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Abstract

In this paper we formalize a new form of two-player game, that we call decision-

form. A two-player decision-form game consists in a pair of decision rules, representing

the rationality of each player. We develop the basic facts of this type of games, showing

that this form of game generalizes the normal-form . Indeed, we show that with a normal

form game it is possible, in a natural way, to associate a decision form game. In the paper

we give examples of decision-form games not-deriving, a priori, by normal-form games.

We observe that it is possible to associate with a normal-form game several decision-form

games, each representing a possible decisional behavior of the pair of players. The classic

best-response behavior is only one of these possible behaviors.

Keywords: 2-person games, Applications of game theory

1. Introduction.

The concept of decision rule was used by J. P. Aubin in [1] and in [2],
there he notes that the interaction of two players can be represented by
a pair of decision rules and he gives the definition of equilibrium in this
situation. Anyway, he applies the definition only for the canonical decision
rules of normal form games (see, for instance, the two books of Aubin). We
continue on the path marked by Aubin, we concentrate our attention on the
pairs of decision rules of two players, that we call decision-form games, and
we begin to build a theory upon them (see also [3] and [4]). The motiva-
tion of our study is not the consideration that the decision-form games are
generalization of the normal ones, rather the principal motivations are: i)
there are aspects of normal-form games (that we desire to consider decision-
aspects), for example Nash equilibria and some their properties, which do
not depend upon the entire payoff functions of the two players but only
upon some features of these ones; ii) following the preceding point, it be-
comes of great interest to distinguish the solution-concepts of decision-type
and those which are not; iii) there are response multifunctions that, even

Licensed under the Creative Commons Attribution Noncommercial No Derivatives

Received 15/02/2009, in final form 29/06/2009

Published 31/07/2009

http://creativecommons.org/licenses/by-nc-nd/2.5/it/deed.en_GB


D. Carf̀ı

though can be viewed as best-reply correspondences, have no a natural as-
sociated payoff function (for example, the linear response functions of a
physical system), so that the construction of payoff functions is a forcing of
the model.

2. Strategy spaces and strategy base of game

The context. We deal with two-player games. We shall consider two
non-void sets E and F , viewed as the respective sets of strategies at disposal
of two players. The aim is to form ordered pairs of strategies (x, y) ∈ E ×
F , called strategy profiles or bistrategies, via the (individual or collective)
selection of their components x and y, done by the two players in the sets E
and F , respectively, in order that the strategy x of the first player is a good
reaction to the strategic behavior y of the second player and vice versa.

Let us formalize our starting point.

Definition 2.1. (strategy base and bistrategy space). Let (E,F ) be
a pair of non-empty sets, we call it strategy base of a two-player game.
The first set E is said the first player’s strategy set; the second set F
is said the second player’s strategy set. Any element x of E is said a
first player’s strategy and any element y in F is said a second player’s
strategy. Every pair of strategies (x, y) ∈ E × F is said a bistrategy of
the strategy base (E,F ) and the cartesian product E × F is said the
bistrategy space of the base (E,F ).

Interpretation and terminology. We call the two players of a game
Emil and Frances: Emil, simply, stands for “first player”; Frances stands for
“second player”. Emil’s aim is to choose a strategy x in the set E , Frances’
aim is to choose a strategy y in F , in order to form a bistrategy (x, y) such
that the strategy x is an Emil’s good response to the Frances’ strategy y
and vice versa.

We can make a first distinction between bases of game.

Definition 2.2. (finite and infinite bases). A strategy base is said finite
if it has finitely many bistrategies, infinite on the contrary.

Example 2.1. (of infinite strategy bases). Two producers offer the
identical good on a same market. They can interact a la Cournot or a la
Bertrand. In the first case they choose the quantities to produce; in the
second one, they choose the unitary prices of the good. The strategy spaces
E and F of the two players coincide with the interval [0, +∞[, or they are
infinite subsets of this semi-line. In both cases, the strategy base is the pair
of strategy spaces (E,F ), and it is infinite.
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3. Decision rules

A standard way for Emil and Frances to choose their reactions to the
strategies of the other player is the adoption of decision rules. Let us for-
malize this basic concept (see also [1] and [2]).

Definition 3.1. (decision rule). Let (E,F ) be a strategy base of a two-
player game. An Emil’s decision rule on the base (E,F ) is a cor-
respondence from F to E, say e : F → E. Symmetrically, a Frances’
decision rule on the base (E,F ) is a correspondence from E to F , say
f : E → F .

4. Decision-form games

Let us formalize the basic concept of our discourse.

Definition 4.1. (decision-form game). Let (E,F ) be a strategy base of
a two-player game. A two-player decision-form game on the base
(E,F ) is a pair (e, f) of decision rules of the players Emil and Frances,
respectively, on the strategy base (E,F ).

Example 4.1. (of a game). Let E = [−1, 2] and F = [−1, 1] be the
strategy sets of two players. The multifunctions e : F → E and f : E → F ,
defined by e(y) = −1 if y < 0, E if y = 0 and 2 if y > 0, f(x) = −1 if
x < 1, F if x = 1 and 1 if x > 1, for every strategy x in E and y in F , are
decision rules, of Emil and Frances respectively, on the base (E,F ). The
pair (e, f) is a two-player decision-form game on the base (E,F ).

Definition 4.2. (finite and infinite games). A game is said finite if it
has a finite number of bistrategies, infinite on the contrary.

Definition 4.3. (symmetric games). A decision-form game is said
symmetric if the decision rules of the two players coincide (consequently,
the two players have the same strategy space).

Definition 4.4. (of univocal game). A decision-form game is said, with
abuse of language, univocal if its decision rules are everywhere defined and
univocal, that is if its decision rules are functions.

5. Possible reactions

Definition 5.1. (of possible reaction and of capability of reaction).
Let (e, f) be a decision-form game. Let y be a Frances’ strategy, the ele-
ments of the image of y by the correspondence e (that is, the elements of
the set e(y)), i.e., the direct corresponding strategies of y by the rule e,
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are called Emil’s possible responses, or Emil’s possible reactions,
to the Frances’ strategy y. Analogously, let x be an Emil’s strategy,
the elements of the image of x by the decision rule f (that is, the elements
of the set f(x)), i.e. the direct corresponding strategies of x by the rule
f , are said Frances’ possible responses, or Frances’ possible reac-
tions, to the Emil’s strategy x. The set of Emil’s possible reactions
(responses) to the Frances’ strategy y is said the Emil’s reaction set to
the Frances’ strategy y. Finally, we say that Emil can react to the
Frances’ strategy y if the corresponding reaction set e(y) is non-void.

Interpretation. In the conditions of the above definition, the decision
rule e associates, with each strategy y ∈ F (of Frances), all those strategies
x of E among which Emil can choose his response, when Frances is playing
y. Analogously, the decision rule f associates, with every strategy x ∈ E,
played by Emil, all those strategies y in F among which Frances can choose
her own response, to react to the Emil’s action x.

Example 5.1. (of reaction). Let (e, f) be the game of the example 4.1.
The only possible Emil’s response, to a Frances’ strategy y < 0 is the
strategy −1. Emil can choose an arbitrary strategy in E, if Frances plays 0;
Emil has only the reaction strategy 2, if Frances plays a strategy y > 0. The
only possible Frances’ response to an Emil’s strategy x < 1 is the strategy
−1; Frances can choose an arbitrary strategy in F if Emil plays 1; Frances
has only the reaction strategy 1 if Emil uses a strategy x > 1.

Definition 5.2. (of equilibrium). We call equilibrium of a decision
form game (e, f) each bistrategy (x, y) of the game such that the strategy x
is a possible reaction to the strategy y, with respect to the decision rule e,
and y is a possible reaction to x, with respect to f . In other terms, an equi-
librium of (e, f) is any bistrategy of the game belonging to the intersection
of the graph of f with the inverse (symmetric) graph of e.

Example 5.2. (Matching pennies). To win a prize, two players 1 and 2
must write a number, chosen among −1 and 1, hiding the choice to the other
player. After this, the choices are revealed simultaneously. If the numbers
coincide, player 1 wins, if they are different player 2 wins. The preceding
scenario can be formalized as a decision-form game G = (e1, e2), with both
strategy spaces coincident with the finite set E = {−1, 1} and decision rules
e1, e2 : E → E, defined by e1(s) = s and e2(s) = −s, for every strategy s
in E. It is a univocal non-symmetric game.
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6. Disarming strategies

Our definition of game does not exclude the existence of Emil’s strategies
x such that the Frances’ reaction set to x, that is the image f(x), is empty.
In other words, it may happen that Frances could not be able to react
to a certain Emil’s strategy x, as she does not consider any own strategy
appropriate to face up to the Emil’s action x. It makes harder and harder
the comprehension of what we can define as a solvable game or the solution
of a game. This consideration prompts us to give the following definition.

Definition 6.1. (of a disarming strategy). Let (e, f) be a game. The
Emil’s strategies x to which Frances cannot react, i.e. such that the image
f(x) is empty, are called Emil’s disarming strategies (for Frances).
The Frances’ strategies y to which Emil cannot react, namely such that
the reaction set e(y) is empty, are called Frances’ disarming strategies
(for Emil).

Example 6.1. (of disarming strategies). Let E = [−1, 2] and F =
[−1, 1] be two strategy spaces and let e : F → E and f : E → F be two
decision rules defined by

e(y) =


{−1} if y < 0

E if y = 0
∅ if y > 0

, f(x) =


{−1} if x < 1

∅ if x = 1
{1} if x > 1

,

for every x in E and y in F . Emil has no reaction strategies if Frances
chooses a strategy y > 0: then, any positive Frances’ strategy is disarming
for Emil. Instead, Frances has no reaction strategy if Emil plays 1: the
Emil’s strategy 1 is disarming for Frances.

Remark 6.1. For the previous example, consider the graphs of the two
correspondences e and f in the cartesian products F × E and E × F , re-
spectively, and the graph of the reciprocal correspondence of e and that of
the correspondence f in the same space E × F . It is easily seen (geometri-
cally and algebraically) that the intersection of the graph of the reciprocal
of e with the graph of f contains just the point (−1, 1).

Remark 6.2. (about the domain of a decision rule). From previous
definitions we can gather that the set of Emil’s strategies to which Frances
can oppose a reaction is the domain of the correspondence f , domf . Simi-
larly, the set of Frances’ strategies to which Emil can oppose a reaction is
the domain of the correspondence e, dome. Consequently, the set of Emil’s
disarming strategies is the complement of domf with respect to E and the
set of Frances’ disarming strategies is the complement of dome with respect
to F .
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A game with decision rules everywhere defined is said a game without
disarming strategies.

The instance that a decision rule is univocal at any point can be inter-
preted in the context of game theory, as in the following definition.

Definition 6.2. (obliged strategies). Let (e, f) be a decision-form game.
If, with respect to the decision rule f , there is only one Frances’ reaction
y to a certain Emil’s strategy x, that is if f(x) is the singleton {y}, such
strategy y is called Frances’s obliged strategy by the Emil’s strategy
x. Analogous definition can be given for Emil’s strategies.

7. Subgames

We now introduce another fundamental notion, that of subgame.

Definition 7.1. (of subgame). Let G = (e, f) be a decision-form game
with strategy base (E,F ) and let (E′, F ′) be a subbase of (E,F ), namely
a pair of subsets of E and F , respectively. We call subgame of G with
strategy base (E′, F ′) the pair (e′, f ′) of the restrictions of the decision
rules e and f to the pairs of sets (F ′, E′) and (E′, F ′), respectively. It is
important to remember that e′ is the correspondence from F ′ to E′ which
associates with every strategy y′ in F ′ the part e(y′)∩E′. In other words, it
sends every strategy y′ of F ′ into the corresponding Emil’s reaction strate-
gies to y′ which belong to E′. We also call the subgame (e′, f ′) the restric-
tion of the game G to the strategy pair (E′, F ′).

Example 7.1. (of subgame). Let (R, R) be the strategy base of the game
G = (e, f), defined by e(y) = y2 and f(x) = x2, for every couple of real
numbers x and y. The subgame G′ = (e′, f ′), with base ([−2, 2] , [0, 1]) is
defined by e′(y) = y2, if y ∈ [0, 1] and f ′(x) = x2 if x ∈ [−1, 1] and ∅ if
x /∈ [−1, 1], for each x in [−2, 2]. Even though in the game G there were no
disarming strategies, its restriction to the subbase ([−2, 2] , [0, 1]) detects
disarming strategies.

8. Rules induced by utility functions

In this section we introduce a standard method to define a decision rule
when a player has a preference (preorder) on the bistrategy space induced
by an utility function.

Definition 8.1. (decision rule induced by a utility function). Let
(u1,≥) be an Emil’s utility function on the bistrategy space E×F , that is a
function u1 : E×F → R endowed with the usual upper order of the real line.
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We call Emil’s best reply decision rule induced by the utility func-
tion (u1,≥), the rule B1 : F → E defined by B1(y) = maxu1(.,y)(E), for
every Frances’ strategy y. In other words, Emil’s reaction set to a Frances’
strategy y ∈ F , with respect to the rule B1, is the set of every Emil’s strat-
egy maximizing the section u1(., y). Symmetrically, let (u2,≥) be a Frances’
utility function on the bistrategy space E×F , that is a real function u2 de-
fined upon the bistrategy space E × F together with the canonical upper
order of the real line. We call Frances’ best reply decision rule in-
duced by the utility function (u2,≥), the rule B2 : E → F defined by
B2(x) = maxu2(x,.)(F ), for each Emil’s strategy x. In other words, Frances’
reaction set to the Emil’s strategy x ∈ E, with respect to the rule B2, is the
set of every Frances’ strategy maximizing the section u2(x, .).

Memento. We write maxu1(.,y)(E) to denote the set of maxima of the
preordered space (E,≤u1(.,y)), where by ≤u1(.,y) we denote the preorder
induced by the section u1(., y) on the set E. Such set of maxima is the set
of maximum points (on E) of the function u1(., y), it is also denoted by
argmaxE u1(., y). There are symmetric notations for Frances.

Example 8.1. (of induced rule). Let E = [−1, 2] and F = [−1, 1] be
two strategy spaces and let f : E → F be the decision rule defined by
f(x) = −1 if x < 0, F if x = 0 and 1 if x > 0, for every Emil’s strategy x
in E. The rule f is induced by the utility function u2 : E × F → R defined
by u2(x, y) = xy, for each bistrategy (x, y) of the game. Indeed, fix an
Emil’s strategy x, the section of partial derivative ∂2u2(x, .) coincide with
the derivative u2(x, .)′, therefore the function u2(x, .) is strictly increasing
if x > 0, strictly decreasing if x < 0 and constant if x = 0, in particular:
1) if x < 0, the only Frances’ strategy maximizing the function u2(x, .),
on the compact interval [−1, 1], is the strategy −1; 2) if x > 0, the only
Frances’ strategy maximizing the function u2(x, .), on the interval [−1, 1],
is the strategy 1; 3) if x = 0, each Frances’ strategy maximizes the function
u2(x, .), on the interval [−1, 1], (since the value of the section f2(0, .) is zero
in the whole domain).

Remark 8.1. (about the never-best reply strategies). In the condi-
tions of the above definition, an Emil’s strategy x is called never-best reply
strategy with respect to the utility function u1 if and only if there is no y ∈ F
such that x ∈ B1(y). Moreover, a strategy x in E is said non-reactive with
respect to an Emil’s decision rule e if there is no y in F such that x lies in
e(y). The u1 -never-best reply strategies are, so, the non-reactive strategies
with respect to the decision rule B1.

7
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9. Rules induced by preorders

In this section we point out a generalization of the standard method to
define decision rules of the previous section.

Note that, if ≥1 is an Emil’s preference on the bistrategy space E × F
and if y is a Frances’ strategy, the preorder ≥1 induces, through y, a section
preorder ≥y

1 on E, that defined by x0 ≥y
1 x iff (x0, y) ≥1 (x, y), for each

pair (x0, x) of Emil’s strategies.

Definition 9.1. (decision rule induced by a preorder on the bis-
trategy space). Let ≥1 be an Emil’s preference on the bistrategy space
E × F . We call Emil’s best reply decision rule induced by the pre-
order ≥1, the correspondence B1 : F → E defined by B1(y) = max≥y

1
(E),

for each Frances’ strategy y. In other words, the Emil’s reaction set to the
Frances’ strategy y ∈ F is the set of all those Emil’s strategies maximizing
the section preorder ≥y

1. Similarly, let ≥2 be a Frances’ (utility) preorder on
the bistrategy space E × F . We call Frances’ best reply decision rule
induced by the utility preorder ≥2, the correspondence B2 : E → F
defined by B2(x) = max≥x

2
(F ), for each Emil’s strategy x. In other words,

the Frances’ reaction set to the Emil’s strategy x ∈ E is the set of all those
Frances’ strategies maximizing the section preorder ≥x

2 .

Memento. We denote by max≥y
1
(E) the set of maxima in the pre-

ordered space (E,≥y
1). Such set of maxima is as well the set of maximum

points of the preorder ≥y
1 and it may also be denoted by argmaxE ≥y

1.
There are similar notations for Frances.

10. A first price auction

In this section we study a first price auction as a decision-form game.
The context. Two players 1 and 2 take part to an auction to obtain an item
in return for a payment. Rules of the game. The auction has the following
rules: a) each player i makes a public evaluation vi of the item; b) if the two
evaluations are equal and if no one of the two participants changes his own
evaluation (or withdraws), the item will be drawed lots and the winner will
pay an amount equal to his evaluation ; c) if the evaluations are different,
the two players will make simultaneously an offer for the item; d) the bid
bi of the player i cannot exceed the evaluation vi; e) the item is assigned
to the player that offers the greatest bid, or, in case of two same offers, to
the player with the biggest evaluation; f) the winner i∗ pays his own bid
bi∗ and receives the item. Our aim is to describe the previous situation as a
decision-form game, in case the auction actually takes place, that is when
an evaluation is strictly greater than the other one. Let us suppose that
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the first player evaluated the item more than the second one. The strategy
spaces E and F of the two players are the spaces of the possible offers of
the same players. The utility of the player i is zero, if he does not win; it
is vi − bi, if he carries off the item paying bi. Strategy spaces and utility
functions. Emil’s and Frances’ strategy spaces are the compact intervals
[0, v1] and [0, v2], respectively. The utility functions of the two players are
defined by u1(x, y) = v1 − x if x ≥ y and 0 otherwise, u2(x, y) = v2 − y if
x < y and 0 otherwise. Decision rules. The best reply rules induced by
the two utility functions are defined, respectively, by B1(y) = y, for each
y in [0, v2] and B2(x) = ∅ if x < v2 and F otherwise, for each x in E. As
a matter of fact, if Emil offers a price x strictly smaller than v2, Frances
could carry off the prize, but she should maximize her own utility function
on F , fixed the choice x of Emil, that is she has to maximize the section
u2(x, .), which, when the Frances’ offer is strictly greater than x (those
that would assure her the item) is defined by u2(x, .)(y) = v2− y, for every
y ∈ ]x, v2]. Unfortunately, the supremum of u2(x, .) is the difference x− y,
and such utility value is a shadow maximum (!), it is unreachable on F :
therefore Frances has no best reply to the Emil’s offer x. If, instead, x ≥ v2

, the section u2(x, .) is constantly null, hence it assumes its maximum 0 on
the whole F . Best reply graphs. Emil’s (inverse) best reply graph is the
compact segment with end points (0, 0) and (v2, v2). Frances’ best reply
graph is the compact interval [v2, v1] × F . Equilibrium. The two graphs
intersect in the point (v2, v2) alone. An equilibrium solution, therefore, is
that Emil awards the item and pays Frances’ evaluation.

11. ε-best reply induced by a utility function

In this section we shall give a generalization of the concept of best reply.

Definition 11.1. (ε-best reply induced by a utility function). Let
(u1,≥) be an Emil’s utility function on the bistrategy space E × F , that is
a function u1 : E × F → R endowed with the usual upper order of the real
line. For each positive real ε, we call Emil’s ε-best reply decision rule
induced by the utility function (u1,≥), the rule εB1 : F → E defined by
εB1(y) = {x ∈ E : u1(x, y) ≥ supEu1(., y)− ε}, for every Frances’ strategy
y. In other words, Emil’s reaction set to a Frances’ strategy y ∈ F , with
respect to the rule εB1, is the set of every Emil’s strategy whose utility
distance from the shadow utility supEu1(., y) is less than ε. Symmetrically,
we can do for Frances.

Remark 11.1. The ε-best reply reaction set εBi(s) is always non-void by
definition of supremum. Moreover, it contains the best reply Bi(s).

9
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Example 11.1. In the case of the above auction, we have

εB2(x) =
{

]x, x + ε] ∩ F if x < v2

F if x ≥ v2
,

for each x in E, and hence Emil has no longer disarming strategies. Note,
however, that, also in this case, there is only one equilibrium.

12. Examples of different equilibria in a game

Scope of the section. In this section we associate with a normal-form
game some decision-form games different from the canonical one (the pair
of the best-reply rules). Each decision-form game which we shall consider
represents a pair of player behavioural ways. In particular we introduce two
types of behaviour: the devote behaviour and that offensive behaviour.

Definition 12.1. (devote response). We say that an Emil’s action x is
a devote response to the Frances’ strategy y in the game G = (f,≤),
if x minimizes the Frances’ partial loss function f2(., y). We define Emil’s
devotion decision rule L1 : F → E by L1(y) = minf2(.,y) E, for each y
in F . In other terms, for any y, the reply-set L1(y) is the set of all Emil’s
strategies minimizing the partial loss function f2(., y). Analogously, we can
define the Frances’ reaction-set L2(x), for every Emil’s action x.We call
the equilibria of the game (L1, L2) devote equilibria of the loss game
G.

Interpretation. The decision-form game (L1, L2) represents the inter-
action of the two players when they are devoted each other.

Definition 12.2. (offensive response). We say that an Emil’s action x
is an offensive response to the Frances’ strategy y, in the loss game
G = (f,≤) with biloss function f , if x maximizes the Frances’ partial loss
function f2(., y). We define Emil’s offensive decision rule O1 : F → E
by O1(y) = maxf2(.,y) E, for each y in F . In other terms, for any y, the
responce-set O1(y) is the set of all Emil’s strategies maximizing the partial
loss function f2(., y). Analogously, we can define the Frances’ reaction-set
O2(x), for every Emil’s action x.We call the equilibria of the game (O1, O2)
offensive equilibria of the loss game G.

Interpretation. The decision-form game (O1, O2) represents the inter-
action of the two players when they are offensive each other.

Example 12.1. (offensive correspondences and equilibria). We refer
to the above example. We already saw that the players’s (worst) offensive
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correspondences are defined by O1(y) = 1, for every strategy y ∈ F , and
O2(x) = F if x = 0, 0 if x > 0, respectively. The intersection of the graph
of O2 with the reciprocal graph of O1 is the unique offensive equilibrium B.

13. Supply and demand

Supply-demand model is an economic model based on price, consumer-
utility and quantity of a certain good produced in a market. Roughly speak-
ing, it affirms that in a competitive market there are prices such that the
quantity demanded by consumers equals the quantity supplied by produc-
ers, resulting in economic equilibria price-quantity. We can consider this
model as a decision-form game. Indeed, for every price p fixed by the pro-
ducer the consumer decides to buy one of the quantity q belonging to the
set d(p) of all (indifferent) quantities that the consumer can and will buy at
that price. On the other hand, for every quantity q demanded by the con-
sumer, the producer establishes a unitary price o(q) to sell its own good. We
can consider the game G = (d, o), the set of all the economic equilibria is
the set Eq(G) of equilibria of the decision-form game G. We notice that the
game G cannot (in a natural way) be considered as a game in normal form.
It is true that the demand correspondence d : P → Q, of the price space in
the quantity space, is often (but not always) obtained by the maximization
of a utility function u : Q → R of the consumer on a budget-constraint
Vp (subset of Q) depending upon the price p, but there is not a natural
way to obtain the price o(q) as a maximum point of a utility function. We
emphasize that often an interaction between two subjects can appear (in
natural way) as a decision-form game (e, f). If e : F → E is the reaction
correspondence of the first player, as in the case of demand correspondence,
the functions that have e as best-reply correspondence are not a priori rel-
evant for the interaction since infinitely many completely different normal
form games can have the same corresponding decision-form game of best-
reaction. Let us see another example. Let a function s : X × N → X be a
discrete dynamical system, that is, assume that, for each state x0 in X and
each time n, is s(s(x0, n), m) = s(x0, n+m). This system s can be obtained
by the decision form game (e, f), with reaction functions e, f : X → X de-
fined by e(x) = s(x, 1), and f = e, as it follows: s(x0, n) = en(x0), for
s(x0, 1) = e(x0), s(x0, 2) = f(e(x0)) = e2(x0) and so on. A state x0 is an
equilibrium of the dynamical system s if and only if it is an equilibrium of
the decision-form game (e, f). Also in this case there is no natural way to
consider the equilibria as Nash equilibria (although formally it is possible,
as we shall see).

We, however, desire to examine more deeply the question of existence
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of payoff functions inducing a reaction-correspondence. In the following if
f1 is such a function by B1 we shall denote its best-reply correspondence
y 7→ maxf1(.,y) E.

Theorem. Let (Q, .) be a pre-Hilbert space, assume the demand corre-
spondence d : P → Q be a function. Then, the function f1 : Q × P → R
defined by

f1(q, p) = −(d(p)− q)2,

for each (q, p) in Q× P , is such that d = B1.
Proof. In fact, for each price p, the value of the partial function f1(., p)

at d(p) is f1(d(p), p) = 0, and moreover, for every q in Q, f1(q, p) ≤ 0. �

Theorem. Let (E,F ) be a pair of nonempty sets, let e : F → E be
a correspondence and let dE be the discrete metric of the set E. Then the
function f1 : E × F → R defined by f1(x, y) = −dE(x, e(y)), for each pair
(x, y) in E × F , is such that e = B1.

Proof. Indeed, fixed y in F , for every x in e(y), f1(x, y) = 0 since the
distance dE(x, S) = mins∈S dE(x, S) is 0 if and only if the point x belongs
to S. Moreover, it is clear that maxE f1(., y) ≤ 0. �

The above theorem is a particular case of the following one.

Theorem. Let (E,F ) be a pair of nonempty sets, let e : F → E be
a correspondence and let d be a metric on the set E such that the corre-
spondence e is with d-closed values. Then the function f1 : E × F → R
defined by f1(x, y) = −d(x, e(y)), for each pair (x, y) in E × F , is such
that e = B1.

Proof. Indeed, fixed y in F , a point x ∈ E belongs to the image e(y) if
and only if f1(x, y) = 0, since the distance d(x, S) = infs∈S d(x, S) is 0 if
and only if the point x belongs to the d-closure of S. Moreover, it is clear
that maxE f1(., y) ≤ 0 , and consequently B1(y) = e(y). �
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