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Abstract

We study two-stage political contests with private entry costs. We show that these polit-

ical contests could be ineffective, namely, the chance of low ability candidates participating

in the contest might be higher than the chance of high ability candidates participating in

the contest (and winning). However, by imposing a costly requirement (fee) on the winner

of the contest, one can guarantee that the contest will be effective.

Keywords: All-pay auctions, Contests, Entry costs.

JEL classification: D44, O31, O32

1 Introduction

In a primary election, parties select a nominee to run in a general election. In this process

candidates first have to decide whether or not to enter a contest to be the party nominee.

Afterwards, if there is more than one entrant, they must compete to determine the winner.

In this paper, we model this situation as a two-stage political contest where there is an

entry stage and a campaigning stage. The cost of campaigning has two components: first, the
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opportunity (entry) costs of running a campaign and second, the expenditure used in campaign-

ing. We model the former as privately known and fixed and the latter as publically known and

variable. Also, each candidate has a publically known ability (charisma), either high or low.

The timing of the model is as follows. In entry stage, the candidates engage each other.

They indicate their interest in running and every candidate learns the abilities of his potential

opponents. Then, given his private cost of entry, he decides whether or not to participate in the

second stage of the contest. The candidates who decide to participate pay their entry costs. After

this stage, all candidates incur their entry costs and learn who has entered. In the second stage,

the candidates compete against each other in what we model as an asymmetric all-pay auction

under complete information. Each candidate chooses expenditure and the candidate with the

highest expenditure/ability ratio wins the primary. Independent of success, all candidates bear

the costs.

In the economic literature, all-pay auctions are studied under complete information where

the players’ valuations for the object are common knowledge (see, for example, Hillman and

Riley, 1989; Baye et al., 1993, 1996; Che and Gale, 1998; and Kaplan et al., 2003) or under

incomplete information where each player’s valuation for the object is private information to

that player and only the distribution of the players’ valuations is common knowledge (see, for

example, Amman and Leininger, 1996; Krishna and Morgan, 1997; and Moldovanu and Sela,

2001, 2006). In our model, each candidate has two private parameters: his ability, which is

common knowledge, and his entry cost, which is private information.

We find that our model has cutoff equilibria, where any candidate with an entry cost higher

than the cutoff for his type (ability) will decide to stay out of the contest and any candidate

with an entry cost lower than the cutoff for his type will decide to participate in the contest.
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We show that given these equilibrium entry decisions the contest may be ineffective; namely,

the chance that a high ability candidate will participate may be lower than the chance that

a low-ability candidate will participate. Consequently, there may be a higher chance that the

party may choose the low ability candidate. We show that the party can overcome this problem

and guarantee that the contest will be effective by imposing a requirement (task or fee) to be

paid by the winner of the primary.

Finally, we consider the situation where the party wishes to minimize the total expenditures.

In the classical all-pay contest without entry costs, if the number of candidates is endogenous,

the contest designer should decrease the number of candidates if he wishes to minimize the

total effort. In our model, however, we find that the total expenditures may either increase or

decrease in the number of candidates. Therefore, manipulating the number of candidates in

order to change the total expenditures may have unintended consequences in political contests

with private entry costs.

2 The model

Consider n candidates competing in a political contest for one position. The candidates have the

same value for winning the position (contest) which is normalized to be 1. Candidate i’s ability,

αi ≥ 0, is common knowledge. Assume that there are n1 candidates with high ability of α1 and

n2 candidates with a low ability of α2 < α1.
1 Participating in the contest generates a (sunk)

cost ci/αi for candidate i , where ci is the entry cost which is private information and is drawn

independently from the cumulative distribution function F which is on the interval [c, c] where

1For simplicity, we assume two types of abilities. Our results can be generalized to the case with any number

of types.
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0 ≤ c < minαi. We assume that F is continuously differentiable with F (c) = 0 and is common

knowledge.2 In the first stage, all the candidates are engaged, they learn the valuations of their

opponents and each one decides whether to stay out or participate in the second stage of the

contest. The candidates who decide to participate pay their entry costs. Then, in the second

stage, these candidates see who else has decided to participate and compete in an all-pay auction

under complete information such that the candidate with the highest expenditure/ability ratio

xi
ai

wins the nomination, while all the candidates pay their cost of effort. That is, if candidate i

decides to participate at the second stage of the contest, pays his entry cost ci, exerts an effort

of xi and wins the contest, then his payoff is given by 1− (xi+ci)
αi

. On the other hand, if he does

not win the contest his payoff is given by − (xi+ci)
αi

.

3 Equilibrium

In our model there frequently are trivial equilibria strategies in which one of the candidates

decides to always participate independent of his entry cost, and all the other candidates decide

to stay out of the contest in the second stage. In order to prevent such equilibrium strategies

(when n1, n2 > 1) we assume that candidates of the same type (same α) follow the same strategy.

We say that an equilibrium is type-symmetric if all candidates of the same type follow the same

strategy.

In the second stage the candidates compete in the all-pay auction where the candidates’

abilities are common knowledge.3 If there is only one entrant in the second stage, he will bid

zero and win. If there is more than one entrant, there are three cases that need to be examined.

2To avoid a trivial solution assume that F (α2) > 0 (there is a chance that player i has a cost lower than α2).
3The complete analysis of the equilibrium in the all-pay auction under complete information is given by Baye

et al. (1996).

4



Let us denote ei for the number of entrants of type i.

Case 1: There are two or more entrants with low abilities (type 2) only.

Then, these candidates randomize on the interval [0, α2] according to their effort cumulative

distribution functions F2(x), which is given by the indifference condition:

α2F
e2−1
2 (x)− x = 0 (1)

Thus, each candidate’s effort is distributed according to F2(x) =
(
x
α2

) 1

e2−1 . Total effort is

e2
∫ α2
0 xdF2(x) = α2 and the expected payoff of every candidate is u2 = 0.

Case 2: There are e1 ≥ 2 entrants with high abilities (type 1) and any number of entrants

with low abilities.

In this case all the candidates of type 2 stay out and the candidates of type 1 enter in

the second stage. These candidates randomize on the interval [0, α1] according to their effort

cumulative distribution functions F1(x), which is given by the indifference condition:

α1F
e1−1
1 (x)− x = 0 (2)

Thus, candidates’ effort is distributed according to F1(x) =
(
x
α1

) 1

e1−1
. The total expected effort

is e1
∫ α1
0 xdF1(x) = α1 and the expected payoff of every candidate is u1 = 0.

Case 3: There is only one entrant with high ability and e2 ≥ 1 entrants with low abilities.

Then, the candidates randomize on the interval [0, α2] according to their effort cumulative

distribution functions, F1(x) and F2(x), which are given by the indifference conditions:

α1F
e2
2 (x)− x = α1 − α2 (3)

α2F1(x)− x = 0

Thus, type 1’s effort is distributed according to F1(x) =
x
α1

, while type 2’s effort is

distributed according to F2(x) =
(
x+α1−α2

α1

) 1

e2 . The total expected effort is
∫ α2
0 xdF1(x) +
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e2
∫ α2
0 xdF2(x) =

α2+3e2α2+2e22(α1−α2)((1−
α2

α1
)
1

e2−1)

2(e2+1)
, and the respective expected payoffs are u1 =

α1 − α2 and u2 = 0.

Now, given the analysis of the candidates’ behavior in the second stage of the contest, we

can analyze their entry decisions in the first stage. In the first stage, n1 candidates with ability

of α1 and n2 candidates with ability of α2 are engaged and each of them decides whether to

participate or not, and those who decide to participate pay their private entry costs. Denote by

di(c) the entry decision (the probability of entering) if one has entry cost c and ability αi > 0.

Proposition 1 The entry decision (the probability of entering) of a candidate with cost ci and

ability αi > 0 in the first stage is

di(c) =





1 if c ≤ c∗i

0 if c > c∗i

where the equilibrium cutoffs c∗i , i = 1, 2 are given by4

c∗1 = (α1 − α2)(1− F (c
∗
1))

n1−1 + α2(1− F (c
∗
2))

n2(1− F (c∗1))
n1−1 (4)

c∗2 = α2(1− F (c
∗
1))

n1(1− F (c∗2))
n2−1 (5)

In the symmetric case where α1 = α2 and n is the total number of candidates, the symmetric

4Obviously, this equilibrium is for n1, n2 ≥ 1. If n1 ≥ 2, n2 ≥ 2 and c= 0, then any type-symmetric equilibrium

must be interior. If n1 = 1 or n2 = 1 the type-symmetric equilibrium can be non interior with c∗1 ≥ c, c
∗
2 ≤ c or

c∗2 ≥ c, c < c
∗
1 < c (and for c > v1− v2, non interior with c∗2 ≥ c, c

∗
1 ≤ c.) A cutoff ci > c implies that everyone of

type i would enter and a cutoff ci < c implies that everyone of type i stays out.
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entry decision is given by

di(c) =





1 if c ≤ c∗

0 if c > c∗

where the equilibrium cutoff c∗ > 0 is the solution of5

c∗ = α(1− F (c∗))n−1 (6)

Proof. See Appendix.

The entry decision described by Proposition 1 is such that any candidate with ability αi

and an entry cost higher than the equilibrium cutoff c∗i will stay out of the contest and any

candidate with ability αi and an entry cost lower than the equilibrium cutoff c∗i will participate

in the second stage of the contest. One may also notice that in our model, sometimes there is no

entry and hence no nominee. This still fits many elections — often in US congressional elections,

either the Democratic or Republican party does not select a nominee in the primary election

and the other major party runs unoppossed.

4 Effectiveness

Given the equilibrium strategies, a candidate with ability α2 has a positive payoff only if he is

the only entrant. Thus, the payoff of a candidate with ability α2 and entry cost c ≤ c∗2 is

α2(1− F (c
∗
1))

n1(1− F (c∗2))
n2−1 − c = c∗2 − c

Similarly, a candidate with ability α1 will profit α1 when he is in the second stage of the

contest alone and will profit the difference α1 − α2 when he is in the second stage with only

5For the symmetric case, any symmetric equilibrium is interior.
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candidates with abilities of α2. Thus, the payoff of a candidate with ability α1 and entry cost

c ≤ c∗1 is

(α1 − α2)(1− F (c
∗
1))

n1−1 + α2(1− F (c
∗
2))

n2(1− F (c∗1))
n1−1 − c = c∗1 − c

Therefore, the expected payoff of a candidate with ability αi, i = 1, 2, is

∫ c∗
i

0
(c∗i − c)dF (c) (7)

Definition 1 We say that a contest is effective if the chance of participation of candidates is

increasing in their abilities. That is, a contest is effective if vi > vj implies c∗i > c
∗
j .

In our model the contest is effective iff c∗1 > c∗2. Below we show by an examples that a

candidate with high ability and a relatively low entry cost may decide to stay out of the contest

whereas a candidate with low ability and a relatively high entry cost may decide to participate

in the contest. In other words, the contest is ineffective.

Example 1 Consider a contest where n1 = 2, n2 = 1, α1 = 2.25, α2 = 2 and F is a uniform

distribution on [0, 1].

By (4) and (5) the equilibrium interior cutoffs are given by:6

c∗1 = (2.25− 2)(1− c∗1) + 2(1− c
∗
2)(1− c

∗
1)

c∗2 = 2(1− c∗1)
2

There are two solutions to this system of equations: 1. c∗1 = 0.34255 and c∗2 = 0.8644 2.

c∗1 = 0.62993 and c∗2 = 0.2739. Note that in the first solution the contest is ineffective. The

6Note that for simplicity of exposition, in our examples, we will write the equilibrium cutoff equations, (4) and

(5), assuming there is an interior solution and then see if this is indeed the case.
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equilibrium cutoff of the candidate with the low ability α2 is higher than the equilibrium cutoff

of the candidates with the higher ability α1. This result implies that the expected payoff of the

candidate with the low ability α2 is larger than the expected payoff of his opponents with the

higher abilities α1. This then implies that the candidate with the low ability is more likely to

be selected than the candidate with the high ability.

The intuition for why this is possible is that a candidate’s willingness to enter depends upon

his expected surplus of being in the contest. This surplus depends upon not only the candidate’s

ability but who else decides to enter the contest. Hence, if high-ability candidates are less likely

to enter the contest, then it is indeed possible for low-ability candidates to be more willing to

enter since they are more likely to be alone and reap all the profits.

The contest designer can guarantee that the contest will be effective by the following way

Proposition 2 If the winner of the contest pays a constant fee equal to t = max(0, 2α2 − α1)

then c∗1 > c
∗
2 such that the contest is effective.

Proof: By (4) and (5) if α1 > 2α2 we have,

c∗1 = (α1 − α2)(1− F (c
∗
1))

n1−1 + α2(1− F (c
∗
2))

n2(1− F (c∗1))
n1−1

> α2(1− F (c
∗
1))

n1−1(1 + (1− F (c∗2))
n2) > α2(1− F (c

∗
1))

n1(1− F (c∗2))
n2−1 = c∗2

If α1 < 2α2, by imposing a fee of t = 2α2 − α1 the candidates have actually new abilities

given by

α̃i = αi − t = αi − (2α2 − α1), i = 1, 2.

Since α̃1 = 2α̃2 and α̃i > 0 for all i, the result is obtained.

Hence by imposing a constant fee of t = max(0, 2α2 − α1) the party can guarantee that the

chance of participation of the high-ability candidates will be larger than those of the low-ability
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candidates. However, it is important to note that by imposing a constant fee, the party lowers

expected participation in the contest. Thus, before imposing a constant fee, the party should

tradeoff having the benefit of higher participation versus desireability of an effective contest.

5 Total effort

So far we assumed that the number of potential candidates is exogenous. Suppose that the

party is concerned with minimizing the total expenditure (total effort) of the candidates and

it can determine the number of candidates. The reason why the party may be concerned with

total expenditure is that perhaps this may affect future ability of the party to collect from

donors or in the very least affect the ability to compete in the general election. We also assume

that the candidates that are excluded will not pay entry costs. Usually in the standard all-pay

auction under incomplete information the total effort increases in the number of candidates. In

our model the effect of the number of candidates on the total effort is not clear. In order to

demonstrate this point it is sufficient to consider the simpler case of symmetric contests. The

following example consists of two cases and shows that an increase in the number of potential

candidates has an ambiguous effect on the candidates’ total effort.

Example 2 Consider a contest where α1 = α2 = 1.

Case 1: The candidates’ entry costs are distributed according to a uniform distribution on

[0, 1]. By (6) and (7) the equilibrium cutoff and the total effort are calculated, and as we can see

below, an increase in the number of potential candidates yields an increase of the total effort.
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number of candidates equilibrium cutoff total effort

2 0.5 0.25

3 0.381966 0.326238

4 0.317672 0.379581

5 0.275508 0.420873

10 0.175699 0.546468

1000 0.00524 0.9673

Case 2: The candidates’ entry costs are distributed according to a uniform distribution on

[0.5, 0.75]. As we can see below, in this case, an increase in the number of potential candidates

yields a decrease of the total effort.

number of candidates equilibrium cutoff total effort

2 0.6 0.16

3 0.5625 0.15625

4 0.5457 0.15501

5 0.53608 0.15443

10 0.51764 0.15368

1000 0.50017 0.15335

Note that in both cases the candidates’ abilities are uniformly distributed and the only

difference is in the support. Thus, we can conclude that only a minor change in distribution

of the candidates’ abilities can dramatically change the effect of the number of candidates on

the total expenditure. In that case, a party should be careful when it controls the number of

candidates, if it wishes to increase or decrease the total expenditure in the contest.
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6 Discussion

While our results are somewhat modest, we do point out two counter-intuitive possibilities of

political contests. The first possibility is that in some situations there may a higher chance

of selecting a low-ability candidate. This is not due to the difference in preferences between

the party and the general public, but due to the structure of the primary. The second counter-

intuitive possibility is that reducing the number of candidates may increase the total expenditure

of the race. There is still work left to see if these occur with other contest success functions.

Finally, it is important to notice that in our symmetric model with private entry costs,

the Revenue Equivalence Theorem (see Myerson, 1981; and Riley & Samuelson, 1981) holds

whether or not candidates observe how many others have decided to enter the second stage of

the contest. This implies that our results for the symmetric contest will hold for instance if the

in the second stage the players compete through first-price auctions or second-price auctions

instead of all-pay auctions. Moreover, in our asymmetric model similar results will hold for

the second-price auction but not for the first-price auction. In particular, the first-price auction

when the bidders are uninformed about who enters may generate lower revenue than the revenue

in our model of all-pay auctions. This shows us that there is room to study other contest forms

in our asymmetric environment.

7 Appendix

7.1 Proof of Proposition 1

Given the equilibrium in the second stage, a candidate with a low valuation α2 will profit only

when he is in the second stage of the contest alone. The probability of this is (1−F (c∗1))
n1(1−
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F (c∗2))
n2−1 which implies equation (5). On the other hand, a candidate with a high valuation

α1 will profit α1 when he is in the second stage of the contest alone and will profit the difference

α1−α2 when he is in the second stage with only candidates with valuations of α2. These happen

with probability (1− F (c∗2))
n2(1− F (c∗1))

n1−1 and (1− F (c∗1))
n1−1 which implies equation (4).

The existence of the equilibrium is derived by Brower’s Fixed Point Theorem. The RHS of

equations (4) and (5) form a bounded function from [0, α1]× [0, α2] to [0, α1]× [0, α2] that is

continuous since F is continuous. Therefore, a fixed point must exist. (Note that if cutoff c∗i

of the fixed point is above b, then it would imply that everyone with value αi enters. Likewise,

if cutoff c∗i of the fixed point is below a, then it would imply that everyone with value αi stays

out)

In the following we show that if n1, n2 ≥ 2, and a = 0, then any fixed point is interior, that

is F (c∗1), F (c
∗
1) are from (0, 1).7 The RHS of equations (4) and (5) are decreasing in c∗1 and c

∗
2.

If F (c∗1) = 0, then the RHS of (4) is greater than or equal to α1 − α2 > 0— a contradiction. If

F (c∗1) = 1, then the RHS of (4) is zero — also a contradiction. Hence, 0 < F (c∗1) < 1. A similar

argument shows that 0 < F (c∗2) < 1 as well. The symmetric case can be shown in a similar, but

simpler manner. ⊡
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