ True Value Mean(θ̂) SD(θ̂) SK(θ̂) KU(θ̂)
µ1 0.0000 0.0000 0.0106 0.0397 2.9311
µ2 0.0000 0.0000 0.0093 0.0103 3.0495
σ1 0.2548 0.2554 0.0111 0.0453 3.0506
σ2 0.2252 0.2257 0.0100 0.0966 3.0502
ρ 0.4300 0.4375 0.0336 -0.0620 3.0299
ν 6.0000 6.6798 2.7531 4.8531 59.7094
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Figure 2: Kernel Densities of the Estimated Copula Parameters
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5 Comments and Summary

This paper suggests implementing an evolutionary algorithm in the exact maxi-
mum likelihood estimation of a multivariate Student t copula model. Usually, the
standard Newton-Raphson algorithm fails to solve complex optimization prob-
lems such as the EML estimation for the parameter inference of copula models,
while a derivative-free optimizer can conquer such problems. Two evolutionary ap-
proaches, namely Differential Evolution and Threshold Accepting were employed
to tackle the EML estimation problem, and it has been found that the former
yielded a better performance. Through a simple simulation study, it has been
proven that the proposed methodology for EML estimation already provided rea-
sonably good results in a simple two-dimensional setting with a Student t copula
model. As it is expected, the estimates obtained by the EML approach enhanced
with Differential Evolution are often closer to the true values as compared to the
IFM alternatives. Differential Evolution should be competent for the EML in-
ference of more complicated copula models than the bivariate Student t copula
studied in this paper.
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