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Abstract 
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1. Introduction

There exists a wide literature which considers the effects of the degree of product differen-
tiation on the stability of implicit collusion between firms (either in quantities or in prices)
in the context of repeated interactions leading to a variety of conclusions (see Deneckere
1983, Rothschild 1992, Lambertini 1997, Albaek and Lambertini 1998, inter alia). On the
other hand, very few studies have been made where the market game is preceded by another
game in which the firm may choose a level of effort in order to differentiate its product
from its rival’s; and as a result, the firm’s choice of the degree of differentiation becomes a
costly commitment. Kesteloot and Veugelers (1995)considered a model of process R&D with
spillover and showed that cooperation in R&D occurs in low spillover scenarios, due to lower
incentive to free-ride. Lambertini and Rossini (1998) studied this problem through a binary
model of strategic interaction in a symmetric duopoly where firms compete either on quan-
tities or on prices, after having determined the degree of differentiation through R&D effort.
They prove that regardless of quantity or price competition, firms may end up competing
in perfect substitutes (i.e. undifferentiated goods) because of a prisoner’s dilemma problem
arising at the R&D stage. In other words, prisoner’s dilemma is the main stumbling block
for R&D cooperation. Given this result, it seems that one can develop a repeated version of
this game and try to resolve the prisoners’ dilemma and thereby achieve cooperation in R&D
efforts. We precisely do that in this paper, and show how the nature of market competition
affects the sustainability of R&D cooperation. Our main result is R&D cooperation is easier
to sustain under quantity competition than under price competition.

2. The model

There are two firms characterized by constant symmetric marginal costs, normalized to
zero. The market demand curve faced by each of the firm is

pi = 1− qi − γqj, i 6= j, i, j = 1, 2

where γ represents the degree of product differentiation; γ ∈ [0, 1] (see Singh and Vives,
1984). Note that if γ = 1, the products of the two firms would be considered undifferentiated,
and the two firms compete in the same market. At the other extreme, if γ = 0, two products
will be fully differentiated and the firms will be enjoying monopoly. Crucially, γ in our model
is endogenously determined by firm’s decision (E) to spend on R&D or advertizing. Since,
firms would prefer a differentiated market, partial or full, to an undifferentiated one, there
arises a free-riding problem where a firm would like the other firm to give the R&D effort,
but save on its own effort.

We assume that the R&D effort (or advertizing expenditure) is exogenously fixed denoted
by e > 0. thus, firms have a binary choice, give no effort (E = 0) and give effort (E =
e).1 The differentiation implications of giving effort, unilateral or joint, are specified in the

1Fixed effort is assumed for simplification. Continuous effort does not alter the main conclusions. At this
stage we do not specify the size of e; but later we will see what the range of e should be to make the analysis
interesting.
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following assumption (Assumption 1):

γ = 0 if Ei = Ej = e,

γ =
1

2
if Ei = e, Ej = 0, i 6= j,

γ = 1 if Ei = Ej = 0.

In the event of both giving efforts, the differentiation will be complete, i.e. γ = 0. On
the other hand, if none of the firms gives effort, then no differentiation is achieved; then
we have γ = 1. But if only one firm gives effort, the differentiation will be partial. We
assume in this case γ takes the value 1/2. It is noteworthy that if unilateral effort leads to
a realization of γ < 1/2, then the incentive to free-ride will be stronger, and cooperation
will be harder to come by; smaller the value of γ, greater the returns to free-riding. On
the other hand, if the realized γ lies between 1/2 and 1, returns to free-riding will be much
less; cooperation in this case will be somewhat easier. Thus, specifying γ other than 1/2 to
represent partial differentiation introduces some sort of bias either in favor of free-riding or
in favor of cooperation. γ = 1/2 seems to be a neutral choice.2

The interactions between the two firms are captured by a simple two-stage game. In the
first stage, the firms simultaneously decide whether to give the effort or not. Then in the
second stage, effort choices become common knowledge, and the firms engage in quantity
competition (a la Cournot) or price competition (a la Bertrand). Here we assume, for
simplicity, that production cost is zero.3 Let π denote the second stage profit or revenue
(when already the effort cost has been sunk), and Π the first stage profit that takes the effort
cost into account. Thus, Π = π−E. Firm i’s profit will be identified by a subscript i to the
profit term, and the degree of differentiation associated with the profit will be indicated by
a superscript such as UD (for the undifferentiated case), or PD (for partial differentiation),
or FD (for full differentiation).

3. Firm interactions

3.1 Quantity competition

Under quantity competition, when the products are undifferentiated profits of firm i
(i = 1, 2) are

Πi
UD = πi

UD =
1

9
, (1)

2As will be evident, the analysis can be easily adapted to other values of γ. Assuringly, all of results hold
over a range of γ around 1/2; we comment on this later.

3The assumption of zero marginal cost is not essential. Even when the marginal costs are positive, and
not too divergent, the entire analysis goes through.
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and when the products are fully differentiated4, profits are

Πi
FD = πi

FD − e =
1

4
− e. (2)

Further, in the partial differentiation case, assuming firm i gives effort while firm j does not,

Πi
PD = πi

PD − e =
4

25
− e,

Πj
PD = πj

PD =
4

25
. (3)

That is only one firm gives the effort, but it ‘may increase’ profit for both of them.
It is straight forward to check that

πi
FD > πi

PD > πi
UD > 0, i = 1, 2.

Now we state the prisoners’ dilemma problem. This result is similar to Proposition 1
(Lambertini and Rossini 1998). A prisoners’ dilemma problem in R&D effort arises if for
i = 1, 2

Max[πi
FD − πiPD, πi

PD − πiUD] < e < πi
FD − πiUD. (4)

That is, not giving effort is a dominant strategy for both the firms. But the outcome is
Pareto dominated by that of both giving efforts. This can be seen from the payoff matrix
that can be easily constructed by assembling the first-stage payoffs.5

As noted earlier, (πi
FD − πi

PD) = 1/4 − 4/25 = 9/100 which is greater than (πi
PD −

πi
UD) = 4/25 − 1/9 = 11/225. Therefore, for the occurrence of the prisoners’ dilemma, e

must be greater than 9/100 = 0.09, but less than (πi
FD − πi

UD) = 5/36=0.138. That is,
e ∈ (0.09, 0.138).

3.1.1 Repeated interactions

Now we consider an infinite repetition of the game, in order to see under what condition
the Pareto optimal outcome, namely where both the firms choose to give efforts, can be
sustained. It is assumed that product differentiation lasts only one period. That is to say,
R&D is not cumulative. It requires renewed effort. For example, if it is a knowledge-based
product, or a service and if a new set of employees join the firm every period, then every
period the effort must be given, say, in the form of training. Alternatively, this can be seen as
a result of advertizing, that aims to influence the preferences of the representative consumer.

4The general expressions for quantity and profits for any γ ∈ [0, 1] and positive (but constant) marginal
costs are

qi =
(2− γ)− 2ci + γcj

4− γ2
and πi = qi

2, i 6= j, i, j = 1, 2.

Set ci = cj = 0 and γ = 1, 0, 1/2 to obtain (1), (2) and (3) respectively.
5If e is outside this range, various other possibilities arise, including giving effort being part of a Nash

equilibrium, which is, however, not our main interest.
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If the population is changing every period, then advertizing must be repeated to maintain
the influence. Thus, either way the effort has to be repeated.

In order to sustain the ‘repeated cooperation’ (i.e. giving efforts forever), we follow the
Friedman’s (1971) trigger strategy implying that a single instance of ‘noncooperation’ (i.e.
not giving effort) by any firm will be met with permanent noncooperation by both the firms.
This gives us the standard condition on the discount factor for sustaining the cooperative
solution:

δ ≥ Πi
PD − Πi

FD

Πi
PD − Πi

UD
, i = 1, 2

where δ is the common discount factor of the firms. Πi
PD is the one-shot deviation profit of

firm i from not giving effort while the other firm gives effort, i.e. Πi
PD = πi

PD.
Note that the subgame perfectness of equilibrium requires the firm j to execute the trigger

strategy (i.e. switch to no effort) from period t onwards, when firm i has deviated in period
t − 1. Assuming firm i will now play according to the trigger strategy (i.e. give no effort)
from period t onwards, firm j will not deviate from the trigger strategy, if

πj
PD − e+

δ

1− δ
πj

UD ≤ πj
UD

1− δ
.

This condition reduces to e ≥ πj
PD−πjUD which will be satisfied, as we are going to consider

e only from the interval specified in condition (4).
The condition on the discount factor can be simplified as

δ ≥ e− (πi
FD − πiPD)

πiPD − πiUD
, i = 1, 2. (5)

The numerator on the right hand side is positive by (4).
Conditions (4) and (5) hold key to our analysis. The difference between the gains from

matching the cooperation, (πi
FD−πiPD), and the gains from unilateral effort, (πi

PD−πiUD),
together with the gains from collective cooperation, (πFD

i − πUD
i ), determines the relevant

range of effort (for the prisoners’ dilemma to arise), as well as the critical size of the discount
factor. In particular, the right hand side expression of eq. (5) tells us whether cooperation
is easy or hard; if it is positive and relatively large then cooperation is hard. As is apparent
now, this boils down to the comparison of the two terms (πi

FD − πiPD) and (πi
PD − πiUD),

which, we shall see, depends on the nature of competition.
Under quantity competition, assuming e ∈ (0.09, 0.138), the lowest level of δ necessary

to sustain cooperation is given by,

δq = −81

44
+

225

11
e. (6)

The relationship is linear and strictly increasing. Note that when the effort is at its lowest
level (within the critical range), i.e. e = 9/100 any δ > 0 can sustain cooperation. But as
the effort level rises, the attractiveness of the fully differentiated payoffs decreases, and the
discount factor has to rise proportionately to sustain cooperation. See Figure 1 for a visual
illustration of δq.
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3.2 Price competition

Now we consider the case of price competition (in the second stage). The first stage of the
game remains unchanged. The second stage profit terms associated with price competition
are:

πi
UD = 0, πi

FD =
1

4
, for i = 1, 2. (7)

Firm 2’s profits are symmetrically obtained. In the case of partial differentiation6,

πi
PD =

4

27
, i 6= j, i, j = 1, 2. (8)

Once again, full differentiation is found to be strictly better than partial differentiation
which in turn is strictly better than no differentiation. Under price competition, profits in the
undifferentiated market become zero, but the relative profit gains from partial differentiation
exceed that from full differentiation. That is, (πi

FD − πi
PD) = 1/4 − 4/27 = 11/108 <

(πi
PD − πiUD) = 16/108 = 4/27. So for the prisoners’ dilemma to hold, according to the

condition (4) it is necessary that e ∈ (4/27, 1/4) = (0.148, 0.25).
Now compare this range of e with the range of e obtained under quantity competition.

Two ranges of efforts are disjoint, implying that the prisoners’ dilemma problem cannot
hold simultaneously for both price and quantity competition. The effort level has to be
much higher under price competition, for the prisoners’ dilemma problem to occur. Since
with price strategies, moving from no differentiation to full differentiation yields greater
gains, effort costs will also have to increase significantly in order for the strategy of not
giving efforts to be optimal.

This suggests that the occurrence of prisoners’ dilemma may depend on the nature of
competition. At a given level of e, the following can be said about the stage game. If R&D
cooperation in not achievable under quantity competition due to prisoners’ dilemma, it may
be achieved under price competition (when e ∈ (0.09, 0.138)); see footnote 5. On the other
hand, if price competition does not allow cooperation (due to prisoners’ dilemma), then
under quantity competition not only is cooperation unachievable, but it is not even Pareto
optimal (when e ∈ (0.148, 0.25)).

Next, moving onto the infinitely repeated version of this game, we examine condition (5).
Now, e > (πi

FD − πiPD) within its critical range. This gives a strictly positive lower bound
on δ. The minimum value of the discount factor necessary to sustain cooperation is given
by:

δp = −11

16
+

27

4
e. (9)

6The general expressions for outputs and profits for any given γ < 1 are as follows:

qi =
2− γ(1 + γ) + γcj − (2− γ2)ci

(1− γ2)(4− γ2)
, πi = (1− γ2)qi

2, i = 1, 2.
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Figure 1. Minimum discount factors

0.31

0.105

In Figure 1, we illustrate δp and mark the feasible discount factors. δp, like δq, is positively
sloped and linear. But note, within the relevant ranges, at the lowest value of e cooperation is
more difficult under price competition. Under price competition at e = 0.148, the minimum
δ needed is δp = 5/16 = 0.31. In contrast, under quantity competition at e = 0.09, the
minimum δ needed is δq = 0. Clearly, in the latter case, cooperation can be sustained at any
value of δ > 0.

Moreover, for all e ∈ (0.09, 0.105) (which constitutes 31.25% of the range of e), δq is
strictly less than 0.31, which is the lowest value of δp. Since δq and δp are not directly com-
parable because of different ranges of e, we can compare δq and δp across differnt percentiles
of the distribution. It can be checked that over the entire distribution (at least up to 90 %
percentile of the distribution) δq is strictly smaller than δp.7 Thus, it can be said that under
quantity competition cooperation is more stable, which is somewhat contrary to conventional
wisdom (applicable to homogenous goods).

This can be explained in the following way. Under quantity competition (for being a
softer form of competition) gains to matching cooperation are greater than gains to unilateral
effort; i.e. πi

FD − πiPD > πi
PD − πiUD. This creates greater stability. On the other hand,

under price competition we get πi
FD − πiPD < πi

PD − πiUD. Because of fierce competition
in the undifferentiated market, firms gain relatively much more from partial differentiation,
than from matching their rivals’ efforts. Put differently, moving from zero differentiation
to some differentiation generates higher profit than moving from some differentiation to
full differentiation. Hence, δ must be sufficiently high to induce cooperation to achieve full
differentiation.

7For instance, consider the 50 percentile point, which corresponds to e = 0.114 under quantity competition
and e = 0.199 for price competition. At e = 0.114 we get δq = 0.49, while at e = 0.199 we get δp = 0.66.
Then the 80 percentile point corresponds to e = 0.128 for quantity competition and e = 0.229 for price
competition. Here, we get δq = 0.79 and δp = 0.87, respectively. Finally, the 90 percentile point corresponds
to e = 0.133 for quantity competition and e = 0.239 for price competition; we then get δq = 0.88 and
δp = 0.93, respectively. So at these points and all other points in between we have δq < δp.
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Proposition 1. (a) For a given level of effort e, the prisoners’ dilemma problem cannot
hold simultaneously for both quantity and price competition. (b) In the infinitely repeated
game, collusion in giving joint effort is more stable under quantity competition than under
price competition.

Do the results stated in Proposition 1 change if in Assumption 1 γ = 1/2 is replaced
by γ > 1/2 or γ < 1/2 for the partial differentiation case? The answer is mixed. Here we
do not offer a complete formal analysis of that, but report the main results, which can be
easily verified by using the profit expressions provided in footnotes 4 and 5. First of all, for
all γ belonging to the interval [0.35, 0.55] Proposition 1 remains fully in tact; both parts (a
and b) go through. So we could deviate from γ = 1/2 either way, to some extent. Outside
this interval, some aspects of the proposition get modified. For example, for γ ∈ (0.55, 0.67)
prisoners’ dilemma can hold under both quantity and price competition, as the two ranges
of e overlap. That is, part a of Proposition 1 does not hold. Next, we get δq = 0 at all
γ ≥ 0.35, and we also get δp = 0 at all γ ≥ 0.61. That is to say, at all γ ≥ 0.61 stability of
collusion does not vary between the two types of competition, and collusion can be sustained
at all δ > 0; part b of proposition 1 does not hold. But as stated earlier, when we move
too far away from γ = 1/2, we create bias in one or the other direction, and therefore, it is
unwise to consider γ too high or too low.

4. Conclusion

In this analysis, we extended the analysis of Lambertini and Rossini’s (1998) static game
of incentive for product innovation and market competition in a repeated game framework.
First, we characterized the discount factor associated with sustaining a collusion as a function
of the magnitude of effort level in the relevant ranges of prisoners’ dilemma problem. Then,
we showed that collusion is more likely to be sustainable under quantity competition as
opposed to price competition.
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