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Abstract: Past approaches to correcting for unit nonresponse in sample surveys by re-weighting 

the data assume that the problem is ignorable within arbitrary subgroups of the population. 

Theory and evidence suggest that this assumption is unlikely to hold, and that household 

characteristics such as income systematically affect survey compliance. We show that this leaves 

a bias in the re-weighted data and we propose a method of correcting for this bias.  The 

geographic structure of nonresponse rates allows us to identify a micro compliance function, 

which is then used to re-weight the unit-record data.  An example is given for the US Current 

Population Surveys, 1998 – 2004.  We find, and correct for, a strong household income effect on 

response probabilities.  
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1. Introduction 

This paper considers the potential bias that can occur when some portion of the sampled 

population does not respond to a sample survey.  If the decision to respond is statistically 

dependent on the variables under investigation then the sub-sample of survey respondents will 

not accurately reflect the true distribution of the variables of interest in the population and this 

will in turn result in systematically biased sample-based inferences, even in large samples.  

Survey noncompliance is manifested either as “item” nonresponse — while participating in the 

survey, the respondent does not answer some question(s) — or as “unit” nonresponse, when a 

sampled respondent does not participate in the survey at all, either because of a failure to 

establish contact or explicit refusal to participate.  The paper develops an ex-post approach to 

correcting for selective unit nonresponse bias in surveys. 

Well-designed surveys aim to minimize nonresponse ex-ante (i.e., prior to field 

implementation) by carefully selecting the most appropriate interview medium (e.g., 

print/electronic mailings, in-person or telephone calls) in combination with additional preventive 

approaches (e.g., personalization or organizational endorsement of the survey, reward based 

incentives, and careful training of interviewers) in addition to monitored call-backs or follow-up 

requests.2  However, in most surveys a non-negligible fraction of designated respondents still fail 

to provide all the requested data items or fail to respond altogether.3    Dealing with item 

nonresponse is facilitated by the fact that some information about the units who did not respond 

                                                 
2   Moser and Kalton (1972) provide an insightful overview.  On rewards and monetary incentives, 
see for instance Philipson (1997).  And, as noted early by Deming (1953), depending on the inference 
variable of interest, accounting for the frequency of call-backs and follow-up requests could be equally 
relevant to correct for potential biases as the ultimate incidence of nonresponse.  
3  Nonresponse rates in income surveys, for example, can range from virtually zero to around 30 
percent (Holt and Elliot, 1991; Scott and Steele, 2004). In Internet surveys, nonresponse rates are often 
close to 100%. 
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to a certain question was collected in the survey.4  However, correcting for unit nonresponse 

requires that some structure is imposed on the set of nonrespondents without observing a single 

requested variable in the survey.   

One approach, sometimes termed an “identification study,” aims to assess how the 

likelihood of response is affected by certain variables, e.g., by investigating how the response 

rate varies across subgroups of the sample or in relation to certain auxiliary data.  However, this 

requires knowledge about the size of these subgroups or the distribution of the auxiliary data in 

the total population.  Hence, identification studies are best applied when the sample is chosen 

from a population about which some characteristics are known; examples include employees of a 

given set of companies (as in Gannon et al., 1971) or students of a given set of schools (Kalsbeek 

et al., 1974).  Implicitly, identification studies assume that within a certain subgroup, or given 

certain auxiliary data, the decision to respond is independent of the measured variable.  Another 

imputation technique involves substitution of nonresponding units, which is employed when the 

number of observations in the sample has to be kept constant regardless of survey nonresponse 

(Hansen and Hurwitz, 1946).  Typically, another unit from the same sampling subclass as the 

initially designated unit substitutes for the nonrespondent.  Again, this assumes implicitly that 

within a subclass, the decision to respond is independent of the measured variable; see the 

discussion in Chapman (1983). 

Alternatives to the imputation methods discussed above are found in the literature on 

adjustment procedures and model-based methods to correct for nonresponse.  The common 

                                                 
4  The most common way of correcting for this type of nonresponse is explicit imputation, whereby 
an imputed value is assigned to the missing item based on the recorded values for other items. This 
imputed value is usually taken from another surveyed unit that has responded and that resembles the unit 
with missing data as closely as possible, such as determined by a score estimated on commonly observed 
variables. For a general discussions of this approach see Kalton and Kasprzyk (1982) and Little and 
Rubin (1987). 
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approach is to determine a weighting factor for each observed individual that adjusts the sample 

for nonresponse.  Various methods for determining these weighting factors have been suggested 

in the literature.  One proposal has been to infer the weights on the basis of the time or number of 

solicitation attempts required to respond (Politz and Simmons, 1949).  An alternative method 

infers the weights from the distribution of nonrespondents across certain identifiable subgroups 

of the sample, called “adjustment cells” (Thomsen, 1973).  External data sources, such as a 

population census, have also been employed to determine the number of units in the various 

subgroups of the population (Hansen et al., 1953).  Again, such methods assume implicitly that 

the decision to respond and the variables of interest are independent within each subgroup. 

Our contribution in this paper is to present a new method of correcting for unit 

nonresponse in surveys samples with multiple strata that does not rely on any additional 

information.  Our method follows the classical view of nonresponse, in that we assume that the 

variables in the total population are fixed values.5  Our approach falls in the category of 

adjustment procedures that generate weighting factors for all individuals in order to correct for 

nonresponse.  However, our method is in marked contrast with those methods that assume that 

the decision to respond is independent of other variables within subgroups of the sample, which 

we will call the ignorability assumption.  As we will show below, this assumption entails almost 

always an under-correction for nonresponse bias.  Furthermore, the assumption is at odds with 

both the predictions of theoretical models of the decision to respond to a survey (Korinek et al., 

2005) and with the (limited) amount of evidence available on unit nonresponse.  For example, 

                                                 
5  The alternative to the classic approach is based on the assumption that the variables of interest in 
a population as well as the decision to respond are the realizations of random variables that follow a given 
stochastic process. This is sometimes called the stochastic view of nonresponse. The parameters of the 
assumed stochastic model can be estimated using the data from all observed units, and can be used to 
make inferences about the statistical properties of the total population. Examples of this approach are 
Rubin (1977), which employs a Bayesian approach, or Cassel et al. (1983). These approaches generally 
use an auxiliary data set in order to make inferences about the statistical properties of nonrespondents. 
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Groves and Couper (1998, Chapter 5) report evidence based on compliance with the long 

schedule of the U.S. Census (administered to a random sample) indicating that compliance tends 

to fall with individual income.     

By our proposed method the assessed probability of nonresponse varies with the 

characteristics of each sampled unit, even within the smallest observable subgroup.  Our method 

has two main advantages.  Firstly, it does not assume that within the smallest defined subgroups 

the decision to respond is independent of the variables of interest (i.e. we allow the probability of 

nonresponse to differ for every single individual with different characteristics).  Secondly, our 

method relies solely on data from the survey that is to be corrected and does not require any 

external data sources or repeated survey; in particular, it does not rely on information about the 

number of solicitation attempts until a given unit responds or on assumptions about how this 

information can be used to infer the characteristics of nonresponding units. 

Our method requires that all variables that systematically affect nonresponse are either 

observable for all respondents or are independent of the partitioning of the population into 

subgroups. While this is somewhat restrictive, it should be noted that the variables that are 

generally most thought of as systematically affecting the probability of response in a survey are 

often observable, such as income, age, gender, race, religion and urban location.  It is also 

possible to include region-specific dummy variables in the specification of the probability of 

response, as long as the number of regional dummies is lower than the number of geographical 

areas that are identified in the survey. 

 The following section outlines our estimation method in detail, while section 3 presents 

results using the Current Population Surveys for the US. Section 4 concludes. 



 6

2. Estimation method 

Survey data on non-responding households are by definition unobservable. However, 

survey response rates across geographical areas are observable. In this section, we develop a 

statistical model that allows us to estimate the survey response probability of participating 

households as a function of their observable data. By re-weighting the observed sample 

accordingly, we can impute these data for non-responding households.  The proposed estimation 

method hinges on the assumption that the survey sample is representative  of the population 

within each geographical subgroup. 

We define the population as a continuum H of households of mass M that can be 

partitioned into I non-overlapping groups Hi, where households within a given group are 

observationally identical and have a vector of characteristics Xi. Assume that the set H can also 

be geographically partitioned into J non-overlapping subsets Hj of mass Mj. The intersection of 

these two partitions can be denoted as a collection of mutually exclusive sets Hij = Hi ∩ Hj, each 

of weight Mij.  From each of these J areas, a sample of households Sj ⊂ Hj of mass mj < Mj was 

selected to collect survey data on the realizations of the vector X.  The set of households with 

characteristics Xi in the sample of households Sj in area j is denoted by Sij ⊂ Sj with 

corresponding mass mij.  Since we aim to investigate only the effects of survey nonresponse and 

not of sample design, we assume that each of the J area samples Sj is statistically representative 

of Hj.  A representative sample Sj of the area population is defined as one that comprises 

households of all I groups in area j and one for which the total weight mij of sampled households 

of each group i is proportional to Mij and thus, for a given area j, ∑i mij = mj.6 

                                                 
6  Note that our definition here assumes that household characteristics are drawn from a discrete 
distribution, which also implies that at least one of the observed households has the maximum realization 
of the total population.  This is clearly a counter-factual assumption, but as the sample size increases, the 
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For each sampled household ξ ∈ Sij, there is a Bernoulli variable Dijξ with the realization 

Dijξ = 1 if the household responds to the survey and Dijξ = 0 in the case of unit nonresponse. We 

assume that these random variables are i.i.d. within each observationally identical group i of 

households and independent across groups. The probability that the household responds is 

denoted as:  

( ) iiij PXDP == θξ ,1  (1) 

where θ is an unknown parameter vector from a compact parameter space.  Note that, consistent 

with the i.i.d. assumption on the random variables within an identical group of households, 

subscripts j and ξ are superfluous on the right hand side of equation (1).  We assume that the 

probability of a household to respond has a stable parametric form, for instance, a logistic 

function:7  

( ) θ

θ

ξ θ
i

i

X

X

iij e
eXDP
+

==
1

,1  (2) 

Denote the mass of all respondents in group i and area j as the random variable ],0[1
ijij mm ∈ : 

∫=
ijm

ijij dDm
0

1 ξξ  (3) 

with an expected value of: 

[ ] iijij PmmE ⋅=1  (4) 

                                                                                                                                                             
resulting bias tends towards zero.  An alternative would be to assume that household characteristics are 
continuously distributed, and that S is a random sample of this distribution. However, this requires 
specifying the exact form of the distribution of characteristics, which is problematic given that the true 
distribution is unobservable. 
7  The functional form used must be twice continuously differentiable in θ with outcomes bounded 
by the (0,1] interval. Thus, alternatively one could proceed on the basis a probit model, but this would 
complicate the estimation procedure.  
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The total mass mij of households in group i is unobservable – only 1
ijm  can be observed. 

In order to establish an estimation method, we divide (4) by the probability Pi so that:  

ij
i

ij m
P
m

E =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ 1

 (5) 

The sum of all the fractions iij Pm /1  for a given j minus their expected value is given by: 

∑∑ −=
⎪⎭

⎪
⎬
⎫
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⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

i
j

i

ij

i i

ij

i

ij
j m

P
m

P
m

E
P
m 111

)(θψ  (6) 

where mj, the total mass of sampled households in geographical area j, is observed. By the law of 

iterated expectations, the expected value E[ψj(θ)] = 0.  Thus, we can stack the moment 

conditions )(θψ j  for all geographical areas j into a vector )(θΨ , which in turn allows us to 

estimate the unknown parameter θ using a minimum distance estimator of the form:  

( ) ( )θθθ
θ

ΨΨ= −1'minargˆ W  (7) 

This estimator is consistent for any positive definite weighting matrix W, providing three 

technical conditions are fulfilled.  First, for the true θ, plim ψj(θ) = 0 for all j. By (5) and the 

assumption that all individual realizations of Dijξ are independent, this follows from the strong 

law of large numbers.  Second, the parameter space Θ must be compact (by assumption). And 

finally, )(θΨ  converges in probability uniformly to a continuous function, and the minimum of 

that limiting function on Θ is reached uniquely at the true parameter value θ (by assumption). 

The most efficient weighting matrix W is the covariance matrix of the vector )(θΨ , or 

any matrix proportional to it (Hansen, 1982).8  The GMM approach to deriving this weighting 

                                                 
8  To be precise, the described estimator does not fall into the category of GMM estimators, since 
the variable mij in condition (5) is unobservable.  We can thus only use the aggregates ψj(θ) thereof. 
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matrix would be to calculate the sample covariances of all the individual moment conditions.  

However, since all 1
ijm  are unobservable and only their area aggregates are known, we must 

adopt an alternative procedure. By our assumption of independence of the response decisions of 

all households between the J areas, the off-diagonal elements of the covariance matrix will be 

zero, thus we can confine our attention to the diagonal elements.  We assume that the variance of 

)(θψ j  for each state j is proportional to the mass of the sampled household population, with a 

factor of proportionality σ2, i.e., 

( ) 2)( σθψ ⋅= jj mVar  (8) 

This factor of proportionality, which can also be interpreted as the variance for a sample of 

weight one, can be estimated consistently as: 

( )
∑

∑=
j

j

m

2
2ˆ

θψ
σ  (9) 

Since all the elements of our constructed variance-covariance matrix are scaled by σ2, we can 

ignore the factor of proportionality in our optimization procedure and use the weighting matrix: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

Jm

m
W

L

MOM

L

0

01

 (10) 

so that the covariance matrix of )(θΨ  is simply σ2W. Since )(θΨ  is twice continuously 

differentiable, the asymptotic covariance matrix of our proposed estimator θ̂  is given by: 

1
12 )()'(ˆ)ˆ(

−
−

∧

⎥⎦
⎤

⎢⎣
⎡

∂
Ψ∂

∂
Ψ∂

=
θ
θ

θ
θσθ WVar  (11) 

                                                                                                                                                             
However, by extension, the approach proposed by Hansen (1982) to determine the most efficient 
weighting matrix applies analogously here. 
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where, when using the logit model specified in (2), 

∑∑
⋅

−=
∂
∂

⋅−=
∂

∂

i
X

iij

i

i

i

ijj

ie
XmP

P

m
θθθ

θψ 1

2

1)(
 (12) 

We note there is an alternative approach to derive the variance-covariance matrix. Since 

all the individual Dijξ are observed Bernoulli variables, the variance of Dijξ is given by 

Var(Dijξ) = Pi⋅(1 – Pi) and thus: 

)1()()(
0

1
iiij

m

ijij PPmdDVarmVar
ij

−⋅== ∫ ξξ  (13) 

The Var(ψj(θ)) could then be determined as: 

( )( )
( )

( ) ∑∑∑
−

⋅==
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

i i

i
ij

i
ij

ii i

ij
j P

P
mmVar

PP
m

VarVar
11 11

2

1

θψ  (14) 

However, because all Pi are initially unknown, this would require applying a two-step estimation 

procedure. First, we would assume P to be constant across all i's, and—as in the method outlined 

above—cancel the term (1 – Pi)/Pi to obtain a diagonal weighting matrix with the mass of 

responding households 1
jm  along the diagonal. In a second step, we could then use the estimated 

θ to compute the value of the variances of )(θψ j .  However, this analytical expression is derived 

solely from estimates of θ without taking into account the observed second moments of the data. 

We thus recommend use of equation (8) to estimate the variance rather than the two-step 

procedure based on (14). In comparing applications of the two approaches, the differences in 

estimates obtained using this theoretically derived weighting matrix were not significant. To 

further check for the robustness of equation (11), we also determined the standard deviation of 

our parameter estimates numerically using bootstrapping.  As reported later in the paper, the 

resulting values were also of similar magnitude as our theoretical estimates from equation (11). 
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Finally, let us formally demonstrate that the ignorability assumption commonly employed 

in existing re-weighting methods to correct for unit nonresponse systematically underestimates 

the nonresponse bias under quite general assumptions: 

Proposition: If the probability to respond of a unit ξ is a strictly monotonic 

function of a scalar or a vector of independent variables Xξ of that unit, then the 

ignorability assumption biases estimates of X so as to underestimate the effects of 

nonresponse. 

(The proof is found in the Appendix.)  This result motivated our concern to implement an 

econometric method of correcting for selective compliance in sample surveys that does not 

assume that the problem is ignorable within sub-groups. 

 
3. Unit nonresponse bias in the US Current Population Survey 

Geographically referenced survey response rates are available for the US Current 

Population Survey (CPS) conducted annually between 1998 and 2004 (Census Bureau, 2002, 

Chapter 7).9  These surveys contain a record for each sampled household—i.e. for responding 

households as well as for “non-interview” households.  The latter are distinguished by the reason 

for the non-interview into categories A, B, and C. Type B and C non-interviews refer to housing 

units that are vacant or that were demolished, i.e. these records do not represent household units 

in the sense of the CPS.  Type A non-interviews comprise households that explicitly refused to 

be interviewed or that could not be interviewed because nobody was at home.  In this 

application, we regard only type A households as non-responding and excluded type B and C 

observations from the data sets we use.  The sample size and the number of non-responding 

                                                 
9   The CPS data and survey methodology details are available from the US Census Bureau and can 
be accessed on-line at: http://www.census.gov/hhes/www/income.html. 
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households in the CPS March Supplements from 1998 to 2004 are summarized in Table 1.  The 

average nonresponse rate is about 8%. 

The CPS adjusts the initial household sampling weights to correct for various factors, 

including for nonresponse (described in Census Bureau, 2002, Chapter 10).10  In dealing with 

unit nonresponse, the CPS divides all sampled households into 254 adjustment cells.  Generally, 

these consist of areas within the same metropolitan statistical area (MSA) or an MSA of similar 

size and within the same state.  MSAs are further split into central and non-central city cells, and 

non-MSA areas are split into urban and rural cells. 

For each of these adjustment cells, the sampling weight of nonrespondents is re-

distributed to the other households in the cell.  In other words, the Census Bureau assumes that 

nonresponse is ignorable within adjustment cells.  The Census Bureau acknowledges that this 

may not be valid and may lead to a nonresponse bias.  As we have demonstrated in the previous 

section, the described adjustment procedure results in a nonresponse bias. 

Ideally we would observe the original CPS sampling weights net of corrections for 

nonresponse.  Alas, the CPS data sets made available to the public provide only one weight 

(called “final weight”) for each household, and that weight reflects various adjustments, 

including for nonresponse, sample design, and post-stratification.  Thus, since we cannot 

disentangle the CPS adjustment for nonresponse from other adjustments, we cannot use the 

reported individual CPS household weights in our empirical analysis.  Instead, we assign equal 

weights to every household within a state.  According to the Census Bureau (2002), “most of the 

state samples in the CPS come close to being self-weighting,” in other words, “…all units in 

[the] sample have the same probability of selection.”  This implies that our assumption of equal 

                                                 
10  For a critical assessment of the imputation methods used by the Census Bureau in correcting 
estimates for income nonresponse see Lillard, Smith and Welch (1986). 
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household weights within a state will not introduce a bias into our estimations.  However, the 

variance of our state-level inferences will be higher by disregarding these Census Bureau final 

weights (i.e., our estimates will be somewhat less efficient). 

The March Supplement to the CPS is the source for official national estimates of income 

poverty rates and levels in the United Sates as well as the distribution of income (Census Bureau, 

2004).  Thus, in this application, we will focus on income selected unit nonresponse bias.  In 

other words, we will determine whether the probability of response of households sampled in the 

CPS is a function of their per capita income levels.  Using our econometric approach, we then 

examine the feasibility of correcting the income distribution for this bias.  

Table 2 reports the results of a naïve regression of the reported CPS weights on income, 

both with and without State-level fixed effects. We find that there is a significant positive 

relationship between per-capita income and the CPS weights, which incorporate the Census 

Bureau’s own corrections for nonresponse as well as survey design effects.  Thus the Census 

Bureau’s correction methodology implicitly acknowledges that their uncorrected survey is biased 

towards under-representing higher incomes.  The large difference between the OLS and State 

fixed effects regression coefficient on income indicates that the bulk of the current CPS 

correction is between States rather than within them, though there is still a significant income 

effect for the within estimator. 

Since the CPS was designed to be representative of the US State level, we can use the 51 

States as the geographical areas in our estimation methodology indexed by j. It can be seen from 

Table 3 that in 2004, nonresponse rates varied from 3.4% in Alabama to 15.3% in the District of 

Columbia.   



 14

3.1  Specification for the compliance probability as a function of income 

To illustrate our estimation approach, we specify the following functional form: 

)(

)(

1 i

i

yf

yf

i e
eP
+

=  (15) 

where f(y) is a smooth parametric function and yi is the per-capita income of group i.  In our data, 

the total number of groups varies between 30,618 in year 2001 and 43,896 in 2003, where a 

group comprises all households that report identical per capita income.  

Table 4 shows the joint Akaike Information Criterion (AIC) of our minimum distance 

estimates for various parametric specifications based on (15) for the years 1998 to 2004.  In our 

specification tests, we included models with a constant, ln(y), ln(y)2, and y, as well as all possible 

combinations of up to three out of the four variables.11  For larger models, the estimated 

coefficients tended to be insignificant, since the number of geographic areas in our dataset is not 

sufficiently large. Including ln(y)3 or y2 in addition to one of the other variables than the constant 

caused problems of multi-collinearity, i.e. the variance-covariance matrix was near singular. 

The specification that best fits the nonresponse behavior exhibited by the data, i.e. that 

yields the lowest AIC, is specification 3, P = logit[θ1 + θ2 ln(y)], which we thus use in most of 

our analysis in the rest of this paper.  Since several of the specifications yielded an AIC that was 

very close to the -275.37 observed for specification 3, we plot the functional relationship 

between compliance and log income for the three best fitting specifications in Figure 1.12 As can 

                                                 
11  In order to apply logarithms to income, we excluded all observations with an income per capita of 
less than or equal 1 from our sample. In year 2004 for instance, this affected 755 observations. To check 
whether this changed our results, we also performed an estimation where we used ln(max(y,1)) instead of 
ln(y) and included all observations. This changed the estimated coefficients in all specifications by less 
than 2%. 
12  The same observation holds if we include all specifications with an AIC below -250 in Table 4. 
However, the resulting graph becomes very clogged and is thus omitted here.  
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be seen, the resulting curves almost coincide, i.e. using a different specification does not have a 

significant effect on our corrections for nonresponse. 

The estimated parameters for the different specification are given in the respective rows 

of Table 5. To verify the robustness of our calculated standard errors, we also derived them 

numerically using bootstrapping. We randomly sampled 51 states with replacement from the 

given set of states and applied our estimator to this sample. After 500 repetitions of this process 

we calculated the bootstrapped standard errors as the average squared deviation of the 

bootstrapped estimates from the original estimate. For specification 3, they were 3.294 versus the 

theoretically derived 1.708 for θ1 and 0.304 versus 0.155 for θ2. These values are of similar 

magnitude, though the bootstrapping results are somewhat larger. This might be the case because 

both methods are limited by the fact that our dataset contains only 51 state observations. 

Furthermore, (11) is only an asymptotic result. 

To further investigate the sensitivity of our correction method to the exact choice of 

specification, we report estimation results for a number of other specifications, for which the 

AIC in Table 4 suggests that they explain the data well. The results can be found in Table 5 (for 

the 2004 CPS). Our interest here is whether the different specifications have significantly 

different implications for the distribution of income. As can be seen from the Gini coefficient, 

the choice of specification does not affect the correction of the distribution significantly: all 

corrected Gini coefficients are significantly higher than the uncorrected Gini coefficient of 

44.80%, but within one standard deviation of each other, between 49.23% and 49.76%. 

It is of interest to see how much the estimated parameters vary over time.  Table 6 gives 

illustrative results of estimating specification 3 for data from 1998 to 2004, and in the last line 

for a dataset that includes all households from 1998 to 2004 (with income chained to 1998 prices 
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using the regional CPI from the Bureau of Labor Statistics).  The parameter estimates of the 

individual years are all close to each other, located within a 95% confidence-interval around the 

estimate obtained from bundling all years into one data set.  

From visual inspection of Table 6, there seems to be no systematic time trend in these 

parameters. However, when we tried to verify this proposition by estimating the specification,   

P = logit[θ1 + year*θ3 + (θ2 + year*θ4) ln(y)], allowing for a linear time trend in both the 

coefficient of income and the constant term, it turned out that both the estimates for θ3 and θ4 

were significant. Also, the value of the AIC improves when adding any of the two additional 

parameters. The estimation results can be seen at the bottom of Table 9. According to these 

parameter estimates, survey response seems to be falling over time since θ3 < 0, but the negative 

effect of income on nonresponse seems to be mildly declining, since θ4 > 0.  

We tested the sensitivity of our results to making an allowance for geographic cost-of-

living differences, on the presumption that real income should matter more for individuals’ 

behavior.  Ideally we would want to deflate each individual’s income by an indicator of local 

consumer prices. Unfortunately, the Bureau of Labor Statistics does not publish data on 

consumer prices for the 51 states, but only for four regions (north-east, south, mid-west, and 

west) and for metropolitan statistical areas. Furthermore, the published series for these regions 

are consumer price indices rather than levels, i.e. they are chained to an average of the prices in 

the years 1982-84 of the respective area (rather than to a common denominator), and thus they 

only allow comparing prices within a given area over time, but not across areas. 

To check sensitivity to this data issue, we used the cost of living indicators of Friar and 

Leonard (1998), which are based on a publication of the Bureau of Labor Statistics (1981) 

comparing the cost of living of households across different states in that year. Consequently, they 
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inflated these indicators by the relative increase in the consumer price indices of the metropolitan 

statistical areas, which are contained in the respective states, and the respective regional CPI for 

rural areas, both of which are published by the Bureau of Labor Statistics. These indicators in 

Friar and Leonard (1998) refer to the year 1997. For all following years, we inflate the relative 

cost of living measure by the appropriate regional CPI and normalize the indicators so that the 

average across states is 1.00. The correction of incomes by these relative cost of living indicators 

does not significantly affect our estimation results. For a comparison of estimation results for 

2004 see Table 7. 

We also investigated whether household characteristics other than income have additional 

explanatory power for survey compliance.  This point is important because omitted variables 

might bias our results. Depending on which results we are interested in, we can differentiate 

between two kinds of biases. The first refers to the case when we are interested in estimating the 

exact functional form of the response function P(Dijξ|Xi, θ). In such a situation, the omission of 

any variables that are correlated with both the probability of response and Xi causes a bias in our 

estimate of θ. Suppose, for example, that a certain characteristic A is positively correlated with 

income and positively correlated with compliance. If A is not included in our estimations, then 

our estimate of the effect of income on compliance will be biased upwards (i.e. in absolute terms, 

the parameter will be biased downwards). However, the effect of this bias on the income 

distribution will be offset to the extent that the variation in A is captured by its correlation with 

income, so that we arrive at an unbiased estimate for the corrected income distribution. 

The second omitted variable bias is of importance when our object of interest is the 

income distribution itself. It arises when we omit a variable that is correlated with the probability 

to respond, but uncorrelated to the other variables we include. In this case, our parameter 



 18

estimate of θ for the included variables in the function P(Dijξ|Xi, θ) is unbiased, but the corrected 

income distribution is biased, since it does not reflect the impact of the omitted variable on 

response. In real world applications, it is likely that many omitted variables can be attributed in 

part to both of these categories. 

The additional household characteristics we considered were household size (hhsize), and 

dummy variables for whether the interviewed household is located in a metropolitan area (IMSA) 

and whether the household owned the house/apartment in which it lived (Ihomeowner). In addition, 

we included various characteristics of the household head, such as gender (dummy variable 

Ifemale), race (Icaucasian), employment status (dummy variables for Iworking and Iunemployed), education 

(measured by an index that indicates the years of schooling, i.e. edu; and alternatively by dummy 

variables for attaining different levels of education, of which attaining a graduate degree was 

most significant, i.e. Iedu ≥ master), and age, which we use both as a level and squared. 

Our results are given in Table 8. The first observation we can make is that the estimated 

coefficient on income is highly robust to these changes.  We found the included household 

characteristics, i.e. household size, metropolitan status and home ownership to be insignificant; 

this is also reflected in the AIC for these specifications. 

However, there are some characteristics of the household head that should be included 

according to the AIC: education, age, and age squared. The impact of the education dummy on 

survey nonresponse is strongly negative, but only significant at the 10% level. Since education 

and income are positively correlated, it can be expected that the omission of education in our 

estimations would bias the estimated coefficient on income upwards. The estimated coefficient 

on income in the regression that includes the education dummy is indeed somewhat higher, 

though not significantly so.  
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The effect of age is curious: in a linear specification where only the level of age is 

included, our estimate is insignificant and the AIC increases. However, if we include age as well 

as age squared in the specification, the coefficient on both becomes significant at the 5% level. 

According to our estimates, survey response is high for young people, then it decreases until 

people reach their mid-50s, after which it increases again. This might be in part explained by 

people’s working pattern.  

We also estimated a specification that included both age variables and the education 

dummy. This yielded an even lower AIC, indicating a better fit with the data. However, our 

parameter estimate on income is not significantly changed. Arguably, this could be due to the 

low number of geographical areas in our sample, which results in higher standard errors and 

therefore a low power for the test of whether the coefficients change. 

Another set of variables that we included were regional dummy variables for the Census 

Bureau’s four main regions of the US, the North East (1), the Mid-West (2), the South (3) and 

the West (4), where we drop the first variable to avoid multi-collinearity. Our estimation results 

show that location in the Mid-West significantly increases survey compliance, and the AIC 

increases markedly when we add a dummy variable for this region. 

Since many of the coefficients in the enhanced specifications of Table 8 yielded the 

expected sign but were insignificant, we combined all data from 1998 to 2004 – with income 

chained to 1998 prices – in one dataset in order to increase the significance of our results. The 

results of our estimations are presented in Table 9. 

Among the household variables, household size has a strongly significant negative effect 

on survey response. However, the inclusion of household size has little effect on our estimated 
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coefficient on income. As in our analysis of 2004 data, the dummy variable for metropolitan 

areas is insignificant. 

There are a large number of characteristics of the household head that have a significant 

impact on survey response. According to our estimates, both female and Caucasian household 

heads exhibit a lower probability of response than the general population. The same holds for 

unemployed household heads. Note that as before, the inclusion of these variables does not 

significantly affect the parameter estimate for income, even though the standard errors are 

smaller now. 

With the enlarged dataset, both the estimations using the education index and using the 

dummy for graduate studies yield significant parameters. Note that the education dummy also 

has a significant effect on the parameter estimate for income now.   

3.2  Implications for the empirical distribution of income  

The implications for the empirical distribution of income will depend crucially on how 

the individual compliance probability varies with income.  We saw in Figure 1 that compliance 

falls monotonically with income. In Korinek et al., (2005) we study the theoretical implications 

of this property for measures of inequality and poverty.  Here we summarize the implications for 

the empirical distribution of income based on the 2004 CPS.  

The effect of correcting for selective compliance on the distribution of income per capita 

can be seen from Figures 2 – 4 (again using specification 3 for 2004 data).  The uppermost 

(dotted) line in Figure 2 shows the uncorrected income distribution, i.e. the observed distribution 

if all individuals in a given state are assigned an equal weight, which consists of the population 

divided by the size of the sample in the given state. It can be seen that both the corrected CPS 

weights and our estimate for a corrected income distribution first order dominate the measured 
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distribution. For the CPS weights, this dominance seems to be particularly strong for relatively 

lower-income households. For our estimation methodology, the correction, and thus the first-

order dominance, is stronger for higher income levels. Consequently, our correction method 

assigns comparatively less weight to lower income households and comparatively more weight 

to higher income households (roughly above an income of $70,000) than the Census Bureau’s 

method. 

The results indicate that ignoring selective compliance according to income appreciably 

understates the proportion of the population in the richest income quantiles and slightly 

overstates the population shares in lower quantiles.  What is observed as the highest income 

percentile in the survey, for example, is estimated to comprise 2.21% (+/– 0.47%) of the 

population after correcting for its lower probability of survey compliance, and the highest 

observed decile actually makes up for 12.95% (+/– 0.61%) of the population. By contrast, the 

poorest observed decile and percentile in the unadjusted data actually comprise only 9.34% (+/–

0.04%) and 0.93% (+/–0.01%) respectively of the corrected population. The correction method 

of the Census Bureau, by contrast, assigns 1.60% and 15.74% of the population weight 

respectively to the top observed percentile and decile, and 6.95% and 0.88% to the bottom decile 

and percentile. 

Using our correction method, median income per person rises from an uncorrected 

$16,096 to $17,085, while the mean increases from an uncorrected $22,039 to $25,735 per 

capita. Using the weights provided by the Census Bureau, median income rises to $19,333, and 

mean income to $26,958. 

Figure 3 shows a magnification of the lower 25% of the distribution. It can be seen that 

using our correction method, the impact on poverty incidence is small for poverty lines 
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commonly used in the U.S., giving poverty rates around 12% (Census Bureau, 2001).  However, 

since there is first-order dominance, poverty measures using the uncorrected, equally-weighted 

distribution of incomes unambiguously overestimate poverty. Note that the correction 

methodology of the Census Bureau leads to a significant underestimation in the estimated level 

of poverty according to our results.  

Figure 4 depicts the Lorenz curves for the uncorrected income distribution, the 

distribution according to the Census Bureau’s weights, and according to our correction method. 

The effect of our correction for selective response is a marked downward shift in the Lorenz 

curve, implying higher inequality. However, there is not strict Lorenz dominance, with an 

intersection of the Lorenz curves for the corrected and uncorrected distributions occurring at the 

extreme upper end of the income range.  Korinek et al., (2005) show that this intersection is a 

theoretical implication of a monotonic income effect on compliance. 

By inverting the CDF to obtain the quantile function for the original distribution we can 

calculate the income correction at each percentile of income that was observed in the raw survey.  

We do this for the correction implied by the Census Bureau weights, and the corrected 

distribution according to our method.  The results are given in Figure 5. For the Census Bureau’s 

correction, income at any given percentile shifts up almost uniformly by about 20%. This implies 

that the Census Bureau’s correction method affects the national average, but is almost 

distribution neutral. For our method, the correction is quite low (around +2 to +3%) for the 

bottom 9 deciles and then rises sharply, to reach almost +100% for the uppermost percentile. 

Figure 6 depicts the weight correction of each observed income percentile. This figure 

reveals why the Census Bureau’s correction method has almost no effect on inequality: their 

methodology heavily reduces the weights of low-income individuals (by almost 40% for some of 
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the bottom percentiles) and attributes this weight to the uppermost third of the income 

distribution. Our method, in contrast, reduces the weight of bottom four-fifth only by roughly 

3%, and redistributes this weight to the top percentiles.  

 The above results have been based on one specification of the compliance probability 

model, specification 3.  In Korinek at el., (2005) we also report results for measures of inequality 

for the various alternative specifications discussed in section 3.1 and we show that the measures 

obtained are quite robust to the changes in model specification. 

 
4. Conclusions 

Past empirical work has either ignored the problem of selective compliance in surveys or 

made essentially ad hoc corrections. We have shown how the latent income effect on compliance 

can be estimated consistently with the available data on average response rates and the measured 

distribution of income across geographic areas.  Thus we are able to re-weight the raw data to 

correct for the problem.  In an example using US data, we find that we can reject the assumptions 

made in past ad hoc correction methods. A highly significant negative income effect on survey 

compliance is indicated by our results.  Our method also indicates higher inequality than implied 

by the survey’s internal weights.  An upward revision to the overall mean is also called for to 

correct for selective compliance.  

Ideally, the adjustment methods employed by the Census Bureau to correct for various 

sampling errors as well as the post-stratification methods could be combined with our correction 

method for nonresponse to obtain the most efficient estimate of population statistics possible and 

to balance off the biases that are introduced by the various methods. Technically, this would be 

no problem. However, the CPS dataset did not provide us with the sample weights before 

correction for nonresponse or the detailed data used for post-stratification, which would both be 
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required for such a calculation. We thus recommend to the Census Bureau to include sample 

weights that are unadjusted for non-response in future data releases. 

There can be no presumption that our quantitative results will hold elsewhere.  Possibly 

in poorer settings one will find greater under-representation of the poor than in the US.  Or one 

might find a less (more) steep income gradient of compliance in countries with lower (higher) 

inequality than the US.  These are conjectures. However, the data and computational demands of 

the method we have proposed are quite modest, so other applications can easily be implemented. 
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Appendix 

The proof of the Proposition in Section 2 is as follows.   Let {Sj}j = 1…J be J samples of 

households that can be partitioned into I subsets with characteristics Xi each. Suppose w.l.o.g. 

that ∑i mij = mj = 1, and that the probability of response P(Dijξ = 1|Xi, θ) is strictly increasing in 

Xi. Then let us show that for any geographical subgroup j, the observed average 1
jX  is in 

expectation lower than the actual (but unobserved) average ∑ =
=

I

i ijij mXX
1

.  To prove this we 

establish that the contrary yields a contradiction.  For suppose that:  
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, since it represents an average probability of response. 

Now observe that, since Pi(⋅|Xi) is strictly increasing in Xi, there must be some X~  such that 
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It is straightforward to see that all addends on the LHS are zero or negative; for XX i
~≥  the first 

brackets are positive or zero and the second brackets are negative or zero. For XX i
~< , the first 

brackets are negative and the second brackets are positive.  Thus we have a contradiction and it 

must be the case that jj XXE <][ 1 . Having shown that the observed average 1
jX  is in 

expectation below the actual average jX  for every single area j, the claim in the proposition 

follows readily by averaging over all J areas. 
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Table 1. Sample Sizes and Nonresponse Rates for the CPS (1998 – 2004) 
Year Total number of 

households 
Type A households Rate of nonresponse (%) 

1998 54,574 4221 7.73 
1999 55,103 4318 7.84 
2000 54,763 3747 6.84 
2001 53,932 4299 7.97 
2002 84,831 6566 7.74 
2003 85,092 6782 7.97 
2004 84,116 6967 8.28 
All years 472,411 36,900 7.81 

 
 
 
Table 2. CPS 2004 Final Weight Regressions 
 Intercept Income per-capita  
OLS 11.034 0.5969 
 (0.031) (0.0031) 
Sate fixed effects 10.920 0.0712 
 (0.014) (0.0014) 

 
 
Table 3. Summary Statistics by State (2004 CPS, sorted by response rate) 
State Response 

Rate (%) 
Sample Size 
(Households) 

Income per 
capita ($) 

State Response 
Rate (%) 

Sample Size 
(Households) 

Income per 
capita ($) 

Alabama 96.47  1,189   15,183  Missouri 92.04  1,269   16,251  
North Dakota 96.03  1,082   15,415  Virginia 92.04  1,470   19,322  
Indiana 95.73  1,500   16,667  Tennessee 91.62  1,014   14,167  
South Dakota 95.53  1,164   14,763  Texas 91.51  3,864   12,547  
Utah 95.35  1,010   14,205  Colorado 91.50  1,788   17,816  
Wisconsin 95.29  1,528   17,294  Massachusetts 91.49  1,540   19,856  
Arkansas 95.29  976   12,704  Michigan 91.46  2,319   16,700  
Montana 94.60  871   13,013  Rhode Island 91.44  1,518   17,018  
Georgia 94.55  1,175   16,049  Maine 91.44  1,366   15,098  
Iowa 93.69  1,379   16,904  Connecticut 91.36  1,574   20,779  
Louisiana 93.67  979   12,550  Ohio 91.34  2,517   17,102  
Florida 93.51  3,680   15,400  North Carolina 90.78  1,811   14,251  
Kansas 93.41  1,441   16,085  South Carolina 90.53  1,162   14,904  
Wyoming 93.35  1,128   15,561  Hawaii 90.53  1,193   17,377  
Illinois 93.28  2,945   16,898  New Mexico 90.46  1,090   12,000  
Arizona 93.23  1,167   13,750  Washington 90.19  1,509   17,751  
Nevada 93.23  1,594   15,999  California 90.06  5,984   14,908  
Delaware 93.16  1,082   18,039  Oregon 89.99  1,289   15,442  
Oklahoma 93.12  1,047   13,667  Vermont 89.04  1,277   17,710  
West Virginia 92.91  1,170   13,150  Alaska 88.64  1,206   16,523  
Mississippi 92.81  904   13,440  New Hampshire 88.50  1,400   20,367  
Idaho 92.81  973   12,494  New Jersey 88.50  2,200   20,208  
Minnesota 92.51  1,535   19,194  Maryland 88.00  1,408   20,255  
Nebraska 92.47  1,302   16,086  New York 87.56  4,245   16,141  
Kentucky 92.18  1,138   14,700  84.66  1,180   17,210  
Pennsylvania 92.14  2,964   17,385  

District of 
Columbia    
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Table 4. AIC for various specifications, 1998 – 2004 data 
Specification AIC
1: zi = θ1 -69.27
2: zi  = θ1 ln(yi) -42.20
3: zi = θ1 + θ2 ln(yi) -276.14
4: zi = θ1 ln(yi)2 -16.04
5: zi = θ1 + θ2 ln(yi)2 -275.37
6: zi = θ1 ln(yi) + θ2 ln(yi)2 -273.45
7: zi = θ1 + θ2 ln(yi) + θ3 ln(yi)2 -270.04
8: zi = θ1 yi 88.78
9: zi = θ1 + θ2 yi -193.05
10: zi  = θ1 ln(yi) + θ2 yi -159.03
11: zi = θ1 + θ2 ln(yi) + θ3 yi -273.04
12: zi = θ1 ln(yi)2+ θ2 yi -119.01
13: zi = θ1 + θ2 ln(yi)2 + θ3 yi -273.31
14: zi = θ1 ln(yi) + θ2 ln(yi)2 + θ3 yi -273.77
Note: The probability of response is modeled as P = logit(z) for all given models. In order to determine 
the Akaike Information Coefficient (AIC) for the various specifications, we estimated each specification 
with data from all 7 years and used the resulting residuals ψj to 
calculate ( )( ) mJJAIC j 2ˆlog 2 +⋅= ∑ θψ , where J is the number of residuals, i.e. 7*51 here, and m is 
the number of estimated parameters, i.e. 7, 14 or 21 in our application. The lowest value for the AIC (i.e. 
here the highest absolute value) indicates that specification 3 (underlined in the table above) best fits the 
nonresponse behavior exhibited by our data. 
For our estimations we are using Matlab 6.5.  The source code of our program can be downloaded at 
http://econ.worldbank.org/programs/poverty/topic/2678/ 
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Table 5. Various Specifications for 2004 CPS 

Specification θ1 θ2 θ3 
Gini 
index 
(%) 

3: z = θ1 + θ2 ln(y) 19.112
(1.708)

-1.613
(0.155)

49.23 
(0.92) 

5: z = θ1 + θ2 ln(y)2 10.108
(0.747)

-0.07165
(0.00611)

49.41 
(0.90) 

6: z = θ1 ln(y) + θ2 ln(y)2 1.8091
(0.1165)

-0.1519
(0.0105)

49.60 
(0.87) 

7: z = θ1 + θ2 ln(y) + θ3 ln(y)2 -1.1568
(9.7906)

2.017
(1.766)

-0.1611
(0.0791)

49.63 
(0.93%) 

9: z = θ1 + θ2 y 2.900
(0.055)

-1.232*10-5

(4.368*10-7)
49.56 

(0.62%) 

11: z = θ1 + θ2 ln(y) + θ3 y 7.968
(3.878)

-0.5113
(0.3865)

-8.704*10-6

(2.755*10-6)
49.62 
(0.69) 

13: z = θ1 + θ2 ln(y)2 + θ3 y 5.396 
(1.896)

-0.02541
(0.01885)

-8.221*10-6

(3.072*10-6)
49.66 
(0.69) 

14: z = θ1 ln(y) + θ2 ln(y)2 + θ3 y 1.0752
(0.3615)

-0.07891
(0.03610)

-7.199*10-6

(3.328*10-6)
49.76 
(0.70) 

Note: Standard errors are in brackets. The uncorrected Gini coefficient for 2004 data (with households 
equally weighted within states) is 44.80%, and using the official CPS weights it is 45.20%. 
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Table 6. Specification P = logit[θ1 + θ2 ln(y)] – Estimates for 1998 – 2004 
 1998 1999 2000 2001 2002 2003 2004 All 

θ1 19.904 
(2.071) 

18.100 
(2.420) 

22.207 
(2.545) 

20.111 
(1.728) 

17.807 
(1.920) 

17.388 
(2.100) 

19.113 
(1.708) 

18.838 
(0.793) 

         
θ2 -1.696 

(0.188) 
-1.528 
(0.223) 

-1.890 
(0.230) 

-1.702 
(0.156) 

-1.490 
(0.176) 

-1.454 
(0.193) 

-1.613 
(0.155) 

-1.599 
(0.073) 

Note: standard errors in brackets 
 
 
 
 
Table 7.  Specification P = logit[θ1 + θ2 ln(y)] using cost-of-living adjustment for 2004 data 

 Income y in nominal terms Income y in real terms 

θ1 
19.113 
(1.708) 

18.337 
(2.501) 

θ2 
-1.613 
(0.155) 

-1.542 
(0.229) 

Note: standard errors in brackets 
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Table 8. Augmented specifications for 2004 data 
Specification θ1 θ2 θ3 θ4 θ5 AIC 

zi = θ1 + θ2 ln(yi)    [baseline] 19.113 
(1.708) 

-1.613 
(0.155)    -23.881 

zi = θ1 + θ2 ln(yi) + θ3 hhsize  18.092  
(2.545) 

-1.545  
(0.197) 

0.1315  
(0.2623)   -22.205 

zi = θ1 + θ2 ln(yi) + θ3 IMSA  20.010  
(1.896) 

-1.705  
(0.178) 

0.1462  
(0.1790)   -22.568 

zi = θ1 + θ2 ln(yi) + θ3 Ihomeowner  
18.436  
(1.571) 

-1.648  
(0.151) 

1.107  
(0.678)   -23.271 

zi = θ1 + θ2 ln(yi) + θ3 Ifemale  
18.804  
(1.808) 

-1.569  
(0.18) 

-0.3703  
(0.7412)   -22.204 

zi = θ1 + θ2 ln(yi) + θ3 Icaucasian  
17.669  
(2.290) 

-1.499  
(0.199) 

0.2607  
(0.2799)   -22.689 

zi = θ1 + θ2 ln(yi) + θ3 Iworking  
19.143  
(1.715) 

-1.612  
(0.172) 

-0.0455  
(1.2631)   -21.883 

zi = θ1 + θ2 ln(yi) + θ3 Iunemployed  
18.709  
(1.766) 

-1.57  
(0.163) 

-1.4699  
(1.3966)   -22.241 

zi = θ1 + θ2 ln(yi) + θ3 edu  17.304  
(2.38) 

-1.183  
(0.437) 

-0.2567  
(0.2456)   -23.231 

zi = θ1 + θ2 ln(yi) + θ3 Iedu ≥ master  
11.347  
(4.51) 

-0.821  
(0.479) 

-1.9618  
(1.1183)   -26.625 

zi = θ1 + θ2 ln(yi) + θ3 age 19.866  
(2.327) 

-1.629  
(0.162) 

-0.0114  
(0.0221)   -22.345 

zi = θ1 + θ2 ln(yi) + θ3 age + 
 + θ4 age2 

127.215  
(50.518) 

-1.784  
(0.138) 

-3.934 
(1.850) 

0.03596  
(0.01671) 

 -36.922 

zi = θ1 + θ2 ln(yi) + θ3 age +  
 + θ4 age2 + θ5 Iedu ≥ master 

97.365  
(44.926) 

-1.572  
(0.215) 

-2.909 
(1.661) 

0.02653  
(0.01500) 

-0.6948  
(0.3835) 

-38.500 

zi = θ1 + θ2 ln(yi) + θ3 Iregion 2 +  
 + θ4 Iregion 3 + θ5 Iregion 4 

16.991  
(1.794) 

-1.428  
(0.164) 

0.2762  
(0.1012) 

0.1020  
(0.0809) 

0.0744  
(0.0816) 

-26.122 

zi = θ1 + θ2 ln(yi) + θ3 Iregion 2 
17.319  
(1.813) 

-1.453  
(0.166) 

0.2126  
(0.0935)   -28.219 

Note: standard errors in brackets 
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Table 9. Augmented specifications for pooled data from 1998 to 2004 
Specification θ1 θ2 θ3 θ4 AIC 

zi = θ1 + θ2 ln(yi)     [baseline] 18.838 
(0.793) 

-1.599 
(0.073)   -262.51 

zi = θ1 + θ2 ln(yi)+ θ3 hhsize  21.383 
(1.022) 

-1.759 
(0.085) 

-0.342 
(0.068)  -275.65 

zi = θ1 + θ2 ln(yi)+ θ3 IMSA  18.892 
(0.925) 

-1.605 
(0.089) 

0.010 
(0.092)  -260.52 

zi = θ1 + θ2 ln(yi)+ θ3 Ifemale  
18.383 
(0.813) 

-1.521 
(0.080) 

-0.812 
(0.308)  -270.74 

zi = θ1 + θ2 ln(yi)+ θ3 Icaucasian  
19.004 
(0.776) 

-1.611 
(0.071) 

-0.116 
(0.038)  -273.01 

zi = θ1 + θ2 ln(yi)+ θ3 Iworking  
18.808 
(0.802) 

-1.617 
(0.082) 

0.281 
(0.411)  -261.14 

zi = θ1 + θ2 ln(yi)+ θ3 Iunemployed  
18.472 
(0.807) 

-1.561 
(0.075) 

-1.336 
(0.438)  -264.78 

zi = θ1 + θ2 ln(yi)+ θ3 edu  16.587 
(1.041) 

-1.162 
(0.167) 

-0.223 
(0.085)  -271.22 

zi = θ1 + θ2 ln(yi)+ θ3 Iedu ≥ master  
15.482 
(1.434) 

-1.231 
(0.158) 

-1.020 
(0.445)  -269.95 

zi = θ1 + θ2 ln(yi)+ θ3 age 19.274 
(1.065) 

-1.614 
(0.076) 

-0.006 
(0.009)  -261.04 

zi = θ1 + θ2 ln(yi)+ θ3 age + θ4 age2 20.180 
(2.302) 

-1.607 
(0.077) 

-0.045 
(0.081) 

0.0004 
(0.0007) -259.47 

zi = θ1 + θ2 ln(yi)+ θ3 year 18.858 
(0.785) 

-1.595 
(0.072) 

-0.020 
(0.008)  -269.98 

zi = θ1 + year*θ3 + [θ2 + year*θ4] ln(yi) 
22.179 
(1.293) 

-1.898 
(0.117) 

-0.948 
(0.310) 

0.0849 
(0.0283) -273.42 

Note: standard errors in brackets 
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Figure 1: Probability of response function, top three specifications, 1998 – 2004 data 
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Note: The graphs of the three specifications of nonresponse that match the data most closely almost 
coincide, indicating that the exact choice of specification is not of major importance. 
95% confidence intervals were computed, but are visibly almost indistinguishable from the graphed 
functions themselves and were thus omitted. The two dotted vertical lines indicate the interval in which 
the median 98% of income observations are located. 
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                         Figure 2: Empirical and compliance corrected cumulative income distribution 
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Note: The upper (dotted) line represents the income distribution from raw survey data without the 
Census Bureau’s weight adjustments. The dash-dot line depicts the income distribution using the 
adjustment weights of the Census Bureau. Finally, the solid line shows the distribution according 
to our correction method. A 95% confidence interval for our corrected distribution line was 
computed but is omitted here, since it was visibly almost indistinguishable from the line itself. 
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Figure 3: Lower segment of cumulative income distribution from Figure 2 
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Note: The figure gives a magnification of the lower part of the cumulative income distribution 
reveals that our correction method assigns comparatively less weight to lower income households 
than the Census Bureau’s correction method. 
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Figure 4: Observed and corrected Lorenz curves 
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Note: The top line (dotted) shows the Lorenz curve using un-weighted data, the second (dash-dot) 
line is the Lorenz curve using the weights provided by the Census Bureau. This line hardly differs 
from the un-weighted data. The bottom (solid) line is the Lorenz curve according to our 
correction for survey nonresponse: it shows a marked increase in inequality as compared to the 
previous two cases.  We also calculated a 99% confidence interval for our correction method. 
However, since this visibly almost coincides with the depicted line, it is omitted in the graph here. 
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Figure 5:  Percentage correction of income by percentile of income distribution 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

-10%

0%

+10%

+20%

+30%

+40%

+50%
Implied income correction for 2004

im
pl

ie
d 

in
co

m
e 

co
rre

ct
io

n

percentile of income

Our correction
CPS correction
Baseline

 

Note: The figure shows by how much the income of a given income percentile in the corrected 
distribution is revised with respect to the income of the same percentile in the equally weighted income 
distribution. The Census Bureau’s method implies a relatively uniform shift of incomes in each percentile 
by roughly 20% upwards. Our correction method shifts the income of lower income percentiles only 
modestly upwards, whereas the mean income of the top percentile is corrected by almost 40%. 
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Figure 6: Weight correction for each observed percentile 
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Note:  The figure presents the data from the previous graph in a different format: Instead of comparing 
percentiles in the un-weighted distribution with percentiles in the corrected distribution, we depict the 
correction in the sum of weights of all households contained in a given percentile of the un-weighted 
income distribution. As can be seen, the Census Bureau’s method strongly reduces the weights of the 
lower income percentiles in the un-weighted distribution and increases the weights of the upper third of 
the observed income distribution. Our correction method slightly decreases the weights of all households 
below the 83rd percentile and strongly increases the weights of the households in the top observed 
percentiles. 
 


