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Kernel Weighted Smoothed Maximum Score

Estimation for Applied Work

Jerome M. Krief ∗

November 5, 2010

Abstract

The endogenous binary response model frequently arises in economic applications when a covariate is
correlated with the error term in the latent equation due to data limitations. Applied workers generally
address endogeneity using the principle of Maximum Likelihood (ML) which imposes stringent paramet-
ric assumptions. These ML estimators are inconsistent if the posited parametrization is incorrect which
can translate in practice into aberrant results contradicting economic theory. Semiparametric estima-
tors have been developed imposing weaker distributional assumptions. Some semiparametric techniques
permit inferences from data but restrict heteroscedasticity which may furnish deceptive results. Other
semiparametric techniques can accommodate almost any heteroscedasticity but forbid inferences. This
article summarizes two new estimation techniques which allow for inferences under general heteroscedas-
ticity conditions. Some Monte Carlo experiments are conducted highlighting the robust advantage of these
estimators. Finally, these estimation techniques are applied to assess the effect of education on maternal
pregnancy smoking using the 1988 National Health Interview Survey.

Key words: Smoothed maximum score, Endogenous binary choice model, Control function.

JEL codes: C14,C31,C35.

1. Introduction

This paper considers the endogenous binary choice model of the form:

(i) U = Ẋ ′β + ε,

(ii) A = Π′W + V ,

(iii) Y = d(U) with d(.) ≡ 1[. ≥ 0],

where Y is the observable response variable, Ẋ ′ ≡ (Z ′, A) is a 1×K observable vector, W a q×1 observable
vector, (ε, V ) are unobservable errors, Π is a q× 1 unknown parameter and β a K × 1 parameter of interest.
Write W̃ as the components of W which are excluded from Ẋ. Here the vector S ≡ (Z ′, W̃ ′) contains
exogenous instruments while A is the endogenous variable due to the correlation between ε and V . For
simplicity assume that Ẋ contains no intercept since it is not identifiable under the estimation technique
which is to be discussed soon. Under appropriate identification restrictions the results put forth in this

∗Louisiana State University, Department of Economics, 2125 CEBA Bldg., Baton Rouge, LA 70803, phone: (225)388-3806,
e-mail:jkrief1@lsu.edu. I am indebted to Dr. Joel Horowitz for having encouraged me to pursue this topic. I also thank the
participants of the 2010 Netherlands Econometric Study Group for their criticisms and comments. Additionally, I am grateful
to Dr. Kaj Gittings and Dr. Bulent Unel for their suggestions in preparing this non-technical summary. Lastly, I thank Chris
Raschke, Paul Darby and Dr. Carter Hill for their aid in handling data.
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article are easily generalizable when A is a vector and Π′ a matrix. Importantly, the proposed estimator
allows for powers of the endogenous variable.

In the economics literature the latent variable U usually represents the agent’s willingness to pay, or the
difference in utility between two mutually exclusive alternatives. This model may have an omitted variable
interpretation when A is correlated with ε through some unobservable factors. The model also has an errors
in the variables interpretation when A represents a misreported variable. Here are some (simplified) examples
taken from the economics literature where the above endogenous binary model applies:

Example 1: Labor force participation of men without college education, Powell and Blundell
(2004).

Let Y = 1 if a man without a college education works. Equation (i) applies, with Z containing the years
of education of the men and A = log(spouseinc) where spouseinc is the income of his spouse. According
to economic theory the spouse’s income is endogenously given by a Mincer’s equation. The authors use
(ii) with W ′ = (spouseduc, log(benef)) where spouseduc is the years of education of the spouse and benef
is the monetary amount of welfare entitlement combining child benefit, unemployment benefit and other
allowances. Here ε contains unobservable factors which drive the man’s labor force decision such as his
family background, while V includes unobservable variables driving the spouse’s income such as her family
background. It is expected that the slope coefficient of log(spouseinc) is negative since a higher extra source
of income gives less incentive to search for a job. However, given that married individuals tend to share
some common attributes ε and V are positively correlated. Using a probit (or logit) regression of Y on Z,A
will yield misleading estimate, in effect underestimating the importance of the spouse’s income as a work
disincentive.

Example 2: Stock option and earnings manipulation, Burns and Kedia (2004).

Let Y = 1 if a firm restates its earnings. Equation (i) applies with Z containing a firm’s financial characteris-
tics such as its debt, liquidity and spending on research and development while A = log(delta∗shares) where
delta is the delta of the option on the firms’ stock (i.e. the derivative of the option value with respect to its
stock price in the Black and Scholes Option Pricing Model) and shares indicate the number of shares granted
to the managers. Thus delta ∗ shares measures the potential gain in stock option value for a small increase
in stock price. The number of shares granted is partly determined by the labor market characteristics for
the industry in which the firm operates. Hence, the authors use (ii) with W ′ = (Labor′, Z ′) where Labor′

is a vector of labor market characteristics. Here ε contains unobservable factors which promote earning
restatements while V include unobservable variables driving the stock option value. It is expected that the
slope coefficient of log(delta ∗ shares) is positive. However, there are unobservable attributes for a firm such
that the CEO’s risk aversion, growth potential which affect both restatement and the stock value, therefore
inducing a correlation between ε and V . Using a probit (or logit) regression of Y on Z,A will yield misleading
estimates, in effect overestimating the effect of stock option as an incentive for earnings’manipulation.

Example 3: Foreign direct investment and spill-over on exports, Aitken et al, (1997).

Let Y = 1 if a domestic firm exports goods. Equation (i) applies with Z containing the cost attributes of
the firm such as its labor cost, capital cost and transportation cost while A = log(FDI) where FDI is the
amount of foreign direct investment in the region where the firm operates. Since the level of FDI received
by a region is to a larger extent the product of a cost benefit analysis from foreign firms, the authors use
(ii) with W ′ = (foreignwage, foreignlaborV A, foreignlaboroutput, Z ′) where foreignwage indicates the
foreign real wage for the industry in which the firm operates, foreignlaborV A measures the foreign labor
share of value added and foreignlaboroutput the foreign labor share of output. Here ε contains unobservable
factors influencing the decision of whether to export while V includes unobservable characteristics of the
region which are relevant for foreign firms. It is expected that the slope coefficient of log(FDI) is positive
since a larger amount of FDI in a region may facilitate exports notably via better infrastructure. However,
ε and V share common variables rendering both exports and FDI more appealing such as the quality of the
regional labor force. Using a probit (or logit) regression of Y on Z,A will yield misleading estimates, in
effect overestimating the effect of FDI on exports.
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2. Literature, Motivation and Summary of Contribution

In principle when either (ε, V )|S or ε|S, V has a distribution function known up to some finite dimensional
parameter, one may estimate β consistently via maximum likelihood (ML). A vast literature assumes this is
the case with a normal homoscedastic distribution posited for (ε, V )|S such as in Heckman (1978), Amemiya
(1978), Lee (1981) and Newey (1987) or for ε|S, V as in Smith and Blundell (1986) and Rivers and Vuong
(1988). If the parametrization of the distribution in question is incorrect, those estimators will be inconsis-
tent. As a result, new semi-parametric estimators have been proposed, relaxing this parametric requirement.
For instance, the quasi-ML estimator developed in Rothe (2009) is consistent for β whenever the distribu-
tion function of ε|Ẋ, V depends only on Ẋ ′β and V . Also, the two stage least square estimator proposed
in Lewbel (2000) is consistent for β provided there exists a special regressor in Ẋ meeting a certain con-
ditional independence restriction. Even though these semi-parametric estimators offer a robust advantage,
they present some limitations in terms of either the permitted form of heteroscedasticity (Rothe 2009) or
which variables affect the conditional variance of both ε and V (Lewbel 2000). This is due to the very nature
of their distributional oriented assumptions.

Estimators that are robust to unknown heteroscedasticity are based instead on some conditional median
restrictions which loosely speaking only require the center of the distribution of ε to remain unaffected
by the covariates. For instance, Newey (1985) provided a consistent asymptotically normally distributed
two stage maximum score estimator for β under the requirement that (V, ε) be symmetrically distributed
around the origin, conditional on S. Also, Hong and Tamer (2003) proposed a consistent minimum distance
estimator for β under the less restrictive condition that Med(ε|S) = 0. However, in Newey (1985) a consistent
estimator for the asymptotic covariance is not provided (see Newey 1985, page 228) while Hong and Tamer’s
estimator has an unknown limiting distribution.

The main motivation behind this article is to remedy this inferential problem, offering a consistent estimator
of β under a weak median restriction which also allows for testing. The main estimator presented in this
article, named the Kernel Weighted Smoothed Maximum Score (KWSMS) estimator, meets these objectives.
The KWSMS estimator is constructed by imposing a restriction on Med(ε|S, V ) which must not vary with
the instrument S. This ensures the existence of some random variable φ and unobservable term e such
that Y = d(Ẋ ′β + φ+ e) where now e satisfies the classic median restriction introduced for maximum score
estimation (Manski 1985). Then, a smoothed maximum score estimation (Horowitz 1992) is performed as if
φ were a constant, correcting this approximation by means of a kernel. Doing so facilitates the asymptotic
analysis using the framework laid out in Horowitz (1992). An interesting additional contribution of this
article is in fact to offer a robust estimation procedure for a semi-linear random utility model.

Not surprisingly, this estimation approach imposes stronger assumptions than those required from the SMSE
albeit similar in essence. The KWSMS estimator’s consistency for β (up to a positive scale) requires that
one element of Ẋ be fully supported and that the endogenous variable be continuous. Additionally, if certain
cumulative distribution functions involving the random variables V and Ẋ ′β are sufficiently differentiable
then the KWSMS estimator is asymptotically normally distributed provided the fourth moments of Ẋ exist.
Finally, the KWSMS estimator say βn satisfies βn − β = Op(n

− 1
2 +κ) for some κ ∈ (0, 1/8) where κ becomes

arbitrarily small under adequate regularity conditions. Hence, the parametric rate is potentially achievable.

This paper relates to the previous literature using the control function approach which has already been
employed to handle endogeneity in the context of binary choice models (Blundell and Powell 2004), trian-
gular equation models (Newey, Powell and Vella 1999) and quantile regression models (Lee 2007). Also,
the technique used to derive the asymptotic results is similar to that of the SMSE using nonparametric
convolution based arguments. Finally, its local nature can be thought as a smoothed version of the local
quantile regression estimator (Chaudhuri 1991, Lee 2003) in the context of the random utility model.

As explained in Section 4, a KWSMS estimator in effect uses only observations of V close to a given value.
This local nature suggests that the rate of convergence can be accelerated by using all the observations of
V instead. Thus, in this paper a second stage estimation is offered with a Score Approximation Smoothed
Maximum Score (SASMS) estimator which uses the information content from various KWSMS estimators
retrieved in a first stage estimation. Under stronger regularity conditions the SASMS estimator is still
consistent and asymptotically normally distributed while achieving a faster rate of convergence in probability.
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The rest of the paper is organized as follows. Section 3 provides a review of the control function approach
in the context of this binary choice model. Section 4 describes the KWSMS estimator and summarizes its
asymptotic properties. Section 5 describes the SASMS estimator and summarizes its asymptotic properties.
Section 6 contains some Monte Carlo simulations to illustrate the finite sample qualities of the suggested
estimators. Finally, Section 7 applies these estimation techniques using data from the 1988 National Health
Interview Survey to determine the factors influencing maternal pregnancy smoking. The proofs can be found
in a technical appendix provided in the back of this paper.

3. Estimation Strategy

The key condition introduced in this paper is that there exists some v in the support of V satisfying:

Med(ε|Z,W, V = v) = Med(ε|V = v) (1)

Loosely speaking, (1) imposes that once V has been fixed at v, the center of the distribution of ε does not
vary with the exogenous variables. The equality in (1) will be met for instance when (Z,W ) and (ε, V ) are
statistically independent or under a conditional independence restriction of the form ε|Z,W, V ∼ ε|V , but
those are not necessary. This key median assumption, which can be tested from data as explained in Section
4.3, is neither stronger nor weaker than that assumed in Hong and Tamer (2003) because each restriction
can imply the other under certain conditions. This median restriction can accommodate heteroscedasticity
in V of virtually any form in the error term.

Now suppose that (1) holds for an arbitrary v. As will be explained shortly, this is stronger than required
for the KWSMS estimator but is needed for the SASMS estimator (at least over a range of values for v).
Invoking this last condition and the fact (Ẋ, V ) is one to one with (Z,Π′W,V ) yields:

Med(ε|Ẋ, V ) = Med(ε|V ),

and noting φ(V ) = Med(ε|V ) thus provides:

Med(U |Ẋ, V ) = Ẋ ′β + φ(V ), (2)

showing that the restriction in (1) treats endogeneity as an omitted variable problem. The conditional
median in (2) becomes the starting point for consistent estimation since by the quantile invariance property
to monotonic transformations (Powell 1986) one derives :

Med(Y |Ẋ, V ) = d(Ẋ ′β + φ(V ))

This conditional median restriction on the response variable Y is, up to the nuisance parameter φ(.), identical
to the restriction for maximum score estimation proposed in Manski (1985). A priori, the control function
φ(.) has an unknown form. However, when V is fixed at some given v, the nuisance φ(.) becomes a constant
and the lack of knowledge on φ(.) is no longer a problem. This fixing is the foundation of the estimation
procedure elaborated in this article. This principle is analogous to that used in the literature for unspecified
quantile regression (Chaudhuri 1991) or semi-linear quantile regression (Lee 2003).
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4. Description of the KWSMS Estimator

4.1 Identification

Define Πw̃ and Πz from Π′W = Π′w̃W̃ + Π′zZ where W̃ contains exogenous variables excluded from Z. The
parameter of interest β is only identifiable up to a positive scale since d(ηU) = d(U) for any scalar η > 0.
The identification of β up to a positive scale requires three main conditions. The parameter Πw̃ must be non-
null, that is, W contains some variable excluded from Z having an effect on the endogenous variable. Also,
one element of Ẋ conditional on its remaining elements needs to admit a distribution function absolutely
continuous with respect to Lebesgue measure. Let (C, X̃ ′) be a partition of Ẋ ′ such that the scalar variable
C satisfies this property, with an associated slope coefficient noted β1. Finally, identification up to scale
requires V |Ẋ to admit a Lebesgue density. These combined with [1] and some mild conditions suffice for
identification up to the scaling factor 1/|β1| whenever β1 6= 0. From now on assume without loss of generality
that β1 is known to be strictly positive.

It is useful to illustrate the relevance of those conditions using a simple example of the form U = Zλ+δA+ε
with A = πW + V where (Z,W, V ) are three scalar variables and (λ, δ, π) real parameters. For simplicity
further assume that Z is independent with (V,W ). Since here Ẋ ′ = (Z,A) one condition for identification as
explained above is that the variable V |Z,A is continuous. Suppose first that W is some function of Z. Then
V becomes a deterministic function (A,Z) and V |Z,A is a single atom thus not continuously distributed.
Evidently, even if W is not a function of Z the same problem arises if π = 0. More generally, this illustrates
the importance of having one component in W which is not only excluded from Z but also not a function
of Z and which has an impact on the endogenous variable. Suppose now that this the case. Since V |Z,A ≡
V |Z, πW +V and Z is independent with (V,W ) the required continuity thus deals here with the distribution
of V |πW+V = a which admits a Lebesgue density as soon as V |W does1. Thus, by construction the variable
A must be continuous for being able to identify β up to scale. Clearly, this estimation technique excludes
binary choice models where the endogenous variable is discrete .

4.2 Estimation Procedure and Asymptotic Properties for the KWSMSE

Let {Yi, Ẋi}ni=1 be a random sample from (Y, Ẋ). Also, let {V̂i}ni=1 be residuals with V̂i ≡ Ai−Π̂′Wi where Π̂
is a given root n consistent estimator of Π. Under the mild assumptions for M-estimators root n consistency
will be attained. The simplest estimator for Π when W is exogenous is probably the OLS if V and W are
uncorrelated. There are two cases worth mentioning which do not a priori meet the model for equation
(ii) but which allow the results to be still valid. The first case is when A = Π(W, δ) + V where Π(., δ) is
a parametric function for some unknown δ. Then If (V,W ) are uncorrelated, one can derive via non-linear

least squares the estimator δ̂ (Amemiya 1985) and residuals V̂i = Ai−Π(Wi, δ̂) which conserves our results.
The second case is when A = Π(W ) +V where Π(.) is some unknown function and W contains only discrete
variables whose support is bounded. Then if E[V |W ] = 0, one can estimate non parametrically Π(.) point
wise at the parametric rate (Bierens 1987) and the residuals V̂i ≡ Ai − Π̂(Wi) still satisfy the assumptions
needed for the KWSMS estimator.

It is convenient at this stage to introduce some notations. For f:R −→ R define f (j)(t) as its jth derivative
at t whenever this latter exists. Also, write L2[0, 1] the space of Lebesgue measurable real-valued functions
from [0, 1] to the real line which are square integrable with respect to Lebesgue measure.

Let αi ≡ 2Yi − 1 and X ′ ≡ (1, X̃ ′). The KWSMS estimator, noted θ̃n, is defined as the maximizer in θ of
the following objective:

S̃n(θ) ≡ 1

nhq

n∑
i=1

αiD(
Ci +X ′iθ

h
)k(

V̂i − v
hq

),

where ({hq}n,{h}n) is a given pair of strictly positive bandwidth sequences vanishing to 0 as n approaches
infinity and D(.) is some chosen bounded function from the real line into itself meeting:

1In that case the density is given by f(v|a) = pVW (v, a−v
π

)/
∫
pVW (v, a−v

π
)dv where pVW indicates the probability density

function of (V,W ).

5



limt→−∞D(t) = 0, limt→∞D(t) = 1,

and

D′ = K everywhere with |K(t)| < M1 for some finite real number M1.

This function D(.), whose tail behavior mimics that of a cumulative distribution function, introduces the
building block for deriving an asymptotic theory. This permits us to approximate, after tuning with the
bandwidth h, the indicator variable. Simultaneously this allows us to easily derive a limiting distribution
for the estimator because the score of the objective will have a Taylor’s expansion as soon as K is itself
differentiable. For instance, the cumulative distribution function of the standard normal distribution meets
these conditions. Because of the subsequent asymptotic conditions, a natural choice for D(.) is to use the
antiderivative of a kernel that is compactly supported (see Müller 1984). A good example for such function
(apart from the lack of differentiability for |t| = 1) is given by:

D(t) = [0.5 + 105
64 (t− 5

3 t
3 + 7

5 t
5 − 3

7 t
7)]1[|t| ≤ 1] + 1[t > 1].

The function k(.) is a given kernel satisfying notably,∫
k(t)dt = 1,

∫
tuk(t)dt = 0 for u = 1, ...,m− 1,

∫
|tuk(t)|dt <∞ for u = 0,m for some m ≥ 2,

∫
|k(t)|2dt <∞,

and

k is differentiable everywhere with |k(1)(t)| < M2 for some finite real number M2.

That is, S̃n is similar to the objective of the SMSE (had V been fixed at v) apart from our weighting the

ith observation with 1
hq
k( V̂i−vhq

). The above integrability conditions for k(.) are met using a kernel of order

m. For consistency purposes m = 2 suffices. However, obtaining asymptotic normality for the KWSMS
estimator requires m ≥ 7.

4.2.1 Consistency

Suppose that φ(v) ≡ Med(ε|V = v) exists. Define β̃ the slope coefficient associated to X̃ and write
` ≡ C +X ′θ0 where θ′0 ≡ 1

β1
(φ(v), β̃′). Introduce FX,`,V [.] the cumulative distribution function of ε|X, `, V

and fX,`(.) the Lebesgue density of V |X, `. This last density exists by the identification conditions because Ẋ
is one to one with (X, `). Suppose that on some open neighborhood of v̄ the functions v 7→ FX,`,v[−β1`+φ(v)]
and v 7→ fX,`(v) are continuous. Also, assume that the bandwidth sequences are chosen to satisfy lim

nh4
q = ∞ and lim

nh2h2
q

log(n) = ∞ as n → ∞. Under these and some mild regularity conditions the KWSMS

estimator will be consistent for θ0.

4.2.2 Asymptotic Normality

Define FX,`,v[.] the distribution function of ε|X, `, V = v and fX(`) the Lebesgue density of `|X. This

last density is well defined under the identification requirement that the distribution of C|X̃ be absolutely
continuous with respect to Lebesgue measure because of the one to one relationship between (X, `) and

Ẋ. Also, write µX(`) ≡ fX,`(v)fX(`) and F
(1)
X,`,v[−β1` + φ(v)] ≡ ∂FX,`,v[−β1` + φ(v)]/∂` whenever the

derivatives exist. Suppose that both Σ0 ≡
∫
|k|2

∫
|K|2E[XX ′µX(0)] and H0 ≡ 2E[XX ′F

(1)
X,0,v̄[φ(v)]µX(0)]

exist with the latter matrix negative-definite.

Now assume that as functions of v, FX,`,v[−β1`+φ(v)] and fX,`(v) are m times differentiable on some open
neighborhood of v for some m ≥ 7. Also, assume that as functions of `, FX,`,v[−β1` + φ(v)] , fX,`(v) and
fX(`) are r times differentiable everywhere for some r ≥ 2. Furthermore, choose K to satisfy notably,
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∫
K(t)dt = 1,

∫
tuK(t)dt = 0 for u = 1, ..., r − 1 and

∫
|tuK(t)|dt <∞ for u = 0, r

K is symmetrical, twice differentiable everywhere, |K(j)(t)| < B for j = 1, 2 where B is some finite real
number and

∫
|K(1)(t)|2dt <∞.

Finally, select the bandwidths h ∝ n−a and hq ∝ n−aq where a and aq are chosen according to the following:

a ∈ (sup{ 1
1+η+2ηm ; 1

1+η+2r},
1

4+4η ) and aq = ηa for some η ∈ ( 3
2m−3 ,

1
3 ).

These combined with some mild technical conditions permit to establish:

√
nhhq(θ̃n − θ0) →d N (0,Ω),

where Ω ≡ H−1
0 Σ0H

−1
0 can be estimated consistently from data according to the following:

Let H̃n ≡ 1
nh2hq

∑n
i=1 αiXiX

′
iK

(1)(
Ci+X

′
i θ̃n

h )k( V̂i−vhq
),

and

Σ̃n ≡ 1
nhγ1h

γ2
q

∑n
i=1XiX

′
i|K(

Ci+X
′
i θ̃n

hγ1 )|2|k( V̂i−v
h
γ2
q

)|2,

for some constant γ1 ∈ (0, 3/4] and γ2 ∈ (0, 1]. Then under the previous assumptions:

H̃n −→p H0,

and

Σ̃n −→p Σ0.

Thus, if the data set is large, the testing of hypothesis can be based upon the asymptotic approximation:√
nhhq(θ̃n − θ0) ∼ N (0, H̃n

−1
Σ̃nH̃n

−1
)

Remarks:

(a) From the asymptotic result one concludes that
√
nhhq(θ̃n − θ0) is bounded in probability. It follows by

the bandwidths conditions previously enumerated in Section 4.2.2 that the KWSMS estimator satisfies at

least θ̃n − θ0 = Op(n
−3/8). However, this rate accelerates when λ ≡Min{m, r} augments and the KWSMS

estimator eventually reaches the parametric rate, i.e. Op(n
−1/2) as λ approaches infinity.

(b) The KWSMS estimator has an asymptotically centered normal distribution because the bandwidths
pair has been selected purposefully such that the asymptotic bias vanishes. As established in Horowitz
(1992) this is not optimal from an asymptotic mean squared error perspective which requires some strictly
positive finite bias. This choice is driven by two considerations. First, the construction of an asymptotically
biased KWSMS estimator would impose additional regularity conditions. Secondly, the unbiased SMSE has
superior bootstrapping properties than the biased SMSE (see Horowitz 2002) in terms of the accuracy of its
bootstrapped critical values which suggests the analogue for the KWSMS estimator since the objective of
the KWSMS estimator is just a weighted version of SMSE’s objective.

(c) The maximization of the objective function will be carried out by an iterative procedure such as the
quadratic hill climbing (Goldfeld, Quandt and Trotter 1966). Additionally, the starting value for the iterative
search may be better chosen as a result of some annealing procedure (Szu and Hartley 1987).
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4.3 Testing the Key Median Restriction

If assumption (1) is violated then the KWSMSE is inconsistent. Thus, it is important to have a testing
procedure which can reveal from data the plausibility of this assumption. To sketch how to perform the
testing of (1) suppose that the assumptions of Section 4.2.2 hold. Let α(Yi) ≡ 2Yi − 1 and write `i ≡
Ci + X

′

iθ0(v̄) where θ0(v)′ ≡ 1
β1

(φ(v), β̃
′
) and ˆ̀

i ≡ Ci + X
′

i θ̃n. Here v̄ is the value chosen to compute the
KWSMS estimator. Define the following statistic:

Tn ≡
(nξ2)−1

∑n
i=1 ϕ(

ˆ̀
i

ξ )ϕ( V̂i−v̄ξ )α(Yi)

(nξ2)−1
∑n
i=1 ϕ(

ˆ̀
i

ξ )ϕ( V̂i−v̄ξ )
,

where ϕ is a kernel and ξ a deterministic sequence. Introduce f(.,.) the joint density of (`, V ) and M(l, v) ≡
E[α(Y )|` = l, V = v]. The idea behind the test is analogous to that provided in Horowitz (1993), Proposition
2. The test is based upon the fact that under Ho: Med(ε|Ẋ, v̄) = Med(ε|v̄) one must have M(0, v̄) = 0. But
under certain mild conditions Tn is consistent for M(0, v̄). Thus, the test consists of measuring |Tn| with
large values undermining the validity of our median restriction.

More formally, suppose that M(l, v) and the density of (`, V ) are twice differentiable on some open neigh-
borhood of (0, v̄), ϕ is a strictly positive kernel of order 2, ξn is a strictly positive sequence of real numbers
satisfying ξ ∝ n−ω for some ω ∈ (sup{1/10; a(1 + η)}, 1/5) where a and η are the bandwidth parame-
ters selected to compute the KWSMS estimator as defined in Section 4.2.2. These regularity conditions
combined with some further smoothness conditions suffice to establish that under the null hypothesis Ho:
Med(ε|Ẋ, v̄) = Med(ε|v̄), √

nξ2Tn →d N (0, f(0, v̄)−1||ϕ||4L2),

where ||ϕ||L2 ≡
∫

(|ϕ(t)|2dt)1/2. Furthermore,

(nξ2)−1
n∑
i=1

ϕ(
ˆ̀
i

ξ
)ϕ(

V̂i − v̄
ξ

)→p f(0, v̄)

Consequently, testing can be performed in practice from data using the asymptotic approximation:√
nξ2Tn ∼ N (0, f̂(0, v̄)−1||ϕ||4L2),

where,

f̂(0, v̄) ≡ (nξ2)−1
n∑
i=1

ϕ(
ˆ̀
i

ξ
)ϕ(

V̂i − v̄
ξ

).

5. Accelerating Convergence with a Score Approximation Smoothed Maximum Score
Estimator

As explained in the previous section, a KWSMS estimator in effect uses only observations of V close to a
given v. One may seek to construct an alternative estimator with a faster rate of convergence by using more
observations of V . The SASMS estimator described next can attain that target provided some stronger
conditions hold, notably if Med(ε|V = v) has enough derivatives. The basic intuition is that the control
function smoothness compensates for the low degree of differentiability of the functions of v and ` introduced
in Section 4.2.2.

5.1. Description of the SASMS Estimator

Suppose now that [1] holds for an arbitrary v̄ ∈ [0, 1], which will be simply noted henceforth as v. The choice
of [0, 1] is chosen here for the sake of simplicity but can be replaced by any compact set of the real line
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which is contained in the support of V by means of an appropriate normalization. Define e′K = [O, IK−1]
the K − 1 ×K matrix where the first column is the zero vector, while IK−1 represents the K − 1 ×K − 1
identity matrix and e′1 the 1×K vector whose first entry is 1 and zero elsewhere. Let Θ be some compact
set and for a given v introduce the following:

θ̃(v) ≡ ArgmaxΘ
1

nhq

n∑
i=1

αiD(
Ci +X ′iθ

h
)k(

V̂i − v
hq

),

and

β̃(v) ≡ e′K θ̃(v) while φ̃(v) ≡ e′1θ̃(v),

where D(.), k(.) and the bandwidth pair (h, hq) are as described in Section 4. Let {fj}j≥1 be a known basis
of functions such that

∑ρ
j=1 bjfj can approximate a smooth function of [0, 1] arbitrary well using some real

sequence {bj}j≥1 and natural number ρ large enough. Here are some easy examples taken from Chen (2007):

• Power series:

Let Pol(ρ) = {f : [0, 1] → R, f(v) =
∑ρ
j=0 bjv

j , bj ∈ R} the space of polynomials on [0, 1] of degree less or
equal to ρ. A differentiable function on [0, 1] can be approximated arbitrarily well by some element of Pol(ρ)
with ρ large enough. Thus, here fj(v) = vj−1 for j ≥ 1.

• Trigonometric cosine:

Let cosPol(ρ) = {f : [0, 1] → R, f(v) = b1 +
∑ρ
j=2 bj

√
2cos(2π(j − 1)v), b1, bj ∈ R} the space of cosinus

polynomials on [0, 1] of degree less or equal to ρ. A differentiable function on [0, 1] (or merely a square
integrable function on [0, 1]) can be approximated arbitrarily well by some element of cosPol(ρ) with ρ large
enough. Thus, here fj(v) =

√
2cos(2π(j − 1)v) for j ≥ 2 and f1(v) = 1. This choice is particularly suited

for the SASMS estimator because {fj}j≥1 forms an orthonormal basis of L2[0, 1].

• Splines:

For a given a natural number d define, Spl(d + 1, ρ) = {f : [0, 1] → R, f(v) =
∑d
j=0 ajv

j +
∑ρ
j=1 bj [(v −

tj)+]d, aj , bj ∈ R}, the space of splines on [0, 1] of order d + 1 where (.)+ = Max(., 0) and (t1, t2, ...tρ) is a

given increasing sequence of knots partitioning [0, 1] such that t1 = 0 and tρ = 1. Here
∑ρ
j=1 bj [(v − tj)+]d

is a piecewise polynomial shifter which permits the adjustment of a baseline polynomial on each interval
Ij = [tj , tj+1]. Define |Ij | = tj+1 − tj for j = 1, ..., ρ − 1. A differentiable function on [0, 1] can be
approximated arbitrarily well by some element of Spl(d+ 1, ρ) with ρ large enough provided the mesh ratio
Max|Ij |/Min|Ij | stays bounded. Thus, here fj(v) = vj−1 if 1 ≤ j ≤ d + 1 and fj(v) = [(v − tj−d−1)+]d if
d+ 2 ≤ j ≤ d+ 1 + ρ.

Now define pn(.)′ ≡ (f1(.), ..., fρ(n)(.)) where ρ(n) is some chosen deterministic sequence of natural numbers

satisfying ρ(n)→∞ as n →∞ but ρ(n) < n. Write Λn the n× ρ(n) matrix whose ith row is pn(i/n)′ and
φ̃n the n×1 vector whose ith entry is φ̃(i/n). That is, running a first stage estimation with n locals KWSMS
estimators at v = 1/n, 2/n, ..., 1 (where n still indicates the sample size) permits the collection of φ̃n and to
retrieve the following:

bn ≡ Argminb∈Rρ(n) ||φ̃n − Λnb|| ≡ (Λ′nΛn)−1Λ′nφ̃n. (3)

This estimator bn is nothing but the OLS estimator of b in the artificial regression model:

φ̃(v) = b′pn(v) + error using the fixed design v = 1/n, 2/n, ..., 1.

9



To get some sense about the motivation behind (3) consider the case where the trigonometric cosine basis
is chosen. Use the notation < g1, g2 >=

∫
[0,1]

g1(v)g2(v)dv whenever g1 and g2 belong to L2[0, 1]. Recall

that each local KWSMS estimators φ̃(v) ≡ e′1θ̃(v) for v = 1/n, ..., 1 estimates the (scaled) control function
say φ(v) for v = 1/n, ..., 1. The trigonometric cosine sequence {fj}j≥1 constitutes an orthonormal basis of
L2[0, 1] which implies < fi, fj >= 1 if i = j and < fi, fj >= 0 otherwise. Also, this implies that φ(.) (if
square integrable on [0, 1]) has the representation2 φ =

∑
j µjfj where {µj}j≥1 are the Fourier coefficients

meeting µj =< φ, fj >. Thus, if the sample size is large enough, φ̃(v) ≈ φ(v) for v = 1/n, ..., 1. Also,
because of our fixed design with v = 1/n, ..., 1 the matrix Λ′nΛn for n large will be approximately equal to
the ρ(n) by ρ(n) identity matrix since its jth diagonal element approximates < fj , fj >= 1 and its cross
diagonal elements say (i, j) approximates < fi, fj >= 0. Thus, what bn estimates in that case are the
Fourier coefficients µj for j = 1, 2, ..., ρ(n). As the sample size n increases, ρ(n) also increases allowing
for the recovery of more and more Fourier coefficients and consequently a more accurate estimator for the
control function.

This first stage estimation yielding (3) constitutes the essence of the SASMS estimator since for ρ(n) well-
chosen and under some regularity conditions, the function b′npn(.) is consistent for φ̃0(.) = 1

β1
φ(.) in the

sense that plim supv∈[0,1]|b′npn(v)− φ̃0(v)| = 0. However, {Vi}ni=1 is not observed but only {V̂i}i=1..n. Hence,

a natural way to proceed is to estimate φ̃0(Vi) with b′npn(V̂i) for i = 1...n. Let Ψ(.) be some kernel (possibly
different from the function D′(.) used in the first stage) from the real line into itself whose derivative exists
everywhere. Now define for an arbitrary β the following:

Gn[β] ≡ 1

nh∗

n∑
i=1

τ(V̂i)αiX̃iΨ(
Ci + X̃i

′
β + b′npn(V̂i)

h∗
),

and

Hn[β] ≡ 1

nh2
∗

n∑
i=1

τ(V̂i)αiX̃iX̃i
′
Ψ(1)(

Ci + X̃i
′
β + b′npn(V̂i)

h∗
),

where τ(.) ≡ 1[0 ≤ . ≤ 1] and h∗ is a deterministic strictly positive sequence of real numbers meeting lim
h∗ = 0 as n→∞. The SASMS estimator, noted β̄, is given by:

β̄ ≡ β̃(v)−Hn[β̃(v)]−1Gn[β̃(v)],

where β̃(v) is the slope coefficient estimator of a KWSMS estimator using some fixed v ∈ [0, 1]. The reader
familiar with Horowitz (1992) would have noticed that β̄ is an approximation for a feasible SMSE based
upon [2] which would use b′npn(V̂ ) in lieu of φ(V ) (up to a scale). This estimator belongs to the class of
score approximation estimators (Stone 1975, Bickel 1982, Lee 2003).

5.2 Asymptotic Properties

Assume that the conditions of section 4.2.2. hold for any v̄ ∈ [0, 1]. Introduce Li ≡ 1
β1
Med(U |Ẋi, Vi). Define

Fx̃,l,v[.] as the cumulative distribution function of ε|X = x̃, L = l, V = v and fx̃,v(.) the Lebesgue density of

L|X = x̃, V = v. This last density exists as long as that of C|X̃ = x̃, V = v exists because (L,X, V ) is one

to one with (C,X, V ). Also, adopt the convention F
(1)
x̃,l,v[−β1l + φ(v)] ≡ ∂Fx̃,l,v[−β1l + φ(v)]/∂l whenever

this derivative exists. Suppose that Q ≡ 2E[τ(V )X̃X̃ ′F
(1)

X̃,0,V
[φ(V )]fX̃,V (0)] exists and is negative-definite.

The subsequent sections treat the case where the researcher selects either the power series or trigonometric
cosine basis.

2Strictly speaking this representation is to be understood in the sense that limN→∞||
∑N
j=1 µjfj − φ||[0,1] = 0 where

||g||[0,1] ≡
√∫

[0,1] |g(t)|2dt.
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5.2.1 Consistency

Suppose that φ(.) is p times continuously differentiable on [0, 1] for some p ≥ 5 and that (3) is computed
with the series length ρ(n) such that ρ(n)p−1h3

∗ →∞ as n→∞. Also, suppose that Fx̃,l,v[−β1l+ φ(v)] and
fx̃,v(l), as functions of l, are s times differentiable on some open neighborhood of the origin for some s ≥ 4.
Let Ψ be a kernel of order s and h∗ a deterministic sequence of real numbers satisfying nh8

∗/log(n)→∞ as

n→∞. Under these the estimator β̄ will be consistent for β̃0 ≡ β̃
β1

provided some mild technical conditions
hold.

5.2.2 Asymptotic Normality

Suppose that Ξ ≡
∫
|Ψ|2E[τ(V )X̃X̃ ′fX̃,V (0)] exists. Also, assume that the researcher selects h∗ to meet

h∗/hhq →∞ as n→∞ and nh2s+1
∗ → 0 as n→∞. Some further mild conditions and a certain stochastic

equicontinuity condition suffice then to establish:

√
nh∗(β̄ − β̃0) →d N (0, Q−1ΞQ−1).

Define the following matrix:

Ξ̂ ≡ 1

nh∗

n∑
i=1

τ(V̂i)X̃iX̃i
′|Ψ(

Ci + X̃i
′
β̃(v) + b′npn(V̂i)

h∗
)|2.

Under the assumptions yielding asymptotic normality,

Hn[β̃(v)] −→p Q and Ξ̂ −→p Ξ.

Thus inferences can be carried out in practice from data using the asymptotic approximation:

√
nh∗(β̄ − β̃0) ∼ N (0, Hn[β̃(v)]−1Ξ̂Hn[β̃(v)]−1).

Remarks

(e) The SASMS estimator achieves a faster rate of convergence than the KWSMS estimator. To be more

specific, the SASMS estimator’s rate of convergence is (
hhq
h∗

)1/2 times that achieved on the KWSMS estimator

which is faster since the bandwidths are selected to meet lim
hhq
h∗

= 0 as n→∞.

(f) It is important to bear in mind that the SASMS estimator exists only with probability approaching one
as n→∞ since the matrix Hn[β̃(v)] has an inverse only with probability approaching one. In finite sample,
the SASMS estimator may exhibit a large variance because of the instability of the inverse in question which
may be singular with strictly positive probability. In practice, this poses the same problem as that induced
by collinearity where a small change in data produces a substantial variation in estimates. When the kernel Ψ
has the form Ψ(t) = P (t)1[|t| ≤ 1] for some finite degree polynomial P (see Müller 1984), one way to mitigate

this problem is to compute Hn[β̃(v)] by replacing Ψ(1)(t) with Ψ
(1)
c (t) = P (1)(t)1[|t| ≤ 1 + cn], where cn is a

deterministic sequence of positive real numbers satisfying cn
h∗
→ 0 as n→∞. This regularized version for the

SASMS estimator has the same limiting distribution under the assumptions yielding asymptotic normality.

(g) The exact selection of the bandwidths for the SASMSE is not covered here owing to the fact that only
a generic case for any basis {fj}j≥1 is treated. However, in application one needs to select an appropriate
basis for smooth functions and pick three bandwidth sequences h, hq and h∗ meeting the assumptions
explained in this summary plus a few others. The reader may find the exact detail for bandwidths selection
in the Corollary Bandwidths Admissibility For Power Series or Trigonometric Series located in the technical
Appendix.
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6. Monte Carlo Simulations

This section examines the finite sample properties of the estimators put forth in this paper using Monte
Carlo experiments. These estimators are used to estimate the parameter β = 1 when the data generating
process obeys:

Y = 1 if Z + βA+ ε ≥ 0 and Y = 0 otherwise,

A = ΠW + V ,

ε = φ(V ) + e,

where (Z,W ) is a standard bivariate Normal couple of correlation coefficient % , V ∼ N (0, 1), and Π is set
equal to 1. In this experiment three designs are considered satisfying the following:

Design ST: % = 0.5; φ(V ) = exp(−V 2); e = (1 +Z2 +Z4)T where T is Student with 3 degrees of freedom.

Design PR: % = 0.5; φ(V ) = 0.5V ; e ∼ N (0, 1).

Design LG: % = 0; φ(V ) = cos(πV ); e ∼ Logistic.

In addition, two other estimators addressing endogeneity for the binary choice model are used. The first one
is the limited information ML estimator3 (LIML) proposed in Rivers and Vuong (1988) and the second is the
artificial two stage least square estimator4 (2SLS) suggested in Lewbel (2000). Design ST has a non-linear
control function with an heteroscedastic error term. Design PR has a linear control function with a normally
distributed (conditional on V ) error term, which satisfies the parametric theory laid out in Rivers and Vuong
(1988). Design LG has Z and W independent which makes Z a special regressor as defined in Lewbel (2000).

In all designs the variable e is normalized to have a 0.5 standard deviation. A simulation for a sample size
n = 250, 500 and 1000 consists of 1000 replications for all estimators but the SASMS estimator. For the
latter, experiments with n = 1000 are not performed and 500 replications are completed due to the long
computational time required. The simulations are conducted in Gauss.

For the KWSMS estimator the smoothing of the indicator function is carried out using:

D(t) = [0.5 + 105
64 (t− 5

3 t
3 + 7

5 t
5 − 3

7 t
7)]1[|t| ≤ 1] + 1[t > 1].

The derivative of D(.) (almost everywhere) is a kernel of order r = 4 (Müller 1984). Also, the weighting of
the objective is performed using:

k(t) = 1
48 (105− 105t2 + 21t4 − t6) 1√

2π
exp(− 1

2 t
2),

providing a kernel of order m = 7 (Pagan and Ullah 1999). The first stage estimation of the nuisance
parameter Π is conducted via least squares. The local choice v̄ = 0 is selected. The bandwidths conditions
explained in (3) are only qualitative. Since the optimal bandwidths’ selection is not covered in this article,
a simple Silverman’s like rule of thumb (see Silverman 1986) is adopted. This consists of using h = σ̂ln

−3/16

and hq = σ̂vn
−3η/16 where η = 1/3, σ̂v is to the sample standard deviation of {V̂i}i=1..n and σ̂l is the

sample standard deviation of {Ci + X ′i θ̃}i=1..n with θ̃ a KWSMS estimator retrieved in a first stage using
(h, hq) = (n−3/16, n−3η/16). This plug-in method is of course arbitrary in that it depends on the bandwidths
selected originally. Even though this choice for the bandwidths does not a priori satisfy any optimal criteria in
the context of our specific problem, it has the benefit of being easy to implement while performing reasonably

3Under the assumptions of Rivers and Vuong (1988) the coefficients are identified up to a different scaling factor. In our
context, the LIML refers thus to the ratio between the LIML estimator of A’s slope coefficient and Z’s slope coefficient since
this is how a researcher would estimate our coefficient of interest.

4One choice left to the researcher for computing this estimator is the kernel which is needed for estimating the density of
Z given W , see Lewbel (2000). The Monte Carlo experiments are performed with a normal kernel along with the bandwidths
n−1/6.
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well compared to other choices used in preliminary experiments. The covariance matrix estimator described
in Section 4.2.2 relies on γ1 = 3/8 and γ2 = 1. Other choices for (γ1, γ2) meeting the restrictions of Section
4.2.2 were employed in a preliminary study but this did not materially alter the quality of the sizes.

Finally, the KWSMS estimator is computed by maximizing the objective with the quadratic hill climbing
procedure (Goldfeld, Quandt and Trotter 1966). A search for the global maximum consists of selecting out
of 10 iterative searches, the local maximum maximizing the objective5 as there is no guaranty in a finite
sample that the local maximum is unique.

For the SASMS estimator, the first stage uses n locals KWSMS estimators which are retried as above but
for the value v̄. The pseudo least squares bn is then computed as described in (3) using the trigonometric
cosine basis. The sieves’ dimensionality sequence ρ(n) ∝ n1/11 meets the assumptions for the SASMSE. The
optimal choice for ρ(n) is beyond the scope of this paper. Here we have the advantage of knowing that the
smoothness of the functions involved in all designs is very large so we simply use ρ(n) = 2[n1/11], which
amounts to using the first three elements of the trigonometric cosine basis for our displayed simulations.

The SASMS estimator is then computed in the second stage as described in Section 5.1 using a KWSMS
estimator with v = 1/n and the following:

Ψ(t) = 315
2048 (15− 140t2 + 378t4 − 396t6 + 143t8)1[|t| ≤ 1],

which is a kernel of order 6 (Müller 1984) meeting the conditions of Section 5.2. The kernel bandwidths

h∗ = σ̂Ln
−1/10 is chosen where σ̂L refers to the sample standard deviation of {Ci+X̃i

′
β̃(v)+b′npn(V̂i)}i=1...n.

Table 1 contains loss measures enabling to assess the quality of the estimators β̂ of β. The Bias refers to

absolute value of the bias, i.e.|E(β̂) − β|. The RM refers to the root mean squared error, i.e.

√
E|β̂ − β|2.

Table 2 provides the sizes of the t-test for β relying on the asymptotic covariance estimator given in
Section 4.2.2 using the asymptotic critical values for a 1 percent, 5 percent and 10 percent type I error level.
As displayed on Table 1, the qualitative behaviors of the proposed estimators agree with the asymptotic
theory developed in this paper. For all designs the bias and RM of the KWSMS estimator (hereafter noted
KWSMSE) consistently shrink as n increases. The same applies to the SASMS estimator (hereafter noted
SASMSE). For the KWSMSE, on average across designs, a doubling of the sample size from 500 observations
leads to a nearly 30 percent decrease in the loss measures (i.e. bias and RM) which is slightly faster than a 24
percent decrease hinted by asymptotic theory.6 The SASMSE performs poorly when n = 250 relative to the
KWSMSE expect for the PR design where a lower RM is achieved. As suggested by asymptotic theory the
performance gap between the SASMSE and KWSMSE narrows for all designs if n = 500 where the SASMSE
outperforms the KWSMSE (in terms of the RM) except for the LG design. That is, the SASMSE needs a
large enough sample to reach its asymptotic regime. As explained in section 5.1 the SASMSE may not even
exist in a finite sample. The regularization scheme employed for the SASMSE is one out of many possible
means to solve this existence problem at the origin of the larger RM experienced for n = 250. Motivated
by these simulations and those of Table 2 (discussed soon) there seems to be a need to develop in future
research optimal regularization criteria for the SASMSE.

With respect to the overall competitiveness of the proposed estimators, the ST design clearly favors the
KWSMSE (or SASMSE provided n is large enough) for every sample size. In that case, the LIML is
inconsistent with a RM twice larger when n = 1000. As expected the PR design unambiguously supports
the LIML, which shows all its efficiency power. In that instance, the KWSMSE (respectively SASMSE)
exhibits a RM approximately 3 times larger for n = 1000 (respectively for n = 500). Finally, the LG design
still favors the LIML (which in not too surprising owing to the fact that the logistic distribution and normal
distribution have relatively close shapes). In that logistic design, the second best performing estimator when
n = 250 is the 2SLS, which is eventually slightly outperformed by the KWSMS for n ≥ 500.

5The different starting values are drawn from a uniform distribution of mean θ′0 = (1, 1) and variance 5.
6Proposition 3 suggests that the rate of convergence on the loss is 1/

√
n1−a−aη which here implies a 24 percent decrease in

losses for a doubling of the sample size. This discrepancy does not undermine our theory because the moments of
√
nhhq(θ̃−θ0)

need not to converge unless strong uniform integrability conditions hold, see Chung page 100-101.
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Table 1: Losses

n=250 LIML 2SLS KWSMS SASMS
Bias—RM Bias—RM Bias—RM Bias—RM

ST 0.135—0.300 0.625—0.638 0.081—0.240 0.125—0.368
PR 0.005—0.178 0.666—0.676 0.256—0.939 0.296—0.786
LG 0.007—0.141 0.298—0.318 0.127—0.434 0.314—1.106
n=500
ST 0.132—0.236 0.588—0.596 0.044—0.146 0.040—0.135
PR 0.006—0.118 0.623—0.630 0.115—0.355 0.121—0.347
LG 0.000—0.104 0.256—0.270 0.040—0.244 0.119—0.380
n=1000
ST 0.133—0.184 0.554—0.560 0.034—0.098
PR 0.000—0.082 0.580—0.584 0.075—0.255
LG 0.001—0.070 0.227—0.236 0.028—0.168

Table 2: Sizes

n=250 KWSMS SASMS
Nominal level 0.01—0.05—0.10 0.01—0.05—0.10
ST 0.11—0.20—0.27 0.03—0.07—0.09
PR 0.23—0.34—0.42 0.10—0.16—0.21
LG 0.26—0.38—0.45 0.09—0.17—0.20
n=500
ST 0.07—0.12—0.19 0.01—0.02—0.06
PR 0.17—0.26—0.33 0.08—0.14—0.18
LG 0.24—0.36—0.42 0.06—0.10—0.13
n=1000
ST 0.04—0.10—0.16
PR 0.13—0.23—0.30
LG 0.19—0.29—0.35
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Table 3: Variables

obs=1153
Variable Meaning
linc log of family’s income in thousands of dollars
mothereduc mother’s years of education
white =1 if mother is white
cigtax cigarette tax in Home State in dollars per pack
fathereduc father’s years of education

As exhibited in Table 2, the sizes of the test for the KWSMSE using the asymptotic critical values are
systematically above the asymptotic sizes even for a sample of 1000 observations. For instance, the size using
the 5 percent critical value ranges from 10 to 29 percent across designs. Hence, one requires a much larger
sample for the asymptotic critical values to provide an accurate probability coverage for the t-statistic. The
same inferential problem affects the smoothed maximum score estimator (see Horowitz 1992). Even though
one cannot yet affirm whether the theory of bootstrapping applies to the KWSMS, the result established
in Horowitz (2002) concerning the SMSE does suggest that the critical value of a bootstrapped t-statistics
will provide a more reliable coverage in finite sample for the KWSMSE. Alternatively, the SASMSE seems
to offer somewhat superior testing capability in terms of sizes, which for n = 500 are closer to the ones
promised by asymptotic theory. This is notably true for the ST design where the type I error of the null
hypothesis is more accurately provided by the asymptotic critical value.

7. Application: An Effect of Education on Maternal Pregnancy Cigarettes Smoking?

In this section the estimators described in this article are used to determine whether the mother’s education
impacts the propensity of smoking while pregnant. According to the Centers for Disease Control and
Prevention (2004) ”infants born to mothers who smoke during pregnancy weigh less, have a lower birth
weight which is a key predictor to infant mortality”. Finding statistical evidence as to whether the mother’s
education affects the smoking decision of a pregnant woman is thus important for policy making purposes
notably for designing cost effective programs targeting U.S. women.

The source of the dataset is the 1988 National Health Interview Survey. This contains a cross section of 1155
pregnant women in the United Sates. The variables are defined in Table 3. Define Y = 1 if the pregnant
woman smokes cigarettes and Y = 0 otherwise. The decision of whether to engage in smoking is modeled
according to the following:

Y = 1[β0 + β1linc+ β2mothereduc+ β3white+ β4cigtax+ ε ≥ 0],

where ε contains unobservable factors influencing the smoking decision process of a pregnant woman. In this
application the suspected endogenous variable is the income of the household with a reduced form given by:

linc = w′π + v,

where w′ ≡ (1,mothereduc, white, fathereduc), π is an unknown parameter while v includes unobservable
drivers of the family’s income. These unobservable attributes comprise the household’s age, the house-
hold’s work experience and possibly other qualitative traits such as the household’s level of self restraint.
Given that some of those unobservable factors are probably redundant in ε, estimating the parameter
β′ ≡ (β0, β1, β2, β3, β4) without taking into account this link using classic estimation techniques may lead to
misleading estimates and invalid testing.
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Table 4: Reduced Form via OLS

obs=1153 coefficient t-stat
Variable
mothereduc 0.071 7.09
white 0.357 6.90
fathereduc 0.060 6.75

Table 5: Estimates

obs=1153 Probit LIML KWSMS SASMS SASMS
ρ = 4 ρ = 8

Variable
mothereduc -0.905 -0.091 -0.126 -0.121 -0.132
white 0.978 0.587 0.857 0.680 0.893
cigtax 0.065 0.103 0.053 0.057 0.052

As exhibited in Table 4 the estimate π̂ of π via least squares suggests that w is a strong instrument in that
π̂ provides null p-values for the hypothesis (componentwise) Ho : π = 0. This result is comforting since a
prerequisite for the estimation techniques elaborated in this article is the existence of a father’s educational
effect on linc by the identification assumption (see Section 4.1).

The KWSMSE is computed using linc as the fully supported variable while the kernels, bandwidths and
tuning parameters are chosen as described in Section 6. As explained in Section 4.2.2, an appropriate value
for v̄ is such that the density of V |Ẋ is sufficiently differentiable on some neighborhood of v̄. Writing Ẋn as
the sample mean of Ẋ and σ̂v the empirical standard deviation of {v̂i}ni=1, a practical rule of thumb consists
of selecting some v̄ ∈ (−2σ̂v, 2σ̂v) where the density of V |Ẋn is smooth. Here, (−2σ̂v, 2σ̂v) = (−1.2, 1.2)
and nonparametric estimators for the density in question7 exhibit a few spikes in the range [−0.5, 1]. Thus,
the conservative choice v̄ = −0.8 is selected. The major computational difference compared to Section
6 pertains to the maximization of the objective for the KWSMSE which is here conducted employing a
simulated annealing (SAN) procedure similar to that used in Horowitz (1992). The SAN is performed with
a budget of 500 iterations, providing a starting value relatively close to the global maximizer. Having such
a direct optimization algorithm is important as one does not a priori know the region of the parameter
space which should be emphasized upon because of the unknown scaling coefficient (the slope coefficient
of linc here). Then, the Climbing Hill algorithm using this starting value converges in less than 30 steps
to the global maximum. The SASMSE is computed with kernels, bandwidths as described in Section 6
and the sieves basis truncated with ρ = 4, 8. Since the trigonometric cosine basis is chosen, the residuals
are normalized by using F (v̂i) in lieu of v̂i to compute the SASMSE where F (.) indicates the cumulative
distribution function of the standard normal random variable. Finally, the trimming term τ(.) ≡ 1[|.| ≤ 2σ̂v]
is used to avoid having the KWSMSE unduly influenced by boundary observations.

Tables 5 and 6 show the results using these estimation techniques, the probit and the LIML. Because of the
scaling chosen, β̃k for k = 2, 3, 4 in Table 5 refers to the estimate of βk

|β1| . This permits comparison with the

parametric estimators (probit and LIML) since those latter rely on a different scaling factor. The statistic
tk for k = 2, 3, 4 in Table 6 refers to the t-statistic for the null Ho : βk = 0. Under their assumptions, each of
the four estimation procedures conclude that tk is asymptotically distributed as a standard normal variable
under Ho.
The probit model provides a negative estimate for mothereduc which is significant at conventional confidence
levels. In sum, the probit model leads to the conclusion that, everything else held constant, an increase
in the mother’s education reduces the propensity of pregnancy smoking. The LIML yields also a negative

7Using either the Parzen kernel or the Epanechnikov kernel
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Table 6: Statistics

obs=1153 Probit LIML KWSMS SASMS SASMS
ρ = 4 ρ = 8

Variable
mothereduc -7.06 -1.38 -8.07 -20.51 -13.77
white 1.43 2.67 9.65 4.47 5.50
cigtax 1.89 1.15 10.37 11.08 7.37

estimate for mothereduc albeit smaller in absolute value, suggesting that the benefit of education in reducing
pregnancy smoking is less pronounced. However, according to the LIML model, mothereduc is not significant
at conventional confidence levels. In sum, according to the LIML model the claim that, everything else held
constant, an increase in the mother’s education reduces her smoking propensity is more uncertain. As shown
in Rivers and Vuong (1988), a test of exogeneity for linc consists of testing the significance of the reduced
form residual v̂ in the probit regression of Y on the variables and v̂. Under the exogeneity hypothesis
Ho : E[εv] = 0 the t-statistic for v̂ is N (0, 1) asymptotically. The t-statistic in question is equal to 1.82,
which leads to the rejection of the exogeneity hypothesis at a 10 percent significance level. Provided the
parametric assumption of the Rivers and Vuong’s estimation method holds8, this last finding hints that the
endogeneity of income is to be taken seriously.

The KWSMSE offers estimates whose signs are the same as those furnished by the LIML. Yet, the results are
somewhat contrasting in that the estimates for mothereduc is 40 percent larger is magnitude, 50 percent larger
for white and 50 percent smaller for cigtax. The main difference in terms of testing between the KWSMSE
and the LIML concerns the prime variable of interest mothereduc. Unlike the LIML, the KWSMSE leads
to the conclusion that mothereduc is significant at conventional levels of significance. The testing of the
key median restriction (1) needed for the KWSMSE was conducted9 as explained in Section 4.3 resulting in
Tn = −0.694. Therefore, at conventional confidence levels the median restriction assumed in (1) cannot be
rejected.

The SASMSE provides estimates relatively close to the ones furnished by the KWSMSE. The choice of the
sieves parameter ρ does not affect the testing conclusion. The estimate for mothereduc is still negative and
significant suggesting that, everything else constant, education reduces pregnancy smoking.

To conclude, data have revealed from testing that the household income is likely correlated with unobservable
characteristics of a pregnant woman. Both the LIML and the new proposed estimators suggest that the
benefit of education in reducing pregnancy smoking is less pronounced than hinted by a probit. The LIML
estimator also hints that the mother’s education is not relevant in affecting the smoking decision during
pregnancy. However, both the KWSMSE and the SASMSE suggest that the mother’s education does reduce
the smoking propensity of a pregnant woman. In sum, not addressing the endogeneity of income leads to
exaggerating the importance of education in reducing pregnancy smoking. This is probably due to the fact
that there are unobservable environmental characteristics for a pregnant woman which encourage smoking
and simultaneously depress income.

8This Hausman’s type of test of exogeneity proposed in Rivers and Vuong (1988) does not require the joint normality
assumption of ε, v (or merely ε|v) which is needed for the LIML. However, the validity of this test hinges on the classic probit
assumption that ε|X ∼ N (0, 1) where X denotes the explanatory variables.

9The test was performed using the density of the standard normal distribution for the kernel ϕ and ξ = σ̂lσ̂vn
−ω with ω

the midpoint of (sup{1/10; a(1 + η)}, 1/5) where a and η are the bandwidths parameters selected to compute the KWSMS.

17



Conclusion

This article has presented a local version of the control function approach for the binary choice model to
reach consistency when one of the explanatory variables is endogenous. This article has explained how the
objective function of the SMSE can be weighted by means of a kernel taking the reduced form’s residuals as
arguments in order to derive an asymptotically centered normal estimator. Finally, a consistent estimator for
the asymptotic covariance matrix has been offered enabling expedient inferences for applied work whenever
a large dataset is available. An alternative score approximation based smoothed maximum score estimator
has also been described combining many first stage estimators to obtain a faster rate of convergence. The
Monte Carlo simulations hint that both of these estimators can provide new tools to estimate the coefficients
of interest and conduct hypothesis testing in the binary choice model when endogeneity is present without
having to impose strong distributional assumptions.
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Appendix

1 Identification
The identification of β (up to a positive scale) is ensured under the followings:

Assumption 1:
W̃ has one component which is not measurable10in Z and whose associated slope coefficient is non null.

Assumption 2:
There exists a partition of Ẋ′ = (C, X̃′) where dim C =1 and such that its corresponding slope coefficient, noted β1, is strictly
positive.

Assumption 3:
(a) There exists some given v ∈ R and some φ(v̄) ∈ R such that:

P [ε ≤ φ(v̄)|Z = z,W = w, V = v̄] = 1
2

a.e.in z,w.

(b) The distribution function of ε|Ẋ = ẋ, V = v has everywhere positive density with respect to the Lebesgue measure a.e.in ẋ.

Assumption 4 :
(a) The distribution function of C|X̃ = x̃ has everywhere positive density with respect to the Lebesgue measure a.e.in x̃.

(b) The distribution function of V |Ẋ = ẋ is absolutely continuous with respect to the Lebesgue measure a.e.in ẋ and its density
evaluated at v exists a.e.in ẋ. Furthermore, there exists some real number Mv <∞ such that 0 < f(v|ẋ) < Mv a.e.in ẋ.

Assumption 5:
E[XX′] is positive definite where X′ ≡ (1, X̃′).

Comments: Assumption 1 is a rank condition requiring at least one excluded instrument which is not a function of Z having
an impact on the endogenous variable (see Lee 2007 and Newey, Powell and Vella 1999). Consider for instance the simple case
where Z is a scalar variable and W = (Z,Z2). Even though Z2 is not part of Ẋ assumption 1 fails. More generally, adding
functions of the exogenous variables including in (i) to the reduced form equation (ii) is not a viable strategy in the context of
our estimation problem. Assumptions 2 demands one variable whose marginal impact on the latent index Ẋ′β is positive. As
pointing out earlier merely β1 non null suffices because our parameter of interest is estimated up to the constant 1

|β1|
and all

of our results can be generalized by adding β1
|β1|
∈ {−1, 1} as an additional unknown parameter. Assumption 3(a) is a classic

control function condition except that only a local restriction at some v is imposed. Assumption 3(b), introduced similarly
to Manski’s 1985 assumption 2b, prevents the binary outcome Y from being perfectly predictable by (Ẋ,v̄) with some strictly
positive probability.11 Assumption 4 contains classic slack conditions permitting LMDR-identification (see Manski 1985, lemma
2) in the context of our control function approach. This is a prerequisite to identification which requires the existence of a
significant (in the sense of having a coefficient non null) variable in Ẋ that must be fully supported. The additional presence
of V in the controlled model imposes that V |Ẋ be supported on some neighborhood (albeit small) of v. Finally, assumption 5
prevents identification of an intercept in Ẋ.

Now write φ(v) ≡Med(ε|V = v̄) and θ′0 ≡
1
β1

(φ(v), β̃′) where β̃ denotes the slope coefficient associated to X̃.

Proposition 1 (Identification)

Under assumptions 1 through 5,

θ0 ≡ Argmaxθ∈RKE[d(`+X′(θ − θ0))gX,`(v)],

where ` ≡ C + X′θ0, gX,`(v) ≡ (1 − 2FX,`,v [−β1` + φ(v)])fX,`(v), FX,`,v [.] indicates the cumulative distribution function of
ε|X, `, V = v and fX,`(v) indicates the density of V |X, ` evaluated at v.

10A random variable is said to be measurable in Z if it has the form f(Z) for some Borel function f . The function is Borel if
for any real number a the preset f−1(a,∞) is a Borel set. Most functions of Z encountered in applied work are measurable in
Z such as powers of Z, intercept, the indicator involving the level of Z and the conditional mean E[T |Z] provided E|T | <∞.

11Assumption 3(b) is equivalent to P [Y = 1|Ẋ = ẋ, V = v̄] ∈ (0, 1) a.e. in ẋ.
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2 Asymptotic Properties of the KWSMS Estimator

Let {Yi, Ẋi}ni=1 be a sequence of observations and let Π̂ be some given estimator from a first stage estimation inducing

V̂i ≡ Ai − Π̂′Wi for i = 1...n. Also, let hq and h be two strictly positive bandwidths sequences, D(.) some given function from
the real line into itself and k(.) a kernel. For any θ ∈ RK define the following objective:

S̃n(θ) =
1

nhq

n∑
i=1

αiD(
Ci +X′iθ

h
)k(

V̂i − v
hq

).

Sufficient conditions for weak consistency are given next.

Assumption 6:
{Yi, Ẋi,Wi}ni=1 is an iid sequence from (Y, Ẋ,W ) satisfying Y = d(Ẋ′β + ε).

Assumption 7:
The support of W is a bounded subset of Rq with q ≥ 1.

Assumption 8:
θ0 is an interior point of Θ ⊂ RK compact.

Assumption 9 :(Define Fx,l,v [.] the cumulative distribution function of ε|X = x, ` = l, V = v and fx,l(.) the density of V |X =

x, ` = l whenever this later exists. Also define Ψ(x̃) the essential supremum of the density of C|X̃ = x̃ whenever this later
exists i.e. Ψ(x̃) ≡ {infM ∈ R : fx̃(c) ≤M,µ− a.e.c} where µ indicates the Lebesgue measure.)

(a) The function v 7→ Fx,l,v [−β1l+ φ(v)] and v 7→ fx,l(v) belong to Cm∞(v̄,M1) for some M1 <∞ and some m ≥ 2 a.e.in x, l.

(b) The density of C|X̃ = x̃ is essentially bounded a.e.in x̃ and the function x̃ 7→ Ψ(x̃) is bounded on its domain.

Assumption 10:
There exists a given Π̂ such that

√
n(Π̂−Π) = Op(1).

Assumption 11:
(a)D : R −→ R. (b)D is bounded. (c) limt→−∞D(t) = 0 and limt→∞D(t) = 1. (d) D is differentiable everywhere and its
derivative noted K satisfies ||K||sup <∞.

Assumption 12:
(a) k belongs to Km. (b)

∫
|k(t)|2dt < ∞. (c) k is differentiable everywhere with ||k(1)||sup < ∞. (d)

∫
|tjk(t)|dt < ∞ for

j = 1, 2, ...,m− 1 and for any σ > 0 and any deterministic sequence cn = o(1),

lim cj−mn

∫
|t|>σ/cn |t

jk(t)|dt <∞ as n→∞ for j = 0, 1, ...,m− 1.

Assumption 13:
The deterministic sequences of strictly positive real numbers {hq}n and {h}n satisfy lim h=lim hq = 0 and lim nh4

q=lim
nh2h2q
log(n)

=∞ as n→∞.

Comments: Assumption 7 is imposed for simplicity. Merely, the first moments of W must exist. The bounded support,
introduced for deriving the subsequent asymptotic results, may also be dropped if one is willing to assume extra regularity
conditions for the distribution of C conditional on X̃ and W . Assumption 8 is technical identically to assumption 4 in Horowitz
(1992) because proposition 1 covers RK while consistency is easier to establish for a compact set. Assumption 9(a) will be met
for instance when both Fε|ẋ,v and fẋ(v) as functions of v are twice continuously differentiable on some open neighborhood of
the chosen v̄ with some bound on the first and second derivatives (a.e.in ẋ). Assumption 9(b) is technical but is needed to get

a uniform convergence for the empirical moment S̃n. Assumption 10 is verified under the mild assumptions for M estimators.
Assumption 11 introduces the building block for smoothing the indicator function. As explained in the introduction, an easy
manner to construct such a function is by integrating a kernel but for consistency purposes this is not needed. Assumption 12
is for the most part a typical condition which demands to select the order of the kernel k(.) to match the smoothness of the
function it will convolute with.

Proposition 2 (KWSMS Consistency)

Under the assumptions of proposition 1 and assumptions 6 through 13,

θ̃n ≡ ArgmaxΘS̃n(θ) is (weakly) consistent for θ0.

To derive a normal limiting distribution for the estimator introduce the following conditions:

Assumption 14:(Define gx,l(v) ≡ (1− 2Fx,l,v [−β1l+φ(v)])fx,l(v) where Fx,l,v [.] indicates the cumulative distribution function
of ε|X = x, ` = l, V = v and fx(.) the density of `|X = x whenever this later exists.). The function l 7→ gx,l(v) and l 7→ fx(l)
belong to Cr∞(M2) for some M2 <∞ and some r ≥ 2 a.e.in x.
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Assumption 15:

(a)E||X||4 <∞.

(b)E[XX′T
(1)
X (0)] is positive definite where TX(l) ≡ gX,l(v)fX(l) and T

(1)
X (u) ≡ ∂TX

∂l
|l=u.

Assumption 16:

(a)K belongs to Kr and is symmetrical.

(b)
∫
|K(t)|2+δdt <∞ and

∫
|k(t)|2+δdt <∞ for some δ > 0.

(c)
∫
|t||K(t)|2dt <∞ ,

∫
|t||k(t)|2dt <∞ and

∫
|tK(t)|dt <∞.

(d)For any σ > 0 and any deterministic sequence cn = o(1),

lim c−1
n

∫
|t|>σ/cn |K

(1)(t)|dt = 0 as n→∞,

and

lim c−1
n

∫
|t|>σ/cn |k(t)|2dt <∞ as n→∞,

(e)K is twice differentiable everywhere, ||K(j)||sup <∞ for j = 1, 2, and
∫
|K(1)(t)|2dt <∞.

Assumption 17:

lim nh2m+1
q h=lim nh2r+1hq=lim h

h3
q

=lim
hmq
h

= 0 as n→∞, and

lim
nh4
qh

4

log(n)
=∞ as n→∞.

Comments: Assumption 14 is the key condition needed to derive the asymptotic result for the KWSMS estimator using the
classic Taylor’s expansion. The stringency in terms of the domain of smoothness may be construed as demanding. However,
this is imposed for simplifying the proofs, a smoothness in a neighborhood of the origin would suffice (see Horowitz 1992,
assumption 8 and assumption 9) using a lengthier argument. Assumption 15(b), is needed for deriving an asymptotic theory
for the KWSMS estimator similarly to the SMSE (see Horowitz 1992, assumption 11). In fact, under assumption 14 the
positive definiteness of such matrix would be implied automatically under the identification conditions if assumption 3(a) is
strengthened to Fε|Z,W,v̄ ≡ Fε|v̄ a.s..12 However, assumption 3(a) does not forbid some degree of heteroscedasticity for ε in
which case assumption 15(b) is not ensured by the identification assumptions. Assumption 15(a) is needed for A is necessarily
continuously distributed (by assumption 4) and the support of X is not assumed bounded. The existence of the fourth moment
permits some control to show the convergence of certain expected values notably the collapse of the limiting bias. Assumption
16(a) is a reflection of assumption 14 since various convolutions involving K(.) need to converge in some senses. Assumptions
16(b) and 16(c) are stability conditions for obtaining asymptotic Normality and are satisfied by many kernels, a clear example
of which being polynomials compactly supported kernels which are smooth at boundary points. Finally, assumptions 16(d) and
16(e) are needed for the Hessian to converge in probability to some finite quantity and is related to assumptions 7 of Horowitz
(1992), which demands the first two derivatives of K(.) to be well behaved. Finally, assumption 17 dictates the bandwidths’
rate which must be selected for the asymptotic to be met with lim nh2m+1

q h=lim nh2r+1hq=0 collapsing the asymptotic bias

while lim h
h3
q

=0 allows the usage of the estimated nuisance V (A,W ) via Π̂ to be asymptotically irrelevant.

Proposition 3 (KWSMS Asymptotic Normality)
Under the assumptions of proposition 2 and assumptions 14 through 17,√

nhhq(θ̃n − θ0) →d N (0, H−1ΣH−1),

where

H ≡ E[XX′T
(1)
X (0)], Σ ≡

∫
|k|2

∫
|K|2E[XX′µX(0)] and µX(`) ≡ fX,`(v)fX(`).

Comments: So far it is implicitly assumed that both assumptions 13 and 17 are met. However, this imposes some smoothness
conditions beyond those assumed in assumptions 9. When h ∝ n−a and hq ∝ n−aq for some strictly positive constants a
and aq , the bandwidths requirement put forth in proposition 3 will hold as long as a ∈ (Max{ 1

1+η+2ηm
; 1

1+η+2r
}, 1

4+4η
) and

aq = ηa for some η ∈ ( 3
2m−3

, 1
3

).13 Thus, the asymptotic conclusion needs a strengthening to m ≥ 7 in assumption 9. Under

12In that case E[XX′T
(1)
X (0)] = 2β1E[XX′fv̄ [φ(v̄)]µX(0)] where fv̄(.) is the density of ε|V = v̄. This matrix is positive

definite by assumptions 2,3(b),4(b)and 5.

13It is clear that Assumptions 13 and 17 both hold as long as lim nh2m+1
q h=lim nh2r+1hq=0 , lim h

h3
q

=lim
hmq
h

=0 and lim

nh4
qh

4

log(n)
=∞. Solving these implied inequalities directly yields the bandwidths spectrum given above.
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this last condition and r ≥ 2, one can therefore obtain a rate on convergence in probability for the KWSMS estimator at least
n−3/8. Yet, this rate improves when λ = Min{m, r} augments eventually reaching the parametric rate if λ approaches infinity.

As stressed in the introduction, one of the important practical advantage of the KWSMS estimator for the endogenous binary
choice model is its ability to conduct inferences from a large sample of observations. The next proposition offers the consistent
estimators for the covariance of the above limiting distribution.

Proposition 4 (KWSMS Inferential Feasibility)
Let

H̃n ≡
1

nh2hq

n∑
i=1

(1− 2Yi)XiX
′
iK

(1)(
Ci +X′i θ̃n

h
)k(

V̂i − v
hq

),

and

Σ̃n ≡
1

nhγ1hγ2q

n∑
i=1

XiX
′
i|K(

Ci +X′i θ̃n

hγ1
)|2|k(

V̂i − v
hγ2q

)|2,

for some constant γ1 ∈ (0, 3/4]and γ2 ∈ (0, 1].Under the assumptions of proposition 3,

H̃n −→p H.

Furthermore, if
∫
|K(t)|4dt <∞ and

∫
|k(t)|4dt <∞,

Σ̃n −→p Σ.

Comments: The rational behind Σ̃n not using the bandwidths on which the KWSMS estimator is based upon is to avoid
having to add additional bandwidths constraints on the already substantial list.

3 Accelerating Convergence with a Score Approximation Smoothed
Maximum Score Estimator

5.2. Asymptotic Results

Assumption S1 :

Assumptions 3, 4(b), 9 and 14 hold for all v̄ ∈ [0, 1] as well as other assumptions of proposition 3.

Comments: This ensures that the conclusion of proposition 2 and 3 holds using any fixed value of v chosen in [0, 1]. The
choice of [0, 1] is purely symbolic and can be replaced by any compact set of R for which the above assumptions hold by means
of an appropriate normalization.

Assumption S2 :

There exists a sample size N such that for each v in [0, 1] the sequence {E|θ̃(v)− θ(v)|2}n≥N is monotone.

Comments: This is a dominance condition which ensures a uniform rate of convergence (in the outer probability sense) for

the KWSMS estimator θ̃(v) over [0, 1]. Under assumption S1 it is known that for each v, the sequence of mean squared errors
converges to 0. This however requires no oscillations if the sample size is large enough.

Assumption S3 :

(a) φ(.) is p times continuously differentiable on [0, 1] for some p ≥ 1. (b) There exists some finite constant C and some
γ ∈ (0, 1] such that |φ(p)(v1)− φ(p)(v2)| ≤ C|v1 − v2|γ for all (v1, v2) ∈ [0, 1]× [0, 1].

Comments: Condition (a) is explicit with the additional slightly stronger requirement in (b) that the pth derivative of
Med(ε|V = v) be Hölder continuous. Then the nuisance function φ(.) can be approximated (up to scale) arbitrary well by
many linear Sieves methods.

Assumption S4 :

ρ(n) is a given sequence of natural numbers such that ρ(n)/n < 1 for all n and ρ(n)→∞ as n→∞.
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Comments: Let ||f ||sup for a real valued function f : [0, 1] → R denotes the sup norm on [0, 1]. Under assumption S3
and assumption S4 there exists a known basis of functions {fj}j≥1 such that its linear span Eρ = {f : [0, 1] → R, f =∑ρ
j=1 ajfj , aj ∈ R} can approximate the control function φ(.) arbitrary well in the sense that infEρ(n)

||f − φ||sup → 0 as

n → ∞ (see Chen 2007). That is, defining pn(.)′ = (f1(.), ..., fρ(n)(.)) there exists B′n = (b0,1, ..., b0,ρ(n)) such that B′npn
provides a good approximation of the unknown control function on [0, 1] for n large enough.

Let Λn be the n × ρ(n) matrix whose ith row is pn(i/n)′. Also, under assumption S3 one can introduce ||pn||sup ≡
supv∈[0,1]||pn(v)|| and given a naturel number ρ use L[ρ] ≡

∑ρ
j=1 ||f

(1)
j ||sup.

Assumption S5 :

For n large enough the largest eigenvalue of Λ′nΛn/n is bounded from above and its smallest eigenvalue is bounded away from
0.

Comments: This can be viewed as a dominance condition which permits the discrepancy between bn and Bn to be imposed
only by the ”mistakes” committed by the various KWSMS estimators on the first stage and on the approximation error from
truncating the basis up to the first ρ(n)th terms.

Assumption S6 :

The distribution function of C|X̃ = x̃, V = v has everywhere positive density with respect to the Lebesgue measure a.e in x̃,v.

Comments: Let L ≡ C + X̃′ β̃
β1

+
φ(V )
β1

. This assumption permits the existence of the density of L|X̃ = x̃, V = v (a.e.x̃,v)

which is needed to derive an asymptotic. Define Fx̃,l,v [.] the cumulative distribution function of ε|X = x̃, L = l, V = v and

fx̃,v(.) the density of L|X̃ = x̃, V = v. Also, use the convention F
(1)
x̃,l,v [−β1l + φ(v)] ≡ ∂Fx̃,l,v [−β1l + φ(v)]/∂l whenever this

derivative exists.

Assumption S7 :

The function l 7→ Fx̃,l,v [−β1l + φ(v)] and l 7→ fx̃,v(l) belong Cs∞(0,M) for some M <∞ and some s ≥ 4 a.e.in x̃, v.

Comments: Under this the classic asymptotic is permitted via non parametric convolution arguments to show consistency and

normality. Also, assumption S7 along with assumption S1 ensures the existence of Q ≡ 2E[τ(V )X̃X̃′F
(1)

X̃,0,V
[φ(V )]fX̃,V (0)].

Assumption S8 :

Q is negative definite.

Assumption S9 :

(a) K(.) belongs to Ks.

(b) K(.) is twice differentiable everywhere and ||K(j)||sup <∞, for j = 1, 2.

(c)
∫
|K(t)|4dt <∞ and

∫
|K(1)(t)|2dt <∞.

(d)
∫
|tjK(t)|dt <∞ for j = 1, 2, ..., s− 1.

(e) For any σ > 0 and any deterministic sequence cn = o(1),

lim c−1
n

∫
|t|>σ/cn |K

(1)(t)|dt = 0 as n→∞,

and

lim cj−sn

∫
|t|>σ/cn |t

jK(t)|dt <∞ as n→∞ for j = 0, 1, ..., s− 1.

Assumption S10 :

h∗ → 0 and
nh8
∗

log(n)
→∞ as n→∞.

Assumption S11 : (Using Ln ≡ L[ρ(n)])

(a)nhhqh6
∗ →∞ as n→∞.

(b) Ln = o(
√
nh3
∗).

(c)||pn||sup = O(n(1−γ)/2h3
∗hhq) for some strictly positive γ.

(d) infEρ(n)
||f − φ||sup||pn||sup = o(h3

∗).
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Proposition 5 (SASMS consistency)

Under assumptions S1 though S11,

β̄ is (weakly) consistent for β̃0 ≡ β̃
β1
.

Comments: To make the SASMS estimator more appealing than the KWSMS estimator one needs to show its asymptotic
normality and construct consistent estimators for its asymptotic covariance. In order to derive the asymptotic normality a few
more assumptions are needed. Introduce the followings:

Ξ ≡ (

∫
|K(t)|2dt)E[τ(V )X̃X̃′fX̃,V (0)],

and,

Ḡ ≡
1

nh∗

n∑
i=1

τ(Vi)αiX̃iK(
Li

h∗
)

where Li ≡ 1
β1
Med(U |Ẋi, Vi).

Assumption S12 :

h∗/hhq →∞ as n→∞.

Assumption S13 :
√
nh∗(Gn[β̃(v)]− Ḡ) = op(1).

Assumption S14 :

nh2s+1
∗ → 0 as n→∞.

Comments: Assumption S12 permits an estimator asymptotically centered. Assumption S13 can be ensured by a stochastic
equicontinuity assumption whose sufficient conditions are provided in Andrews (1994). Finally, assumption S14 enables the
researcher to collapse the asymptotic bias. Define the following:

Ξ̂ ≡
1

nh∗

n∑
i=1

τ(V̂i)X̃iX̃i
′|K(

Ci + X̃i
′
β̃(v) + b′npn(V̂i)

h∗
)|2.

The key result of section 6 is now provided next.
Proposition 6

Under assumptions S1 though S14,

√
nh∗(β̄ − β̃0) →d N (0, Q−1ΞQ−1).

Furthermore,

Hn[β̃(v)] −→p Q and Ξ̂ −→p Ξ.

Comments: Proposition 6 implies that the SASMS estimator achieves a faster rate of convergence in probability than the
KWSMS estimator while still allowing for hypothesis testing. To be more specific, the SASMS estimator’s rate of convergence

is (
hhq
h∗

)1/2 times that achieved on the KWSMS estimator which is faster since lim
hhq
h∗

= 0 as n → ∞ by assumption S12. It

turns out that this is not the most efficient estimator (in the asymptotic sense) under the assumptions of proposition 6. It is
not very difficult to show that a more efficient CAN estimator is given by:

β̄E ≡ β̃(v) + Ξ̂−1Gn[β̃(v)],

which yields,
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√
nh∗(β̄E − β̃0) →d N (0,Ξ−1).

This will be subsequently referred to as the ”efficient” SASMS estimator.14

It is important to bear in mind that the SASMS estimator (respectively the ”efficient” SASMS estimator) exists only with

probability approaching one as n → ∞ since the matrix Hn[β̃(v)] defined in section 5.1 (respectively Ξ̂ as defined on page
27) has an inverse only with probability approaching one. In finite sample these estimators may thus exhibit a large variance
because of the instability of the matrix in question which may be near singular with a strictly positive probability. When the
kernel of assumption S9 has the form K(t) = p(t)1[|t| ≤ 1] for some finite degree polynomial p (see Muller 1984), one way to

mitigate this variability for the SASMS estimator is to compute Hn[β̃(v)] replacing K(1)(t) with K
(1)
c (t) = p(1)(t)1[|t| ≤ 1+ cn]

where cn is a deterministic sequence of positive real numbers satisfying cn
h∗
→ 0 as n→∞.15

The selection of the bandwidths is not covered in proposition 6 owing to the fact that only a generic case for any basis {fj}j≥1

is treated. However, in application one needs to select an appropriate basis for smooth functions and pick three bandwidths
sequences h, hq and h∗ meeting the assumptions of proposition 6. The next proposition establishes for the power series basis
and trigonometric cosine basis how the bandwidths and sieves’s sequence ρ(n) may be selected up to a scale. The symbol [κ]
for a real number κ will refer to the least lower integer of κ.

Corollary (Bandwidths Admissibility For Power series and Trigonometric cosinus )

Suppose that assumption S1 holds with r > m/3 , assumption S7 holds for some s ≥ 5 and assumption S3 holds for some
p > 4. Also, suppose that others assumptions of proposition 6 hold but assumptions S4,S10,S11,S12,S14. When pn(v)′ =
(f1(v), ..., fρ(n)(v)) is chosen from Power series or Trigonometric cosinus then the assumptions of proposition 6 are satisfied
under the followings:

(a)h ∝ n−a and hq ∝ n−λa, for some a ∈ ( 1
1+λ+2λm

, 1
10(1+λ)

) and some λ ∈ ( 3
2m−3

,min{ 9
2m−9

, 1/3}).

(b) h∗ ∝ n−a∗, for some a* ∈ (max{a′, 1
2s+1

},min{ 1−4a′

6
, p′

6p′+12
}) where a′ = a(1 + λ) and p′ = p− 1.

(c) ρ(n) = C0[nν ], for some ν ∈ ( 3a∗
p−1

, 1−6a∗
4

) and some C0 ∈ (0, n
[nν ]

).

Comments: This corollary is based upon the fact that with power series or trigonometric series on has ||pn||sup = O(ρ(n)) and
Ln = O(ρ(n)2) while infEρ(n)

||f − φ||sup = O(1/ρ(n)p) (see Chen 2007). Some lengthy algebra can show that (a),(b) and (c)

are sufficient for the conditions of proposition 6 to hold. However, those are not necessary and assumptions S4,S10,S11,S12,S14
may hold under different set of conditions which can be found by the researcher on a case to case basis.

Proofs

This section provides the proofs of the propositions. Some notations will be used. ||X|| denotes the Euclidean norm of a vector

X ∈ Rp where p ∈ N and |||M ||| =
√
traceMM ′ for a real valued Matrix M. For r > 0 and z ∈ Rp where p ∈ N define

B(z, r) = {x ∈ Rp : ||x− z|| < r}. The least upper integer of a real number t is noted int[t].

For a given multivariate real value function twice differentiable say F (θ) the symbol ∇F (θ) denotes its gradient and HF (θ) its
hessian evaluated at θ. Also the sequences of real value functions Dn(t) = D(t/h) , Kn(t) = 1

h
K(t/h) and kn(t) = 1

hq
k(t/hq)

are used. However, the notations kn(V ) = 1
hq
K(V−v

hq
) and kn(V̂ ) = 1

hq
K( V̂−v

hq
) are employed which should be kept in mind.

Moreover, the objectives,

S̃n(θ) = 1
nhq

∑n
i=1 αiD(

Ci+X
′
iθ

h
)k( V̂i−v

hq
),

and

Sn(θ) = 1
nhq

∑n
i=1 αiD(

Ci+X
′
iθ

h
)k(Vi−v

hq
) are used.

For an arbitrary real number v use:

S̃n(θ, v) = 1
nhq

∑n
i=1 αiD(

Ci+X
′
iθ

h
)k( V̂i−v

hq
)

14Indeed, this efficient SASMS estimator requires milder assumptions than those imposed in propositions 5-6. Clearly,
assumption S8 is not needed but also assumptions S9(b), S9(c),S9(e) can be shown to be stronger than required for deriving
consistency and asymptotic normality.

15This ”regularized” version for the SASMS estimator has the same limiting distribution because K(1) and K
(1)
c differ only

when 1 ≤ |t| ≤ 1 + cn under assumption 9, see Lemma 13-14 and proof of proposition 5.
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and

Sn(θ, v) = 1
nhq

∑n
i=1 αiD(

Ci+X
′
iθ

h
)k(Vi−v

hq
).

The gradient of S̃n(θ, v) with respect to θ is noted ∇S̃n(θ, v) and its Hessian HS̃n(θ, v). Similarly, ∇Sn(θ, v) and HSn(θ, v) are
used. Write θ0(v)′ = 1

β1
(φ(v), β̃) whenever φ(v) exists. The notation λMin[A]and λMax[A] for a symmetric matrix A will refer

to the smallest (respectively largest) eigenvalue of A. Define P ? the outer probability measure i.e. P ?(E) = inf{
∑
P (Ei)|E ⊆

∪Ei, {Ei} ⊆ =}. Given a sequence of random variables Xn (not necessarily =-measurable) define plim?Xn = 0 if for any δ > 0
there exists a natural number N such n ≥ N implies P ?[|Xn| > δ] < δ. When unspecified the term lim is to be understood
with respect to n→∞. Finally, the complement of a set E will be noted E′.

Lemma 1: Under assumptions 2-4,6,9,11-13 and 15
(i) plim ||Sn − ESn||supΘ = 0. (ii) lim ||ESn − S||supΘ=0.

proof (i): Let gn(θ) = Sn(θ)− ESn(θ). We have:

gn(θ) = 1
n

∑n
i=1 αiDn(`i +X′∆)kn(Vi)− E[αiDn(`i +X′∆)kn(Vi)]

Notice that |αiDn(`i +X′∆)kn(Vi)−E[αiDn(`i +X′∆)kn(Vi)]| ≤ ||Dn||sup||k||sup 1
hq

where ||Dn||sup||k||sup is a constant by

assumption 11 and 12. Also using a change of variable provides :

EX,`|kn(Vi)|2 = 1
hq

∫
|k(t)|2fX,`(v + thq)dt = O( 1

hq
)a.s.

due to assumption 12 and 9. Using this last finding and the fact the D(.) is a bounded function provides:

Var [αiDn(`i +X′∆)kn(Vi)] ≤ E|Dn(`i +X′∆)|2|kn(Vi)|2 = O( 1
hq

).

It follows by the Bennett’s inequality (1962) that given δ > 0 arbitrary there exists a strictly positive constant C(δ) such that:

P [|gn(θ)| > δ] ≤ 2e−nhqC(δ)

(1)

and lim |gn(θ)| = 0 a.s. follows by the Borel-Cantelli lemma because of assumption 13. Finally, to show that the convergence
is uniform consider the standard argument using non overlapping coverings (Horowitz 1992 lemma 7 or Spady and Klein 1993
lemma 1) of our compact set (assumption 8) with subsets of RK such that the distance between two points in each subset
is strictly less than a positive sequence rn. Let Ck,n for k = 1, ...,Γn denotes such collection of subsets where the number
of coverings Γn will depend on the length of the radius rn. Let {θk,n}k=1...Γn be some selected finite grid of points with
θk,n ∈ Ck,n. Noticing first that:

||∇gn(θ)||supΘ ≤ c1 1
hhq

( 1
n

∑
||Xi||+ c2)

(where c1 and c2 are constants by assumption 12 and 13 by E[||X||] existence i.e.assumption 15) and that any θ in some Ck,n
implies ||θ − θk,n|| < rn yields:

||gn(θ)||supΘ ≤ rnc1 1
hhq

( 1
n

∑
||Xi||+ c2) + supk=1..Γn |gn(θk,n)|

It then suffices to set the decreasing radius such that rn ∝ log(n)
nhhq

yielding:

lim rnc1
1
hhq

( 1
n

∑
||Xi||+ c2) = 0 a.s.,
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because lim 1
n

∑
||Xi|| = E[||X||]a.s. by Kolmogorov’s strong law of large numbers due to our iid assumption and rn

1
hhq

= o(1)

by assumption 13. Finally, plim supk=1..Γn |gn(θk,n)|=0 follows since for γ > 0 arbitrary and using (1) one can bound
P [supk=1..Γn |gn(θk,n)| > γ] owing to:

P [
⋃
k=1..Γn

|gn(θk,n)| > γ] ≤
∑Γn
k=1 P [|gn(θk,n)| > γ] ≤ 2Γne−nhqC(γ)

where lim Γne−nhqC(γ) = 0 because Γn ∝ int[(1/rn)K ]. Hence, plim||gn(θ)||supΘ = 0 is established.

proof(ii): step1: Our iid assumption and iterated expectation provide:

ESn(θ) = E[Dn(`+X′∆)kn(V )EX,`,V (α)]

where

EX,`,V (α) = 1− 2FX,`,V (−β1`+ φ(v))

FX,`,V (.) indicating the distribution function of ε|X, `, V . Iterating again gives:

ESn(θ) = E[Dn(`+X′∆)EX,`{kn(V )EX,`,V (α)}]

where,

EX,`{kn(V )EX,`,V (α)}] =
∫
gX,`(v)kn(v)dv, and

gX,`(v) = [1− 2FX,`,v(−β1`+ φ(v)][fX,`(v)].

Using a change of variable with t = v−v
hq

and assumptions 2 and 4 further provides:

EX,`{kn(V )EX,`,V (α)} =
∫
gX,`(v + thq)k(t)dt a.s

Also by assumption 9(a), there exists σ > 0 and a natural number m ≥ 2 such that on In = {|t| < σ/hq}:

gx,`(v + thq) = gx,`(v) +
∑m−1
j=1

1
j!
g

(j)
x,`(v)(thq)j + 1

m!
g

(m)
x,` (ξ(x, `))(thq)m a.e.in x, `,

for some ξ(x, `) meeting |ξ(x, `)− v̄| < σ where for |v − v̄| < σ,

g
(j)
x,`(v) =

∑j
k=0

1
k!(j−k)!

j![1− 2Fx,`,v(−β1`+ φ(v)](k)[fx,`(v)](j−k)

with

[1− 2Fx,`,v(−β1`+ φ(v)](j) = ∂j

∂jv
1− 2Fx,`,v(−β1`+ φ(v)) and [fx,`(v)](j) = ∂j

∂jv
fx,`(v) for j = 1...m.

Simplifying and using assumption 12 offers:

∫
gx,`(v + thq)k(t)dt =

gx,`(v)− gx,`(v)
∫
I′n
k(t)dt−

∑m−1
j=1

g
(j)
x,`

(v̄)

j!
hjq

∫
I′n
tjk(t)dt+

hmq
m!

∫
In
g

(m)
x,` (ξ(x, `))tmk(t)dt+

∫
I′n
gx,`(v + thq)k(t)dt a.e.in x, `.

Furthermore, |gx,`(v)| < M∗1 for all v, |g(j)
x,`(v̄)| < M∗1 for j = 1, ...,m − 1 and |g(m)

x,` (ξ(x, `))| < M∗1 a.e in x, ` for some finite

constant M∗1 by assumption 9(a). It follows that:

h−mq |
∫
gx,`(v + thq)k(t)dt− gx,`(v)| ≤M∗1in a.e in x, `,

(1’)
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where in = 2h−m
∫
I′n
|k(t)|dt+

∑m−1
j=1

hj−mq

j!

∫
I′n
|tjk(t)|dt+ 1

m!

∫
|tmk(t)|dt is a bounded sequence by assumption 12(d).

Consequently,

EX,`{kn(V )EX,`,V (α)}] = gX,`(v) +Rn a.s

where gX,`(v) is given as in proposition 1 due to EX,`,V=v(α) = 1 − 2FX,`,v [−β1` + φ(v)] and |Rn| = O(hmq ) a.s. by our
finding in (1’)and assumptions 12(d). Furthermore, |gX,`(v)| is bounded almost surely by some real number Mv < ∞ (under
assumption 4) yielding:

|ESn(θ)− S(θ)| ≤MvE[|Dn(`+X′∆)− d(`+X′∆)|] +O(hmq ).

Step 2: Subsequently, it is straightforward to establish lim Dn = d a.e. by assumption 11 (where the convergence may not hold
at the origin). It follows (by Horowitz 1992, lemma 4) that given ε > 0 arbitrary there exists some Borel set B of Lebesgue
measure strictly less than ε where lim ||Dn − d||supB′ = 0 holds. Consequently:

|ESn(θ)− S(θ)| ≤Mv(||D||sup + 1)P [`+X′∆ ∈ B] +Mv ||Dn − d||supB′ +O(hmq ).

step 3: Finally, the cumulative distribution function of `|X = x is absolutely continuous with respect to the Lebesgue measure
a.e.in x by assumption 4(a) with furthermore a density whose essential supremum is bounded by some constant M a.e.in x by
assumption 9(b)implying:

P [`+X′∆ ∈ B] < Mε uniformly over Θ,

where we used P [`+X′∆ ∈ B] = EPX [` ∈ B−X′∆] and the invariance of the Lebesgue measure to translation. Hence:

|ESn(θ)− S(θ)| ≤Mv(||D||sup + 1)Mε+Mv ||Dn − d||supB′ +O(hmq ),

with O(hmq ) = o(1) by assumption 13. It follows that for any δ > 0 one can pick B to have measure ε < δ
3M(||D||sup+1)Mv

so

there exists a sample size N(δ) such that n ≥ N(δ) implies |ESn(θ)− S(θ)| < δ uniformly over Θ concluding (ii). QED

Lemma 2: Let G be some function in C2
∞(M) for some finite real number M , K(.) satisfying assumption 16 and hn some

strictly positive sequence converging to 0 as n approaches infinity. Then we have:

lim ||µn(x)−G(1)(x)||sup = 0 where µn(x) = 1
h

∫
−K(1)(t)G(x+ th)dt

proof: Define En = {t ∈ R : |t| ≤ 1
h
} and use the indicator function 1E(t) = 1 if t belongs to a real Borel set E. Given an

arbitrary real number x we have:

µn(x) = In1(x) + In2(x)

where

In1(x) = 1
h

∫
−K(1)(t)G(x+ th)1E′n (t)dt

and

In2(x) = 1
h

∫
−K(1)(t)G(x+ th)1En (t)dt

The first part is easy as:

|In1(x)| ≤ ||G||sup 1
h

∫
|K(1)(t)|1E′n (t)dt

This results in lim |In1(x)| = 0 uniformly in x by the tail property of the Kernel K(.) (assumption 16(d)). Furthermore,
integrating by part over En yields:
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In2(x) = In3(x) + In4(x)

where

In3(x) = − 1
h
{K(t)G(x+ th)|t∈En} and In4(x) =

∫
K(t)G(1)(x+ th)1En (t)dt

Moreover, |In3(x)| ≤ 2||G||sup 1
h
|K( 1

h
)| because the Kernel is symmetric by assumption. As |t||K(t)| tends to 0 as t tends to

infinity by assumption 16 we obtain lim |In3(x)| = 0 uniformly in x. Consequently we have :

µn(x)−G(1)(x) =
∫

[G(1)(x+ th)1En (t)−G(1)(x)]K(t)dt+ en(x)

where the function en(x) = In1(x) + In3(x) meets ||en||sup = o(1) by our previous findings. Simplifying gives:

|µn(x)−G(1)(x)| ≤
∫
|G(1)(x)||K(t)|1E′ndt+

∫
|G(1)(x+ th)−G(1)(x)|K(t)|dt+ |en(x)|

≤ ||G(1)||sup
∫
|K(t)|1E′ndt+ hL

∫
|t||K(t)dt+ ||en||sup

where L is a constant as the derivative of G(.) is Liptchitz due to G belonging to C2
∞(M). Finally, using lim

∫
|K(t)|1E′ndt=0

(by the Lebesgue’s Dominated Convergence Theorem) and
∫
|t||K(t)|dt <∞ by assumption 16 finishes the proof. QED

Lemma 3: Under assumptions 1-4,6,8,9,12-17

plim HSn(θ) = −E[XX′T
(1)
X (−X′∆)] where ∆ = θ − θ0 uniformly over Θ.

proof: We will first use HS∗n(θ) = 1
n

∑n
i=1 αiXiX

′
i1{|XiX′i|≤an}

K
(1)
n (`i + X′i∆)kn(Vi) (where |.| here is to be understood

component wise) where an ∝ h−2log(n). We will start showing the uniform consistency of HS∗n since it is easier to establish.

Then, we will have left to show plim HSn(θ)−HS∗n(θ) = 0 uniformly over Θ. The notation H(θ) = −E[XX′T
(1)
X (−X′∆)] is

adopted.

step1: Let ’s show plim HS∗n(θ)− EHS∗n(θ) = 0 uniformly over Θ. We have:
HS∗n(θ)− EHS∗n(θ) =

1
n

∑n
i=1 αiXiX

′
i1{|XiX′i|≤an}

K
(1)
n (`i +X′i∆)kn(Vi)− E[αiXiX

′
i1{|XiX′i|≤an}

K
(1)
n (`i +X′i∆)kn(Vi)].

By assumption 12 and 16 we get :

|αiXiX′i1{|XiX′i|≤an}K
(1)
n (`i +X′i∆)kn(Vi)− E[αiXiX

′
i1{|XiX′i|≤an}

K
(1)
n (`i +X′i∆)kn(Vi)]| = O( an

h2hq
)

(2)

Also, by assumption 12 and 9 and a change of variable it is rapid to find EX,`[|kn(V )|2] ≤ C1
hq

a.s. for some finite constant C1

and similarly by Assumption 14 and 16 that EX [|K(1)
n (`i +X′i∆)|2] ≤ C2

h3
a.s. for some finite constant C2. Hence, by iterated

expectations first with respect to X, ` and then with respect to X we obtain the inequality:

E[|XiX′i|21{|XiX′i|≤an}
|K(1)
n (`i +X′i∆)|2|kn(Vi)|2] ≤ C1C2

h3hq
E[|XiX′i|2]

and because E[|XiX′i|2] exists by assumption 15:

V ar[αiXiX
′
i1{|XiX′i|≤an}

K
(1)
n (`i +X′i∆)kn(Vi)] = O( 1

h3hq
)

(3)
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Combining (2) and (3) suffices for applying again the Bennett’s inequality implying that for any δ > 0 arbitrary real number
there exist two strictly positive constants ν1 and ν2 such that:

P [|HS∗n(θ)− EHS∗n(θ)| > δ] ≤ 2e
−nh3hqδ2

ν1+ν2anh

and plim |HS∗n(θ)− EHS∗n(θ)| = 0 follows since lim
nh4hq
log(n)

=∞ by assumption 17. Subsequently, we have the bounding:

∂
∂θ
|αiXiX′i1{|XiX′i|≤an}K

(1)
n (`i +X′i∆)kn(Vi)| ≤ O( an

h3hq
)

due to ||K(2)||sup||k||sup being a finite constant by assumptions 12 and 16. Hence, choosing a non overlapping covering with
balls whose side length rn satisfies rn

an
h3hq

= o(1) will provide plim |HS∗n(θ) − EHS∗n(θ)| = 0 uniformly over Θ by a similar

argument as that used for lemma 1.

step2: Let ’s now show lim EHS∗n(θ)−H(θ) = 0 uniformly over Θ.
By assumption 6 we obtain:

E[HS∗n(θ)] = E[XX′1{|XX′|≤an}K
(1)
n (`+X′∆)EX,`{kn(V )EX,`,V (α)}]

Invoking assumptions 9 and 12 and employing the same approach as in lemma 1(ii) provides:

EX,`{kn(V )EX,`,V (α)} = gX,`(v) +Rna.s. with Rn = O(hmq )a.s.

it follows that:

E[HS∗n(θ)] = A1,n(θ) +A2,n(θ)

where
A1,n(θ) = E[XX′1{|XX′|≤an}K

(1)
n (`+X′∆)gX,`(v)]

and
A2,n(θ) = E[XX′1{|XX′|≤an}K

(1)
n (`+X′∆)Rn]

First, by assumption 15 and 16 we can use the fact that (where fX(.) indicates the density of `|X):

EX{|K
(1)
n (`+X′∆)| =

∫
1
h
|K(1)(t)|fX(th−X′∆)dt ≤M2

∫
1
h
|K(1)(t)|dt a.s. for some finite constant M2,

and the existence of E|XX′| (i.e.assumption 15) to derive:

|E[XX′1{|XX′|≤an}K
(1)
n (`+X′∆)Rn]| = O(

hmq
h

).

This proves lim A2,n(θ) = 0 uniformly over Θ since O(
hmq
h

) = o(1) by assumption 17.

Secondly, using µn(X,∆) = EX{K
(1)
n (`+X′∆)gX,`(v)} and some simplifications furnishes:

A1,n(θ)−H(θ) = E[XX′1{|XX′|≤an}{µn(X,∆) + T
(1)
X (−X′∆)}] + E[XX′1{|XX′|>an}T

(1)
X (−X′∆)]

But notice that EX{K
(1)
n (` + X′∆)gX,`(v} = 1

h

∫
TX(th −X′∆)K(1)(t)dt where Tx(`) = gx,`(v)fx(`). Under assumption 14

and assumption 16 the conditions of lemma 2 holds (a.e. in x) yielding:
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| 1
h

∫
TX(th−X′∆)K(1)dt+ T

(1)
X (−X′∆)| ≤M2

2 bn + 2M2
2 cn + 4hM2

2 a.s for some finite constant M2,

where bn and cn are deterministic sequences vanishing to 0 as n approaches infinity. This last finding along with E|XX′|
existence establishes that:

lim E[XX′1{|XX′|≤an}{µn(X,∆) + T
(1)
X (−X′∆)}] = 0 uniformly over Θ.

Finally, |T (1)
X (−X′∆)| is almost surely bounded by a finite constant (independently of θ) by assumption 14, E|XX′| exists and

the sequence an meets lim an =∞. Thus, the Dominated Convergence Theorem directly yields:

lim E[XX′1{|XX′|>an}T
(1)
X (−X′∆)] = 0

Hence, lim A1,n(θ) = H(θ) uniformly over Θ is established and thus lim EHS∗n(θ)−H(θ) = 0 uniformly over Θ.

step 3: Using basic inequalities we find:

||HSn(θ)−HS∗n(θ)||supΘ ≤ 1
h2 ||K(1)||sup 1

n

∑n
i=1 |XiX′i|1{|XiX′i|>an}|kn(Vi)|

so that:

E[||HSn(θ)−HS∗n(θ)||supΘ] ≤ 1
h2 ||K(1)||supE[|XiX′i|1{|XiX′i|>an}|kn(Vi)|]

where EX,`[|kn(Vi)|] ≤M1

∫
|k(t)|dt a.s. which is rapid to show by change of variable in the integral along with assumption 9.

Consequently:

E[||HSn(θ)−HS∗n(θ)||supΘ] ≤M1(
∫
|k(t)|dt) 1

h2E[|XiX′i|1{|XiX′i|>an}]

But E|XiX′i|2 <∞ from assumption 7 so by the Cauchy-Schwartz’s inequality we can assert:

E[|XiX′i|1{|XiX′i|>an}] ≤ {E|XiX
′
i|2}1/2{P [|XiX′i| > an]}1/2

and by the Tchebychev’s inequality:

P [|XiX′i| > an] ≤ E|XiX′i|
2

a2n
.

Since
∫
|k(t)|dt <∞ (i.e.assumption 12) and lim anh2 =∞ we have established:

lim E[||HSn(θ)−HS∗n(θ)||supΘ] = 0

and lemma 3 follows by a triangular inequality using step 1 and step 2. QED

Lemma 4:Under assumptions 9,12,14-16

E[∇Sn(θ0)] = O(hmq ) +O(hr).

33



proof: Under the iid sampling (assumptions 6)we obtain:

E[∇Sn(θ0)] = E[αXKn(`)kn(V )] = E[XKn(`)kn(V )EX,`,V (α)]

where

EX,`,V (α) = 1− 2FX,`,V [−β1`+ φ(v)]

and similarly to lemma 1 using assumption 9 and 12 permits to show :

EX,`{kn(V )EX,`,V (α)}] = gX,`(v) +Rn a.s

where |Rn| = O(hmq ) a.s. which henceforth returns:

E[∇Sn(θ0)] = B1,n +B2,n

where

B1,n = E[XKn(`)gX,`(v)]

and

B2,n = E[XKn(`)Rn]

First notice that |E[XKn(`)Rn]| ≤ O(hmq )E[|X||Kn(`)|] and that E[|X||Kn(`)|] = E[|X|EX{|Kn(`)|}] is bounded due to:

EX{|Kn(`)|} =
∫
fX(th)|K(t)|dt ≤M2

∫
|K(t)|dt a.s.,

for some finite constant M2 (fX(.) indicating the density of `|X) by assumptions 14 and 16. Hence, B2,n = O(hmq ) is established.
Secondly, we can rewrite B1,n by iterating with respect X yielding:

B1,n = E[Xρn(X)]

where ρn(X) = EX{Kn(`)gX,`(v)} =
∫
TX(`)Kn(`)d` with TX(`) = gX,`(v)fX(`). Since by assumptions 14, Tx(`) , as a

function of `, is r ≥ 2 times continuously differentiable everywhere with bounded jth derivatives for j = 1...r (a.e.in x) we can
use the same approach as in lemma 1 but this time with a change of variable t = `

h
”Taylorizing” Tx(th) around 0 at order

r − 1 and invoking assumption 15 to find:

ρn(X) = TX(0) +R′n a.s.,

where TX(0) = 0 a.s. since FX,0,v̄ [φ(v̄)] = 1/2 a.s. by assumption 3. Also R′n = O(hr)a.s. is straightforward to establish using

the existence of some constant M such that |T (r)
x (`)| < M a.e.in x (from assumptions 14) and the same bounding principle as

given in equation(1) of lemma 1. Because E|X| exists by assumption 15 we have also B1,n = O(hr) which concludes lemma 4.
QED

Lemma 5: Under assumptions 9,11,12,14-17 √
nhhq∇Sn(θ0)→d N (0,Σ)
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proof: It will be convenient to note si,n =
√
hhqαiXiKn(`i)kn(Vi) and ui,n = E[si,n] for i=1...n. The structure of the proof is

as follows. First, we will show that
√
nhhq(∇Sn(θ0)−E[∇Sn(θ0)])→d N (0,Σ). Then, we will prove lim

√
nhhqE[∇Sn(θ0] = 0.

We have thus:

√
nhhq(∇Sn(θ0)− E[∇Sn(θ0)]) = 1√

n

∑n
i=1 si,n − ui,n

step1: We will first show some preliminary results. Let δ > 0 be some arbitrary constant. Notice that under assumptions
9,11,12,16 and using a change of variable in the integral as in lemma 1 we have:

EX,`| 1√
hq
k(V−v

hq
)|2+δ = 1

h
δ/2
q

∫
|k(t)|2+δfX,`(v + thq)dt ≤ M1

h
δ/2
q

∫
|k(t)|2+δdt a.s. for some constant M1

(4)

Similarly but using assumptions 14 15 and 16 returns:

EX | 1√
h
K( `

h
)|2+δ| ≤ M2

h
δ/2
q

∫
|K(t)|2+δdt a.s. for some constant M2

(5)

Letting Ln =
∑n
i=1 |

si,n−ui,n√
n

|2+δ we obtain under assumption 6:

E[Ln] ≤ n−δ/2E|si,n − ui,n|2+δ ≤ 21+δn−δ/2E|si,n|2+δ

where E|si,n|2+δ = E[|X|2+δ| 1√
h
K( `

h
)|2+δ| 1√

hq
k(V−v

hq
)|2+δ]. Using (4) and (5) along with assumptions 15(a) and 16(b)

ensures that there exists some δ > 0 meeting:

E|si,n|2+δ = O( 1

h
δ/2
q hδ/2

)

and consequently lim E[Ln] = 0 for some some δ > 0 holds because of our choice for the bandwidths meeting lim nhqh = ∞
by assumption 17.

step 2: Additionally,

E[si,ns
′
i,n] = E[XX′ 1

h
|K( `

h
)|2Pn(X, `)]

where

Pn(X, `) = EX,`{ 1
hq
|k(V−v

h
)|2} =

∫
1
hq
|k( v−v

hq
)|2fX,`(v)dv.

Moreover, a change of variable t = v−v
hq

and a similar reasoning used to derive (1′) of lemma 1 invoking assumption 9(a), 12(b)

and 16(c)− (d) provides:

Pn(X, `) =
∫
fX,`(v + thq)|k(t)|2dt = fX,`(v)

∫
|k(t)|2dt+Rn, where Rn = O(hq) a.s.

Thus, we obtain:

E[si,ns
′
i,n] =

∫
|k|2E[XX′ 1

h
|K( `

h
)|2fX,`(v)] + E[XX′ 1

h
|K( `

h
)|2Rn]
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Moreover, it is easy to show from assumption 14 and a change of variable that |E[XX′ 1
h
|K( `

h
)|2]| is bounded byM2

∫
|K|2E|XX′| <

∞ from assumptions 15(a)and 16(b). As a result we find :

E[si,ns
′
i,n] =

∫
|k|2E[XX′ 1

h
|K( `

h
)|2fX,`(v)] + o(1)

Lastly, assumption 9 and assumption 16 yield:

EX [ 1
h
|K( `

h
)|2fX,`(v)] =

∫
µX(`) 1

h
|K( `

h
)|d`

where µx(`) = fx,`(v)fx(`) is continuous and meets |µx(.)| < C for some finite constant C (a.e. in x) by assumptions 14. Thus,

changing the variable into t = `
h

provides:

EX [ 1
h
|K( `

h
)|2fX,`(v)] =

∫
µX(th)|K(t)|2dt

and two consecutive applications of the Dominated Convergence Theorem furnishes:

lim EX [ 1
h
|K( `

h
)|2fX,`(v)] = µX(0)

∫
|K(t)|2dt a.s.,

and

lim E[XX′EX{ 1
h
|K( `

h
)|2fX,`(v)}] =

∫
|K|2E[XX′µX(0)].

This subsequently offers:

lim E[si,ns
′
i,n] =

∫
|k|2

∫
|K|2E[XX′µX(0)]

Notice also that lim E[(si,n − ui,n)(si,n − ui,n)′=lim E[si,ns
′
i,n] due to ui,n =

√
hhqE[∇Sn(θ0)] = o(1) by lemma 4 and

assumptions 14. Hence, using the conclusion of step 1 and step 2 permits to apply the Lyapunov’s Central Limit Theorem
(Chung p 208) to affirm:

√
nhhq(∇Sn(θ0)− E[∇Sn(θ0)])→d N (0,Σ)

Finally,
√
nhhqE[∇Sn(θ0]) = O(

√
nhhqhmq )+O(

√
nhhqhr) by lemma 4 and

√
nhhqE[∇Sn(θ0]) = o(1) follows by assumptions

17. QED

Lemma 6: Under assumptions 6,7 and 10-14

plim||S̃n − Sn||supΘ=0

proof: Using the fact that D(.) is bounded by assumption 11 first let us find :

||S̃n − Sn||supΘ ≤ ||D||sup 1
n

∑n
i=1 |kn(V̂i)− kn(Vi)|

and ||k(1)||sup is finite by assumption 12(iii) so the mean value theorem further provides:

||S̃n − Sn||supΘ ≤ ||D||sup||k(1)||sup 1
nh2
q

∑n
i=1 |V̂i − Vi|

finally, using |V̂i − Vi| = |W ′i (Π̂−Π)| and noting C = ||D||sup||k(1)||sup yields:
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||S̃n − Sn||supΘ ≤ C||Π̂−Π||h−2
q

1
n

∑n
i=1 ||Wi||

where 1
n

∑n
i=1 ||Wi|| = Op(1) by assumption 7 and ||Π̂ − Π||h−2

q = Op(h−2
q n−1/2) = op(1) by assumption 10 and 13 which

shows the claim.

Lemma 7: under assumptions 6,7,10,12,16 and 17

plim ||HS̃n −HSn||supΘ = 0

proof: Since ||K(1)||sup is finite by assumption 16 we have:

||HS̃n −HSn||supΘ ≤ ||K(1)||sup 1
nh2

∑n
i=1 |XiX′i||kn(V̂i)− kn(Vi)|

where |kn(V̂i)−kn(Vi)| ≤ 1
h2
q
||k(1)||sup|W ′i (Π−Π̂)| by assumption 12. Noting C = ||K(1)||sup||k(1)||sup and simplifying further

yields:

||HS̃n −HSn||supΘ ≤ C 1
nh2h2

q
||Π− Π̂||

∑n
i=1 |XiX′i|||Wi||

where 1
n

∑n
i=1 |XiX′i|||Wi|| = Op(1) by assumption 6-7 and 15 and 1

h2h2
q
||Π− Π̂|| = Op( 1

h2h2
qn

1/2 ) by assumption 10. Conse-

quently ||HS̃n −HSn||supΘ = op(1) by assumption 17. QED

Lemma 8: Under assumptions 6,7,10,11,13,14,16 and 17

plim
√
nhhq ||∇S̃n(θ0)−∇Sn(θ0)|| = 0

proof: Using assumption 11 and |kn(V̂i)− kn(Vi)| ≤ 1
h2
q
||k(1)||sup|W ′i (Π̂−Π)| easily shows that for some constant C:

√
nhhq ||∇S̃n(θ0)−∇Sn(θ0)|| ≤ C

√
nhhq

||Π−Π̂||
h2
q

Tn

where Tn = 1
nh

∑n
i=1 ||Xi|||K( `i

h
)|. Now assumptions 13-14-16-17 and a double application of the Dominated Convergence

Theorem easily yields lim E[Tn] =
∫
|K|E[||X||fX(0)] (where fX(0) is the density of `|X evaluated at 0). Also, under the iid

sampling (assumptions 6), V ar(Tn) ≤ 1
nh2E[||X||2|K( `

h
)|2] and the classic change of variable subsequently offers:

V ar(Tn) ≤ 1
nh
E[||X||2

∫
|K(t)|2fX(th)dt]

where again the by Dominated Convergence Theorem applied twice establishes that E[||X||2
∫
|K(t)|2fX(th)dt] is bounded for:

lim E[||X||2
∫
|K(t)|2fX(th)dt]=E[||X||2lim {

∫
|K(t)|2fX(th)dt}]=

∫
|K(t)|2E[||X||2fX(0)]

Since lim nh =∞ by assumption 17 we conclude that Tn is bounded in probability. Therefore we have:

√
nhhq ||∇S̃n(θ0)−∇Sn(θ0)|| = Op(

√
hhq

h2
q

)
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and the choice of bandwidths from assumption 17 finalizes the proof. QED

Lemma 9: Under assumptions S1 and S2
Let θn(v) in the line segment between θ̃(v) and θ0(v) for any v ∈ [0, 1]. Then there exists H0(v) negative definite such that:

plim?HS̃n(θn(v), v) ≡ H0(v) uniformly over [0, 1]

proof: Under assumption S1 we know (from lemma 3) that for all v ∈ [0, 1] and almost every x there exists a bounded function

Ψx(., v) such that plim HS̃n(θn(v), v) ≡ E[XX′ΨX(θ0(v), v)] is negative definite. Let introduce H(θ, v) ≡ E[XX′ΨX(θ, v)]
for any θ and let θn(v) in the line segment between θ̃(v) and θ0(v). Using 2 consecutive triangular inequalities yields:

|HS̃n(θn(v), v)−H(θ0(v), v)| ≤ |HS̃n(θn(v), v)−HSn(θn(v), v)|+ |HSn(θn(v), v)− E[HSn(θn(v), v)]|+ |E[HSn(θn(v), v)]−
H(θn(v), v)|+ |H(θn(v), v)−H(θ0(v), v)|

By lemma 7 we obtain plim?|HS̃n(θn(v), v) − HSn(θn(v), v)| = 0 uniformly over [0,1]. Also, invoking assumption S1 and a
similar approach as in lemma 2 (or lemma 3) results in:

sup(θ,v)∈Θ×[0,1]|HSn(θ, v)− E[HSn(θ, v)]| = op(1)

and

lim sup(θ,v)∈Θ×[0,1]|E[HSn(θ, v)]−H(θ, v)| = 0

It therefore follows that,

plim?|HSn(θn(v), v)− E[HSn(θn(v), v)]|+ |E[HSn(θn(v), v)]−H(θn(v), v)| = 0 uniformly over [0, 1].

Finally, under S1, supl,v∈[0,1]|∂Ψx(l, v)∂l| exists and is bounded by some constant constant M (a.e in x). It follows by the mean
value theorem along with the Cauchy-Schwartz inequality that:

|H(θn(v), v)−H(θ0(v), v)| ≤ME[|XX′|2||X||2]1/2E[||θn(v)− θ0(v)||2]1/2

Since θn(v) in the line segment between θ̃(v) and θ0(v) we have plim ||θn(v) − θ0(v)|| = 0 under assumption S1 implying lim
E[||θn(v) − θ0(v)||2]1/2=0 by dominated convergence since both θn(v) and θ0(v) lie in a compact set by assumption S1. It
follows under assumption S2 that lim E[||θn(v) − θ0(v)||2]1/2=0 uniformly over [0,1] by Dini’s Theorem establishing plim?

|H(θn(v), v)−H(θ0(v), v)| = 0 uniformly over [0,1]. QED

Lemma 10: Under assumptions S1, S2 and S3

plim?n
1−γ
2 hhqsupv∈[0,1]||∆n(v)|| = 0 for all γ > 0 where ∆n(v) ≡ θ̃(v)− θ0(v).

proof: We use g̃(v) ≡ ∇S̃n(θ0(v), v) as well as ḡ(v) ≡ ∇Sn[θ0(v), v]. Since [0, 1] is compact we can invoke assumption S1 and
assumption S3 to show in a similar fashion as in lemma 1-3 that:

n
1−γ
2 hhqsupv∈[0,1]||ḡ(v)− Eḡ(v)|| = op(1) for all γ > 0.

Also, by assumption S1 we have Assumption 9 and 14 holding uniformly for an arbitrary v̄ ∈ [0, 1]. Thus, by lemma 4 we
obtain:

supv∈[0,1]||Eḡ(v)|| = O(hmq + hr)
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Hence, the bandwidths conditions of proposition 3 (i.e. assumption 17) shows that:

n
1−γ
2 hhqsupv∈[0,1]||ḡ(v)|| = op(1) for all γ > 0

(6)

Additionally, lemma 8 provides:

n
1−γ
2 hhqsupv∈[0,1]||ḡ(v)− g̃(v)|| = op(1)

(7)

Now with wpa.1 as n→∞, the mean value theorem gives:

−HS̃n(θ(v), v).∆n(v) ≡ ḡ(v) + En(v)

where plim θ(v) = θ0(v) for all v in [0, 1] due to assumption S1. Using the triangular inequality furnishes:

|| −HS̃n(θ(v), v).∆n(v)|| ≤ ||ḡ(v)||+ ||En(v)||

since ||∆n(v)||. |λMin[−HS̃n(θ(v), v)]| ≤ || −HS̃n(θ(v), v).∆n(v)|| by the spectral decomposition of −HS̃n(θ(v), v) we further
obtain:

Minv∈[0,1]|λMin[−HS̃n(θ(v), v)].|supv∈[0,1]||∆n(v)||
≤ supv∈[0,1]||ḡ(v)||+ supv∈[0,1]||En(v)||

where plim?Minv∈[0,1]|λMin[−HS̃n(θ(v), v)]| is some finite strictly positive constant by lemma 9. This last fact along with
(6) and (7) combined yield the result. QED

Lemma 11: Under assumptions S1 through S5
(a) For n large enough there exists Bn ∈ Rρ(n) and a given pn(.)′ = (f1(.), ...., fρ(n)(.)) such that:

||bn −Bn|| = O(||∆n||sup) +O(||Rn||sup)

where ∆n(v) ≡ θ̃(v)− θ0(v) and ||Rn||sup = infEρ(n)
||f − φ||sup → 0 as n →∞.

(b) ||b′npn − φ̃0||sup = O(||pn||sup||bn −Bn||) +O(||Rn||sup)

proof(a): From assumption S3 and assumption S4 there exists(see Chen 2007,Timan 1963)Bn ∈ Rρ(n) and a basis of function
pn(.)′ such that:

infEρ(n)
||f − φ||sup = ||B′npn − φ̃0||sup

where ||B′npn − φ̃0||sup = o(1). Let define ˜φ0,n ∈ Rρ(n) the vector whose ith element is φ̃0(i/n) and δn = φ̃n − ˜φ0,n. From (1)

we have ˜φ0,n = ΛnBn + rn where ||rn||/n = O(||Rn||sup). It is also easy to show that:

bn −Bn ≡ (Λ′nΛn/n)−1(Λ′nδn/n) + (Λ′nΛn/n)−1(Λ′nrn/n)

and consequently,

||bn −Bn|| ≤ ||(Λ′nΛn/n)−1(Λ′nδn/n)||+ ||(Λ′nΛn/n)−1(Λ′nrn/n)||

Now use assumption S5 which permits to use the spectral decomposition of Λ′nΛn/n yielding:
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||(Λ′nΛn/n)−1(Λ′nδn/n)||2 ≤ λmax[Λ′nΛn/n]

λmin[Λ′nΛn/n]
||δn||2/n for n large

and likewise

||(Λ′nΛn/n)−1(Λ′nrn/n)||2 ≤ λmax[Λ′nΛn/n]

λmin[Λ′nΛn/n]
||rn||2/n for n large

But ||δn||2/n = O(||∆n||2sup), ||rn||2/n = O(||Rn||2sup) and
λmax[Λ′nΛn/n]

λmin[Λ′nΛn/n]
is bounded by assumption S5 for n large. QED

proof(b): use the decomposition φ̃0 = B′npn + en where en(.) meets ||en||sup = infEρ(n)
||f − φ||sup. Then from |b′npn(v) −

φ̃0(v)| ≤ |(bn − Bn)′pn(v)| + |en(v)| use the Cauchy-Schwartz inequality |(bn − Bn)′pn| ≤ ||bn − Bn||.||pn(v)|| and take the
supremum over [0, 1] on both sides. QED

Lemma 12: Under assumptions S1 through S5

supi=1...nτ(Vi)|b′npn(V̂i)− φ̃0(Vi)| = Op(1)O(||Π̂−Π||.Ln) +O(||pn||sup||Rn||sup)

proof: For all i = 1...n we have:

τ(Vi)|b′npn(V̂i)− φ̃0(Vi)| ≤ τ(Vi)|b′npn(V̂i)− b′npn(Vi)|+ τ(Vi)|b′npn(Vi)− φ̃0(Vi)|

where

τ(Vi)|b′npn(Vi)− φ̃0(Vi)| ≤ ||b′npn − φ̃0||sup (1)

and

τ(Vi)|b′npn(V̂i)− b′npn(Vi)| ≤ ||bn||.||pn(V̂i)− pn(Vi)|| (2)

Notice that ||bn|| is bounded in probability by lemma 11. Also the mean value theorem for each function fj comprising pn relying

on V̂i−Vi = W ′i (Π̂−Π) and ||Wi|| < C a.s. for some constant C by assumption S1 establishes ||pn(V̂i)−pn(Vi)|| ≤ CLn||Π̂−Π||.
Using this last finding into (2) and the results of lemma 11 into (1) shows the claim. QED

Lemma 13: Under assumptions S6,S7 and S9
(a) E[∇S∗(β̃0, φ̃0)] = O(hs∗) for some natural number s ≥ 2
(b) Var [∇S∗(β̃0, φ̃0)] = O( 1

nh2
∗

)

proof(a):Iterating first with respect to X̃, L, V and then with respect to X̃, V yields:

E[∇S∗(β̃0, φ̃0)] = E[τ(V )X̃µn(X̃, V )]

where µn(X̃, V ) = EX̃,V {(1− 2FX̃,L,V [−β1L+ φ(V )])Kn(L)} a.s. and using S6 along with a change of variable yields:

µn(x̃, v) =
∫
px̃,v(th∗)K(t)dt a.e. x̃, v

where px̃,v(l) = 1 − 2Fx̃l,v [−β1l + φ(v)]fx̃,v(l). Now considers the expression for µn(x, v). Under assumption S7 there exists
σ > 0 such that on En = {|t| < σ/h∗}:

px̃,v(th∗) = px̃,v(0) +
∑s−1
j=1

p
(j)
x̃,v

(0)

j!
(th∗)j +

p
(s)
x̃,v

(ξ(x̃,v))

s!
(th∗)s

for some s ≥ 2 and |ξ(x, v)| < σ a.e. x̃, v. Since px̃,v(0) = 0 a.e x̃, v by assumption S1 we can further obtain:
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µn(x̃, v) = µn,1(x̃, v) + µn,2(x̃, v) a.e.x̃, v.

where

µn,1(x̃, v) =
∑s−1
j=1

p
(j)
x,v(0)

j!
hj∗

∫
En

tjK(t)dt+
hs∗
s!

∫
En

p
(s)
x,v(ξ(x, v))tsK(t)dt a.e. x̃, v.

and

µn,2(x̃, v) =
∫
E′n

K(t)px̃,v(th∗)dt a.e.x̃, v.

notice that for j = 1, 2, ..., s− 1 :

∫
En

tjK(t)dt = −
∫
E′n

tjK(t)dt by assumption 9(a)

and that there exists a finite M for which:

|p(j)
x,v(0)| < M for j = 1, 2, ..., s− 1, |px̃,v(.)| < M and |p(s)

x,v(ξ(x, v))| < M a.e. x̃, v by assumption S7.

Thus we obtain the following bounding:

|µn,1(X̃, V )|+ |µn,2((X̃, V )| ≤M(
∑s−1
j=1

h
j
∗
j!

∫
E′n
|tjK(t)|dt+

hs∗
s!

∫
|tsK(t)|dt+

∫
E′n
|K(t)|dt) a.s.

and subsequently:

h−s∗ |E[∇S∗(β̃0, φ̃0)]|≤ h−s∗ E[|X̃µn(X̃, V )|]≤MinE|X̃|,

where in =
∑s−1
j=1

h
j−s
∗
j!

∫
E′n
|tjK(t)|dt + 1

s!

∫
|tsK(t)|dt + h−s∗

∫
E′n
|K(t)|dt. But in is a bounded sequence by assumption

S1,S9(a)and S9(e) while E|X̃| exists by assumption S1. QED

proof(b): This is immediate under the iid sampling assumption since 1
n
E[|X̃|2|Kn(L)|2] ≤

||K||2sup
nh2
∗

E|X̃|2 where E|X̃|2 exists

by assumption S1 and ||K||sup exists by S9(b). QED

Lemma 14: Under assumptions S6,S7 and S9
(a) lim E[HS∗(β̃0, φ̃0)] = Q as n →∞
(b) Var [HS∗(β̃0, φ̃0)] = O( 1

nh4
∗

)

proof(a): By the same approach as in lemma 12 we get:

E[HS∗(β̃0, φ̃0)] = E[τ(V )X̃X̃′An(X̃, V )]

where

An(X̃, V ) = EX̃,V {(1− 2FX̃,L,V [−β1L+ φ(V )])K
(1)
n (L)} a.s.,

and invoking assumptions S7,S9(e) and a similar argument as in lemma 3 one can easily derive:

lim An(X̃, V ) = −p(1)

X̃,V
(0) a.s.,
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where pX̃,V (.) is as defined in lemma 12. The claim follows by Dominated convergence since E|X̃X̃′| exists by assumption S1.
QED

proof(b): This is immediate using the same bounding principle as in proof(b) of lemma 12 invoking instead the existence of
both ||K(1)||sup (by assumption S9(b)) and E[X̃X̃′X̃X̃′] (by assumption S1). QED

Proposition 1

proof: under assumption 4(b), gX,`(v) is well defined and S(θ) exists uniformly over RK . For any θ ∈ RK such that ||∆|| > 0
where ∆ = θ − θ0 we have:

S(θ0)− S(θ) = E[1[|X′∆| > 0](d(`)− d(`+X′∆))gX,`(v)]

Using iterated expectation yields:

S(θ0)− S(θ) = E[1[|X′∆| > 0]EX{(d(`)− d(`+X′∆))gX,`(v)}].

Using Med(ε|X, `, v̄) = φ(v̄) a.s. by assumption 3 subsequently offers :

(d(`)− d(`+ x′∆))gx,`(v) = |(1− 2Fx,`,v [−β1`+ φ(v)]|fx,`(v) > 0 a.e.in x whenever |d(`)− d(`+ x′∆)| > 0,

because of assumption 2, assumption 3(b) and assumption 4(b). Lastly, fx(`) > 0 a.e.in x (by assumption 4(a)) implies by
Manski’s 1985 lemma 2 that:

P [|d(`)− d(`+ x′∆)| > 0] > 0 provided |x′∆| > 0.

Thus, the random variable EX{(d(`) − d(` + X′∆))gX,`(v)} > 0 a.s. on the event |X′∆| > 0 which has a strictly positive
probability by assumption 5 and S(θ0)− S(θ) > 0 follows. QED

Proposition 2

proof: By a triangular inequality ||S̃n − S||supΘ ≤ ||S̃n − Sn||supΘ + ||Sn − S||supΘ where ||S̃n − Sn||supΘ = op(1) by lemma

6 and ||Sn − S||supΘ = op(1) by lemma 1. Hence, plim||S̃n − S||supΘ = 0 with in addition S(.) continuous everywhere under
the assumptions of proposition 2 (see Manski’s 1985 lemma 5) and admitting a unique global maximizer at θ0 by proposition
1. Invoking assumption 8 concludes the proof of Proposition 2 by Theorem 4.1.1 of Amemiya (1985). QED

Proposition 3

proof: By assumption 8 and proposition 2, the estimator θ̃n is an interior point of Θ with probability approaching 1 as n→∞.

Since S̃n is twice differentiability everywhere (by assumption 16(e))and attains a maximum over Θ at θ̃n one can use a mean
value expansion yielding:

0 = ∇S̃n(θ0) + HS̃n(θ̄)(θ̃n − θ0) wpa.1,

for some θ̄ in the line segment joining θ̃n and θ0 which may vary from row to row. Also, combining lemma 3 and lemma 7
furnishes:

HS̃n(θ̄) = H(θ̄) + op(1),

where H(θ) = −E[XX′T
(1)
X (−X′(θ − θ0))] is continuous at θ0 by assumption 14 and 16(a). Hence, proposition 2 implies

plim−HS̃n(θ̄) = H. Moreover, −HS̃n(θ̄)
−1

exists wpa.1 by assumption 16(b) and
√
nhhq∇S̃n(θ0) = Op(1) by lemma 8 and

lemma 5 yielding:

√
nhhq(θ̃n − θ0) = H−1

√
nhhq∇S̃n(θ0) + op(1),

where lemma 8 further yields:

√
nhhq(θ̃n − θ0) = H−1

√
nhhq∇Sn(θ0) + op(1),
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and proposition 2 follows from lemma 5. QED

Proposition 4
proof: The first part of the proposition is straightforward by simply combining lemma 3 and lemma 7. For the second part,
introducing some notation is convenient. Given a bandwidth pair σ∗ ≡ (h∗ = hγ1 , hq∗ = hγ2q ) define:

Σn(σ∗) = 1
nh∗hq∗

∑n
i=1XiX

′
i|K(

Ci+X
′
iθ0

h∗
)|2|k(Vi−v

hq∗
)|2

Hence we have:

Σ̃n = Σ̃n − Σn(σ∗) + Σn(σ∗)

Using the same approach as in lemma 5, it is rapid to show lim E[Σn(σ∗)] = Σ as long as both h∗ and hq∗ converge to 0 as n

approaches infinity. Furthermore, using a similar bounding method as in lemma 7 one has Var [Σn(σ∗)] ≤ M1M2
nh∗hq∗

∫
|K|4

∫
|k|4

where M1 and M2 are finite constants. Hence, if both
∫
|K|4 and

∫
|k|4 exist, one needs the additional condition that lim

nh∗hq∗ =∞ to ensure plim Σn(σ∗) = Σ. Under the assumption of proposition 4 this condition holds for h and hq by assumption
13 and lim nh4h4

q =∞ by assumption 17 so a fortiori for hγ1 and hγ2q . Secondly, we have:

Σ̃n − Σn(σ∗) = 1
nh∗hq∗

∑n
i=1 XiX

′
i[|K̂i|2|k̂i|2 − |Ki|2|ki|2]

where

K̂i = K(
Ci+X

′
iθ̃0

h∗
)

and

k̂i = k( V̂i−v
hq∗

)

while Ki,ki are their counterparts when both θ0 and Π are used instead. Doing some simplifications with a triangular inequality
and using the fact that k(.) and K(.) are bounded functions yields:

|Σ̃n − Σn(σ∗)| ≤ R1,n +R2,n,

where

R1,n = 2(||k||sup)(||K||sup)2 1
nh∗hq∗

∑n
i=1 |XiX′i||k̂i − ki|,

and

R2,n = 2(||K||sup)(||k||sup)2 1
nh∗hq∗

∑n
i=1 |XiX′i||K̂i −Ki|.

Finally, by assumption 17 the mean value theorem gives:

|k̂i − ki| ≤ 1
hq∗
||k(1)||sup|V̂i − Vi|,

and

|K̂i −Ki| ≤ 1
h∗
||K(1)||sup|X′i∆̂|,

where ∆̂ = Op( 1√
nhhq

) by proposition 3. Hence, there exists two finite constants ζ1 and ζ2 such that:

R1,n ≤ ζ1 1
nh∗h2

q∗
||Π̂−Π||

∑n
i=1 |XiX′i|||Wi||

and

R2,n ≤ ζ2 1
nh2
∗hq∗

||∆̂||
∑n
i=1 |XiX′i|||Xi||

But under the assumption of proposition 3 we have 1
n

∑n
i=1 |XiX′i|||Wi|| = Op(1) and ||Π̂−Π|| = Op(n−1/2) leading to:
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1
nh∗h2

q∗
||Π̂−Π||

∑n
i=1 |XiX′i|||Wi|| = Op( 1

h∗h2
q∗n

1/2 ) = op(1)

because lim nh4h4
q = ∞ by assumption 17, a fortiori lim nh2γ1h4γ2

q = ∞ when γ1 ∈ (0, 3/4] and γ2 ∈ (0, 1]. Additionally,
1
n

∑n
i=1 |XiX′i|||Xi|| = Op(1) and ||∆̂|| = Op( 1√

nhhq
) yielding:

1
nh2
∗hq∗

||∆̂||
∑n
i=1 |XiX′i|||Xi|| = Op( 1

h2
∗hq∗

)Op( 1√
nhhq

) = op(1)

because assumption 17 implies lim nh4γ1+1h2γ2+1
q =∞ whenever γ1 ∈ (0, 3/4] and γ2 ∈ (0, 1]. We conclude that Σ̃n−Σn(σ∗) =

op(1). QED

Proposition 5
proof: For any function f(.) defined on [0, 1] and parameter β let us introduce the followings:

∇S∗(β, f) ≡ 1
nh∗

∑n
i=1 τ(Vi)αiX̃iK(

Ci+X̃i
′
β+f(Vi)
h∗

),

and

HS∗(β, f) ≡ 1
nh2
∗

∑n
i=1 τ(Vi)αiX̃iX̃i

′
K(1)(

Ci+X̃i
′
β+f(Vi)
h∗

).

It is not too difficult using assumption S9(b)to establish (componentwise):

|HS∗(β̃0, φ̃0)−Hn[β̃(v)]| ≤ R1,n +R2,n +R3,n

where,

R1,n ≡ ||K(2)||suph−3
∗ ||β̃(v)− β̃0|| 1n

∑n
i=1 |X̃iX̃i

′|.||X̃i||,

R2,n ≡ ||K(2)||suph−3
∗ supi=1..nτ(Vi)|b′npn(V̂i)− φ̃0(Vi)| 1n

∑n
i=1 |X̃iX̃i

′|,

and

R3,n ≡ ||K(1)||sup 1
nh2
∗

∑n
i=1 |τ(V̂i)− τ(Vi)||X̃iX̃i

′|.

First, 1
n

∑n
i=1 |X̃iX̃i

′|.||X̃i|| = Op(1) and
∑n
i=1 |X̃iX̃i

′| = Op(1) by assumption S1. Also h−3
∗ ||β̃(v)− β̃0|| = Op( 1√

nhhqh3
∗

) by

assumption S1. Consequently R1,n = op(1) by assumption S11(a).

Secondly, 1
n

∑n
i=1 |X̃iX̃i

′| = Op(1) by assumption S1 and supi=1..nτ(Vi)|b′npn(V̂i) − φ̃0(Vi)| = Op(1)O(||Π̂ − Π||Ln) +
O(||pn||sup||Rn||sup) by lemma 12. It follows that R2,n = op(1) by assumption S11(b), S11(c) and S11(d).

Lastly, writing ||K1|| ≡ ||K(1)||sup yields:

R3,n ≡M1,n +M2,n,

where,

M1,n = ||K1|| 1
nh2
∗

∑n
i=1 |τ(V̂i)− τ(Vi)||X̃iX̃i

′|1{|X̃iX̃i
′| < an},

and
M2,n ≡ ||K1|| 1

nh2
∗

∑n
i=1 |τ(V̂i)− τ(Vi)||X̃iX̃i

′|1{|X̃iX̃i
′| ≥ an},

for any positive deterministic sequence an. It is rapid to establish M1,n = Op( an√
nh2∗

) by Newey et al.(1999) lemma A3. Also, a

Cauchy Schwartz’s inequality followed by a Tchebychev’s inequality as in step 3 of lemma 3 gives EM2,n = O( 1
anh2
∗

). So pick

an ∝ log(n)1/2

h2
∗

and R3,n = op(1) follows by assumption S10.

Hence, HS∗(β̃0, φ̃0) ≡ Hn[β̃(v)] + op(1) is established and a fortiori ∇S∗(β̃0, φ̃0) ≡ Gn[β̃(v)] + op(1). Lastly, invoking lemma
13 and 14 along with assumption 10 yields:

44



plim ∇S∗(β̃0, φ̃0) = 0 and plim HS∗(β0, φ0) = Q

The conclusion of proposition 5 arises since plim β̃(v) = β̃0 by assumption S1 and Q−1 exists by assumption S8. QED

Proposition 6
proof: Since

√
nh∗(β̃(v)− β̃0) ≡ op(1) by assumption S1 and assumption S12, we obtain:

√
nh∗(β̄ − β̃0) ≡ −Hn[β̃(v)]−1

√
nh∗Gn[β̃(v)] + op(1)

(8)

Also, by assumption S13 we get:

√
nh∗Gn[β̃(v)]−

√
nh∗∇S∗(β̃0, φ̃0) = op(1)

(9)

Furthermore, one can use the analogue of lemma 5 invoking this time assumption S6,S7,S9 S10 to allow the usage of the
Lyapunov’s Central Limit Theorem yielding:

√
nh∗{∇S∗(β̃0, φ̃0)− E[∇S∗(β̃0, φ̃0)]} →d N(0,Ξ)

(10)

Since
√
nh∗E[∇S∗(β̃0, φ̃0)] = O(

√
nh∗hs∗) by lemma 13 we conclude using assumption S14 that:

√
nh∗E[∇S∗(β̃0, φ̃0)] = o(1)

(11)

Now use plimHn[β̃(v)]−1 = Q−1 under the assumptions of proposition 5 and the claim directly follows combining (8),(9),(10)and(11).
QED

Section C
Assume that the assumptions of proposition 3 hold. Write `i ≡ Ci +X

′
iθ0(v̄) where θ0(v)′ ≡ 1

β1
(φ(v), β̃

′
) and ˆ̀

i ≡ Ci +X
′
i θ̃n.

Here v̄ is the value chosen to compute the KWSMS estimator. Suppose that there exists a partition of W̃ = (W1,W ′2) where
W1 is a scalar variable and W2 is non empty. Let µ

⊗
µ indicates the product measure on R2 where µ is the Lebesgue measure.

Define the following statistic:

Tn ≡
(nξ2)−1

∑
ϕ(

ˆ̀
i
ξ

)ϕ( V̂i−v̄
ξ

)α(Yi)

(nξ2)−1
∑
ϕ(

ˆ̀
i
ξ

)ϕ( V̂i−v̄
ξ

)
,

where ϕ is a kernel and ξ a deterministic sequence. Also, define M(l, v) ≡ E[α(Y )|` = l, V = v] and f(.,.) the joint density of
(`, V ) with respect to µ

⊗
µ whenever this density exists. Suppose that the following assumptions hold:

C1. ∂M(l, v)\∂l and ∂M(l, v)\∂v exist and are continuous in some open neighborhood of (0, v̄). Also, ∂2M(l, v)\∂2l,
∂2M(l, v)\∂2v and ∂2M(l, v)\∂l∂v exist in some open neighborhood of (0, v̄).

C2. ϕ is a strictly positive kernel belonging to K2 and meets the same conditions as K in assumption 16.

C3. ξn is a strictly positive sequence of real numbers satisfying ξ ∝ n−ω for some ω ∈ (sup{1/10; a(1 + η)}, 1/5) where a and
η are the bandwidths parameters selected to compute the KWSMS estimator as defined on page 28.

C4. The cdf of (`, V ) is absolutely continuous with respect to µ
⊗
µ, its density at (l, v)=(0, v̄) exists and is strictly pos-

itive. Also, there exists some open neighborhood of (0, v̄) where ∂f(l, v)\∂l, ∂f(l, v)\∂v, ∂2f(l, v)\∂2l, ∂2f(l, v)\∂2v and
∂2f(l, v)\∂l∂v exist and are continuous with |∂2f(l, v)\∂2l| < M , |∂2f(l, v)\∂2v| < M and |∂2f(l, v)\∂l∂v| < M for some
M <∞.

C5. The (cdf of) C|x̃, v, w is absolutely continuous with respect to the Lebesgue measure a.e in x̃, v, w and W1|ẋ, w2 is absolutely
continuous with respect to the Lebesgue measure a.e in ẋ, w2.

C6. (Define F [.|x, l, v, w] the cdf of ε|x, l, v, w. Also, write f(.|x, v, w) the density of `|x, v, w and f(.|x, l, w2) the density of
V |x, l, w2 whenever those densities exist.)

(i) As functions of l :
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(ia)f(l|x, v, w) and F [−l|x, l, v, w] belong to C2
∞(M) for some M <∞ a.e in x,v,w.

(ib)f(l|x,w) and F [−l|x, l,−λ′w+ v̄, w] belong to C2
∞(M) for some M <∞ a.e in x,w for all λ parameter having the dimension

of W . Furthermore, f(−λ′w + v̄|x, l, w2) belongs to C2
∞(M) for some M < ∞ a.e in x,w2 for all λ parameter having the

dimension of W .

(ii) As functions of v :

(iia) F [−l|x, l, v, w] belongs to C2
∞(M) for some M <∞ a.e in x,l,w. Also, f(v|x, l, w2) belongs to C2

∞(M) for some M <∞
a.e in x,l,w2

(iib) F [λ′x|x,−λ′x, v, w] and f(−λ′x|x, v, w) belong to C2
∞(M) for some M < ∞ a.e in x,w for all λ parameter having the

dimension of X. Also, f(v|x,w2) belongs to C2
∞(M) for some M <∞ a.e in x,w2 for all λ parameter having the dimension of

X.

then under Ho: Med(ε|Ẋ, v̄) = Med(ε|v̄) a.s.,√
nξ2Tn →d N (0, f(0, v̄)−1(

∫
|ϕ|2)2),

and,

(nξ2)−1
∑
ϕ(

ˆ̀
i
ξ

)ϕ( V̂i−v̄
ξ

)→p f(0, v̄).

proof: The structure of this proof is analogous to that provided in Horowtiz (1993), proposition 2. The only difference deals
with the number of variables conditioning Y and the presence of an additional nuisance term Π from the reduced form. The test
is based upon the fact that under Ho: Med(ε|Ẋ, v̄) = Med(ε|v̄) a.s one must have M(0, v̄) = 0. The proof for the consistent
estimator of f(0, v̄) is omitted since it stems directly from what is to follow.

For any ∆′ ≡ (∆′1,∆
′
2) where ∆1 is K × 1 and ∆2 is d× 1 introduce the following:

M̄(4) =
(nξ2)−1

∑
ϕ(

`i+X
′
i∆1

ξ
)ϕ(

υi+W
′
i∆2

ξ
)α(Yi)

(nξ2)−1
∑
ϕ(

`i+X
′
i
∆1

ξ
)ϕ(

υi+W
′
i
∆2

ξ
)

,

where υi ≡ Vi − v̄. The key is to notice that Tn = M̄(∆̂) where ∆̂′ = ((θ̃ − θ0(v̄))′, (Π − Π̂)′). Applying Theorem 3.5-3.6 of
Pagan and Ullah (1999) using assumptions C1 through C4 yields:

√
nξ2M̄(0)−M(0, v̄)→d N (0, f(0, v̄)−1(

∫
|ϕ|2)2).

Also, using a Taylor’s expansion furnishes:

M̄(∆̂) = M̄(0) + ∂M̄
∂∆
|′
∆̈

∆̂

where plim ∆̈ = 0 by the assumptions of proposition 3. Writing ā the numerator of M̄ and b̄ its denominator gives:

∂M̄
∂∆

= b̄−2( ∂ā
∂∆

b̄− ā ∂b̄
∂∆

).

Under C2 and C6 one can apply lemma 2 as in lemma 3 to derive plim ∂ā
∂∆

=lim E ∂ā
∂∆

< ∞ and plim ∂b̄
∂∆

=lim E ∂b̄
∂∆

< ∞
uniformly over a compact set of RK+q which contains 0. Likewise, by the same token as in lemma 4 using a classic convolution
argument invoking C1-C4 returns plim ā=lim Eā <∞ and plim b̄ =lim Eb̄ <∞ uniformly over a compact set of RK+q which

contains 0. This establishes ∂M̄
∂∆
|∆̈ = Op(1) and

√
nξ2M̄(∆̂)− M̄(0) = op(1) follows because

√
nξ24̂ = op(1) by proposition 3

and C3 (i.e. ξ2/hhq = o(1)). QED
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