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Abstract 

This paper explores how Latin American farmers adapt to climate by changing crops.  We 
develop a multinomial choice model of farmer’s choice of crops.  Estimating the model 
across over 2000 farmers in seven countries, we find that both temperature and precipitation 
affects the crops that Latin American farmers choose.  Farmers choose fruits and vegetables 
in warmer locations and wheat and potatoes in cooler locations.  Farms in wetter locations 
are more likely to grow rice, fruits, and squash and in dryer locations maize and potatoes.  
Global warming will cause Latin American farmers to switch away from wheat and potatoes 
towards fruits and vegetables.  Predictions of the impact of climate change must reflect not 
only changes in yields or net revenues per crop but also crop switching. 
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1. Introduction 

This paper uses cross-sectional evidence to explore how farmers adapt to exogenous 

environmental factors such as climate and soils.  By comparing choices of farmers who face 

different conditions, the model uncovers how farmers adapt.  In this paper, we apply this 

technique to study how climate affects the crop choice of Latin American farmers.  We 

quantify which crops farmers are likely to choose and how dependent this choice is on 

climate.  Understanding adaptation is an important goal in itself to assist planning by policy 

makers and private individuals (Smit and Pilifosova 2001). However, understanding 

adaptation is also important if one is interested in quantifying the impacts of climate change.  

Forecasts of the impact of climate on agriculture cannot rely solely on how climate affects a 

specific crop.  The forecasts must also capture crop switching.  Unfortunately, data 

limitations make it difficult to study the crop specific impacts of climate change in this paper.  

However, independent data on the effect of climate on yields of specific crops could be 

combined with the crop switching results of this study to obtain an overall measure of 

damages.   

 Climate impact studies have consistently predicted extensive impacts to the 

agricultural sector from climate change across the globe (Pearce et al. 1996; Tol 2002).  A 

large set of these studies have focused on the reduction of yields of specific crops in warmer 

temperatures (Reilly et al. 1996; McCarthy et al. 2001).  Because these studies assume that 

farmers make no changes in crops, these studies predict large yield losses from climate 

change and therefore large losses in net revenue.  Studies that do allow crops to change 

(Adams et al. 1999; Mendelsohn et al 1994) predict that farmers will move away from crops 

with low yields and substitute new crops that will perform better in the new climate.  Studeis 

that allow adaptation predict smaller damages.  However, empirical analyses of just how 

much farmers are likely to switch crops in response to climate are rare in low latitude 
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countries.  The only exception is a new study of farmers in Africa (Kurukulasuriya and 

Mendelsohn 2006). This paper follows the approach taken in the African paper but explores 

the choices of farmers in Latin America.   

 The theoretical choice model is developed in the next section. Section 3 discusses 

how data were collected from over 2000 farmers in seven countries across Latin America. 

Section 4 discusses the estimation procedure and the empirical results. Three climate change 

scenarios from Atmospheric Oceanic General Circulation Models (AOGCM’s) are then 

examined in Section 5. The paper concludes with a summary of results and policy 

implications.  

2. Theory 

In this paper, farmers are assumed to maximize their profits.  Farmers choose the desired 

species to yield the highest net profit.  Hence, the probability that a crop is chosen depends 

on the profitability of that crop. We assume that farmer i’s profit in choosing crop j (j=1, 2,…, 

J) is  

 

),(),( iijiijij SKSKV επ +=        (1) 

 

where K is a vector of exogenous characteristics of the farm and S is a vector of 

characteristics of the farmer. For example, K could include climate, soils, and price variables 

and S could include the age of the farmer and family size. The profit function is composed of 

two components: the observable component V and an error term, ε. The error term is 

unknown to the researcher, but may be known to the farmer. The farmer will choose the crop 

that gives him the highest profit.  When farmers select multiple crops, the crop choice is 

defined as the single crop with the greatest net revenue.  Alternatively, we could have 
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examined all combinations of crops that farmers select.  However, the number of 

combinations is large and becomes difficult to model.  Given the assumption that only the 

most important crop matters, we look at all available choices.  The farmer must pick one and 

only one of the available crops.  

 Defining ),( SKZ = , the farmer will choose crop j over all other crops k if: 

 

 j]kfor  )()()()( if[or  j.k for  )()( ** ≠−<−≠∀> ikijijikikij ZVZVZZZZ εεππ  (2) 

 

More succinctly, farmer i’s problem is: 
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The probability jiP  for the jth  crop to be chosen is then 
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which gives the probability that farmer i will choose crop j among J species (McFadden 1973, 

Train 2001).  

The parameters can be estimated by the Maximum Likelihood Method, using an 

iterative nonlinear optimization technique such as the Newton-Raphson Method. These 

estimates are CAN (Consistent and Asymptotically Normal) under standard regularity 

conditions. (McFadden 1999) 

3. Data  

The data this study relies upon came from a World Bank project to study climate change 

impacts on agriculture in Latin America.  The project collected economic surveys at the 

farm level from the following seven countries: Argentina, Brazil, Chile, Colombia, Ecuador, 

Uruguay, and Venezuela.  The countries were selected to represent the wide range of climate 

throughout South America and include representatives from both the Southern Cone and 

Andean regions.  Districts within each country were selected to provide as much within 

country climate variation as possible. The original survey interviewed over 2000 farmers of 

which 949 farmers selected one of the crops that we are modeling.  Some farmers focused 

strictly on livestock, some farmers picked other crops, and some farmers did not reveal which 

crops they grew.  

 Climate data came from two sources: US Defense Department satellites and weather 

station observations. We relied on satellite temperature observations and interpolated 

precipitation observations from ground stations (see Mendelsohn et al 2006 for a detailed 

explanation). Soil data were obtained from the FAO digital soil map of the world CD ROM. 

The soil data were extrapolated to the district level using GIS (Geographical Information 

System). The data set reports 26 dominant soil types.  
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4. Empirical results 

In this analysis, we focus on the seven most important crops in the region: fruits and 

vegetables (31%), maize (24%), wheat (15%), squash (11%), rice (8%), potatoes (7%), and 

soybeans (4%).  Altogether these seven crops generated about 85 % of the total revenue 

from crops. 

 In Table 1, we estimate the probability each species is selected using a multinomial 

choice model.  The choice of fruits and vegetables has been left out of the regression as the 

base case.  The probability of choosing each crop was assumed to be a function of summer 

and winter temperature and summer and winter precipitation. Other explanatory variables 

included three soil variables, farmer age, farmer education, household size, prices, and a 

dummy variable for a computer.  The model is significant according to three tests of global 

significance. Most of the individual coefficients are significant. P-values show how 

significant each variable is. The positive coefficients imply that the probability of choosing 

each crop increases as the corresponding variable increases.  

 The coefficient on education is positive and significant for every crop in Tab1e 1.  

This effectively implies that lower educated farmers tend to grow fruits and vegetables, the 

omitted choice.  Fruits and vegetables tend to be grown in more tropical climates.  The 

association with lower education may simply reflect the fact that farmers in tropical zones are 

less educated.   Maize and squash are more likely to be chosen if a farm has lithosols and 

luvisols.  Potatoes and soybeans are more likely to be chosen if a farm has planasols.  

Farms with computers are more likely to choose potatoes, rice and squash.  It is not clear 

whether this equipment actually enhances the profitability of these crops or whether the 

computer is a proxy for a missing variable.  Larger farm families are less likely to choose 

maize and soybeans.  These crops are easily mechanized and so may be selected by farmers 

with smaller families. Older farmers are more likely to choose wheat.   
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 Only two of the own prices are significant: maize and wheat.  Both coefficients are 

positive as expected.  Farmers are more likely to choose these crops when their prices are 

higher.  The remainder of the price effects are cross price terms.  When wheat prices are 

higher, farmers are more likely to pick potato and soybean.  When maize prices are higher, 

they are more likely to pick rice but less likely to pick squash.  When squash prices are 

higher, they are more likely to pick maize, soybean, and wheat.  Higher tomato prices are 

associated with maize and wheat.  These positive cross price terms imply a complementarity 

between the two crops in question.     

 Maize and soybeans do not have any significant climate coefficients but all the other 

crop choices do.  There are many varieties of maize and soybeans so that they can 

effectively grow in many climate zones in Latin America.  The two crops are in this sense 

“generalists”.  In contrast, the other crops are specialized to grow under certain temperature 

or precipitation ranges.  Rice for example is temperature sensitive.  Potatoes and squash are 

precipitation sensitive.  Wheat is both temperature and precipitation sensitive.  Fruits and 

vegetables generally prefer warmer temperatures. 

 Figure 1 reveals that the choice of crop varieties in Latin America is temperature 

sensitive.  The graph describes the relationship between the probability of choosing a crop 

and annual mean temperature measured in ˚C.  Note that the mean annual temperature in 

Latin America is 18°C.  The probability of choosing wheat and potatoes is high in the farms 

at the cooler place but much lower in the farms at the warmer place.  By contrast, the 

probability of choosing fruits and vegetables is low in cool farms but much higher in warmer 

farms.  The rest of the crops have hill-shaped relationships with temperature.  The 

probability of being selected at first increases as one moves from cool to warm farms and 

then it decreases as one moves to even warmer farms.  With maize, the peak probability of 

being chosen is about 13˚C.  With rice and soybeans, the peak is closer to 16˚C. With squash, 
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the peak is closer to 20˚C.    

 Figure 2 displays the estimated relationship between the probability of choosing a 

crop and annual precipitation measured in mm/mo.  The mean annual precipitation in Latin 

America is 118 mm/month.  The probability of choosing maize and potatoes declines 

precipitously as one moves from dry to wet farms.  By contrast, moving from dry to wet 

farms increases the probability of selecting fruits, rice, and squash.  Wheat and soybeans 

exhibit a hill-shaped pattern.  They are less likely to be picked in very dry farms, more 

likely to be picked in moderately dry farms, and then less likely to be picked in wet farms.  

The peak condition for wheat and soybeans is around 70 mm/mo which is well below the 

average precipitation in Latin America.     

5. Climate scenarios 

In this section, we simulate the consequences of climate change using the parameter estimates 

in the previous section.  We examine a set of climate change scenarios predicted by 

AOGCMs. The climate scenarios reflect the A1 SRES scenarios from the following three 

models: the Canadian Climate Center (CCC) scenario (Boer et al. 2000), Centre for Climate 

System Research (CCSR) scenario (Emori et al. 1999), and the Parallel Climate Model 

(PCM) scenario (Washington et al. 2000). We use country level climate change scenarios in 

2020, 2060, and 2100 from each climate scenario.  The change in temperature predicted by 

each climate model is added to the baseline temperature in each district. The percentage 

change in precipitation is multiplied by the baseline precipitation in each district. This gave 

us a new climate for every district in Latin America for each scenario.  

 Table 2 summarizes the climate scenarios of the three models for the years 2020, 

2060, and 2100. The models predict a broad set of scenarios consistent with the range of 

outcomes in the most recent IPCC (Intergovernmental Panel on Climate Change) report 

(Houghton et al. 2001). In 2100, PCM predicts a 2°C temperature increase in Latin America 
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whereas CCC predicts a 5°C increase. Rainfall predictions are noisier: PCM predicts rainfall 

to increase by 8% by 2100 whereas CCC predicts rainfall to decrease by 8%. Examining the 

path of climate change over time reveals that temperatures are predicted to increase steadily 

until 2100 for all three models but precipitation will vary across time.   

 We assume that the cross sectional evidence used in the estimation is appropriate to 

predict future changes in long run equilibriums.  The parameters from the estimated choice 

model in Table 1 are used to simulate the impacts of climate change on the probabilities of 

choosing a particular crop for each climate scenario in Table 2.  

 Table 3 describes the results. The dryer and hotter CCC and CCSR scenarios predict 

that farmers would choose fruits and vegetables more often and maize, potatoes, squash, and 

wheat less often by 2020. There is no noticeable effect on rice.  With the milder and wetter 

PCM scenario, farmers will pick potatoes, rice, and wheat more often in addition to fruits and 

vegetables.  In all three climate scenarios, the magnitude of the crop changes grow over time 

as the climate scenario becomes more severe.  For example, the crop switching in 2060 and 

2100 is more common.  The more severe is the scenario, the more crop switching is 

predicted.     

6. Conclusion 

This paper uses a multinomial choice model to capture the choice of crops made by farmers.  

The model is estimated across almost 1000 farmers in Latin America. We observe that the 

choice of species varies with climate.  Farms that are cooler are more likely to choose 

potatoes and wheat, average temperature farms tend to choose maize, soybeans and rice, and 

farms in warm locations choose fruits and vegetables and squash.  Farms in dry locations 

tend to choose maize and potatoes, farms in moderately dry conditions tend to pick soybeans 

and wheat, farms in wet conditions choose fruits and vegetables, squash, and rice. These 

cross sectional results suggest that farmers have adjusted crop choice to fit their local climate 
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conditions. 

 Although crop switching has not generally been captured by the climate change 

impact literature, crop switching is quite consistent with broad observations of where species 

are currently located.  Maize is grown from Argentina to Venezuela.  Potatoes are 

concentrated in the mountains of Chile and Colombia.  Rice is the crop of choice in Ecuador.  

Soybeans and squash are concentrated in Uruguay, northern Argentina, and southern Brazil. 

Wheat is chosen in cooler parts of Chile.  Fruits are the primary choice of hot Brazilian 

farms.   

 The crop choice model is quite consistent with the response functions from Africa 

(Kurukulasuriya and Mendelsohn 2006).  This study also found that maize was grown 

across many temperature zones, that wheat favored cool dry regions, and that fruits and 

vegetables tended to be chosen in warmer, wetter places. 

We simulate climate change impacts for the three AOGCM scenarios based on the 

parameter estimates from the choice model. The dryer and hotter CCC and CCSR scenarios 

predict that farmers would choose fruits and vegetables more often and maize, potatoes, 

squash, and wheat less often by 2020. There is no noticeable effect on rice.  With the milder 

and wetter PCM scenario, farmers will pick potatoes, rice, and wheat more often in addition 

to fruits and vegetables. These differential effects on crops are magnified over time. 

 In interpreting these results, there are several caveats that should be kept in mind.  

First, this analysis does not include price effects. Large changes in crop prices may alter the 

results.  Second, the analysis does not take into account carbon fertilization.  If it affects all 

crops identically, it may not matter.  However, evidence suggests that some crops may 

benefit more from carbon fertilization than others.  Third, we assume that adaptations can 

take place as needed. For example, farmers can switch from one crop to another as 

temperature increases and rainfall decreases. However, this may not be the case if the 
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adjustment requires a heavy capital investment.  Fourth, we assume that in forecasting 

climate change impacts, the only thing that changes in the future is climate. Many things, 

however, will change over the century such as population, technologies, institutional 

conditions, and reliance on animal power. Future studies should address these issues and 

provide ever more accurate measures of climate change impacts. 

 Unfortunately, it was not possible to estimate incomes per crop as a function of 

climate because there were not enough observations.  However, results from other studies 

that predict the yields of crops in different climates could be combined with the crop 

switching results in this paper in order to predict the overall economic impacts of climate 

change on Latin American farmers.
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Table 1: Multinomial logit crop selection model 

 Maize Potato 

Variable Est. 2χ  P-value Est. 2χ  P-value 

Intercept 4.444 1.35 0.246 -23.338 2.10 0.147 

Temperature summer 0.025 0.00 0.944 0.130 0.03 0.857 

Temperature summer sq -0.001 0.02 0.890 -0.029 1.45 0.228 

Precipitation summer -0.004 0.42 0.519 0.234 112.40 <.0001 

Precipitation summer sq 0.000 0.00 0.991 -0.002 1008.65 <.0001 

Temperature winter -0.122 0.50 0.480 1.844 15.75 <.0001 

Temperature winter sq 0.003 0.25 0.620 -0.073 16.78 <.0001 

Precipitation winter 0.005 0.73 0.393 -0.058 4.50 0.034 

Precipitation winter sq 0.000 0.16 0.691 0.000 8.34 0.004 

Soil_Lithosols 0.013 2.39 0.122 0.074 17.49 <.0001 

Soil_Luvisols -0.021 3.11 0.078 0.039 4.01 0.045 

Soil_Planasols 0.007 0.84 0.361 0.024 4.98 0.026 

Computer_dummy 0.269 1.37 0.241 0.761 2.49 0.115 

Age_head 0.009 0.56 0.456 0.038 2.22 0.137 

Log household size -0.909 8.40 0.004 -1.215 5.11 0.024 

Log education 0.106 0.21 0.645 1.004 4.32 0.038 

maize_pr 0.460 11.95 0.001 0.688 2.31 0.129 
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wheat_pr 18.724 21.92 <.0001 -44.745 5.86 0.016 

squash_pr -26.401 17.74 <.0001 79.127 2.02 0.156 

mango_pr -2.015 1.80 0.179 -7.649 0.43 0.513 

tomato_pr 4.290 4.92 0.027 -2.876 0.43 0.511 
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Table 1: continued 

 Rice Soybean 

Variable Est. 2χ  P-value Est. 2χ  P-value 

Intercept -11.823 0.49 0.486 -6.536 0.52 0.471 

Temperature summer 4.046 4.29 0.038 0.528 0.37 0.543 

Temperature summer sq -0.151 4.79 0.029 -0.010 0.18 0.670 

Precipitation summer 0.045 5.63 0.018 0.002 0.09 0.762 

Precipitation summer sq 0.000 6.95 0.008 0.000 0.16 0.691 

Temperature winter -1.380 3.85 0.050 0.088 0.09 0.760 

Temperature winter sq 0.078 6.89 0.009 -0.013 1.92 0.165 

Precipitation winter 0.097 2.56 0.110 0.052 3.06 0.081 

Precipitation winter sq 0.000 1.72 0.190 -0.001 4.16 0.041 

Soil_Lithosols 0.000 0.00 0.996 0.006 0.32 0.573 

Soil_Luvisols 0.031 1.74 0.187 -0.015 0.96 0.328 

Soil_Planasols -0.052 0.00 0.996 0.026 10.67 0.001 

Computer_dummy 0.656 2.19 0.139 -0.108 0.19 0.667 

Age_head 0.004 0.03 0.867 0.017 0.95 0.330 

Log household size -0.937 1.95 0.163 -0.998 5.39 0.020 

Log education -0.030 0.00 0.953 1.085 7.21 0.007 

maize_pr 1.563 15.83 <.0001 0.099 0.08 0.771 
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wheat_pr 27.751 2.87 0.090 16.910 5.96 0.015 

squash_pr -113.900 2.09 0.148 -20.114 6.78 0.009 

mango_pr -11.597 2.88 0.090 0.391 0.01 0.911 

tomato_pr 10.581 2.43 0.119 -2.765 0.50 0.478 
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Table 1: continued 

 Squash  Wheat  

Variable Est. 2χ  P-value Est. 2χ  P-value 

 

Intercept 7.774 0.66 0.418 5.292 1.07 0.301 

Temperature summer -1.255 1.86 0.173 -0.091 0.04 0.846 

Temperature summer sq 0.036 2.30 0.130 0.006 0.22 0.642 

Precipitation summer 0.044 7.19 0.007 0.009 0.60 0.438 

Precipitation summer sq 0.000 4.85 0.028 0.000 5.66 0.017 

Temperature winter -0.149 0.23 0.630 -0.561 3.96 0.047 

Temperature winter sq -0.002 0.06 0.809 0.004 0.13 0.714 

Precipitation winter 0.014 1.18 0.278 -0.005 0.14 0.708 

Precipitation winter sq 0.000 0.44 0.506 0.000 4.77 0.029 

Soil_Lithosols 0.011 1.40 0.237 -0.015 1.44 0.231 

Soil_Luvisols -0.152 0.44 0.506 -0.015 1.00 0.316 

Soil_Planasols -0.005 0.20 0.652 0.031 14.36 0.000 

Computer_dummy -0.066 0.09 0.759 0.057 0.05 0.828 

Age_head 0.005 0.10 0.752 0.035 4.12 0.042 

Log household size -0.031 0.01 0.940 -0.841 3.78 0.052 

Log education 0.629 4.83 0.028 1.512 15.03 0.000 
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maize_pr -2.459 3.76 0.053 0.104 0.15 0.703 

wheat_pr 4.026 0.53 0.468 33.562 23.18 <.0001 

squash_pr -7.197 1.13 0.288 -27.264 9.51 0.002 

mango_pr -1.387 4.92 0.027 -2.009 0.64 0.425 

tomato_pr 0.451 0.02 0.882 -19.580 6.29 0.012 

  

 

Fruits and vegetables are the omitted choice. Likelihood ratio test: P<0.0001, Lagrange 

multiplier test: P<0.0001, Wald test: P<0.0001. 
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Table 2: Marginal Effect of Climate Change on Crop Choice in Latin America 

 Maize Potato Rice Soybean Squash Wheat Fruits 

Baseline 19.5% 6.8% 4.8% 7.9% 8.0% 14.4% 38.6%

Temp -0.2% 0.5% 0.4% 0.2% 0.7% -2.3% 0.8%

Prec -0.3% 0.2% 0.1% 0.0% 0.1% -0.1% -0.2%
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Table 3: Latin American Average AOGCM Climate Scenarios 

 Current 2020 2060 2100 

     

Temperature (°C )     

CCC 18.1 19.5 (+1.4) 20.8 (+2.7) 23.2 (+5.1) 

CCSR 18.1 19.4 (+1.3) 20.4 (+2.2) 21.3 (+3.2) 

PCM 18.1 18.7 (+0.6) 19.5 (+1.3) 20.1 (+2.0) 

Rainfall (mm/month)     

CCC 119 116 (-2.6%) 107 (-9.5%) 109 (-7.7%) 

CCSR 119 120 (+1.5%) 119 (0.0%) 114 (-3.8%) 

PCM 119 128 (+8.2%) 133 (+11.9% 129 (+8.4%) 
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Table 4: Effect of Climate Change Scenario on Crop Choice in Latin America 

 Maize Potato Rice Soybean Squash Wheat Fruits 

Baseline 19.5% 6.8% 4.8% 7.9% 8.0% 14.4% 38.6%

2020 

CCC -0.7% -1.4% 1.3% -0.5% 1.9% -0.7% 0.2%

CCSR -1.5% -1.8% 1.7% -0.4% 2.2% -0.2% 0.0%

PCM 1.9% 4.9% 0.0% -1.2% -2.2% -4.9% 1.4%

2060 

CCC -1.2% -0.8% 0.3% -1.1% 4.3% -2.2% 0.7%

CCSR -0.3% -2.0% 0.3% 0.3% 3.2% -3.1% 1.6%

PCM 2.2% 3.8% 0.9% -1.1% -1.7% -6.3% 2.1%

2100 

CCC -3.3% 2.2% 1.1% -3.3% 9.7% -5.0% -1.3%

CCSR -0.7% -2.5% 0.1% -0.6% 5.5% -3.0% 1.1%

PCM 3.1% 2.7% -0.1% -1.2% -1.3% -6.5% 3.2%
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Figure 1: The effect of annual temperature on the probability of choosing a crop.  
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Figure 2: The effect of annual precipitation on the probability of choosing a crop 
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