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Abstract 

This study estimates the vulnerability of Latin American agriculture to climate change 
using a Ricardian analysis of both land values and net revenues.  Examining a sample of 
over 2200 farms, the results indicate both land value and net revenue are sensitive to 
climate. Both small farms and large farms have a hill-shaped relationship with 
temperature.  Estimating separate regressions for rainfed and irrigated farms reveals that 
rainfed farms are more sensitive to temperature but irrigated farms are more sensitive to 
precipitation. Examining the impacts from future climate change scenarios reveals that 
severe scenarios could reduce farm earnings by as much as 62% by 2100 whereas more 
moderate scenarios could reduce earnings by about 15%. Small and large farms are 
equally sensitive to global warming. Land value and net revenue analyses produce quite 
similar results. 
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A Ricardian Analysis of the Impact of Climate Change on Latin 

American Farms 

1. Introduction 

A growing number of scientific studies indicate that the world is warming and will 

continue to warm as the concentration of greenhouse gases rises in the future (Houghton 

et al. 2001). However, there remains considerable debate about how harmful climate 

change will actually be (McCarthy et al. 2001).  This paper examines the climate 

sensitivity of agricultural production in Latin America (which is defined as the Western 

Hemisphere south of the United States).  Agriculture in Latin America is already highly 

vulnerable because of high current temperatures and poor farmers.  Further, agriculture 

is responsible for 8.6% of the GDP in Latin America (World Development Indicators 

2004) and uses approximately one-third of the land area of the continent (World 

Resources 2005).  There have been several country level agronomic studies of selected 

crops in Latin America, but there have been very few agro-economic studies.  One 

notable exception is a Ricardian study of farmland values in Brazil (Mendelsohn et al. 

2001) which indicated that farm land values are sensitive to climate.   

This paper examines over 2200 farmers in seven countries across South America: 

Argentina, Brazil, Chile, Colombia, Ecuador, Uruguay, and Venezuela.  Surveys were 

collected in collaboration with teams from each country.  Additional data on soils, 

climates, and future climate scenarios were collected from various sources.  The 

Ricardian approach was then applied to measure the sensitivity of land value and net 

revenue per hectare to climate and other factors (Mendelsohn, Nordhaus, and Shaw 1994).  
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Separate analyses are made of the land values of the whole sample, irrigated land, and 

rainfed.  Further, one additional analysis was made of net revenue using the whole 

sample to compare annual net revenues against land values.  

The paper is divided into five parts. The next section develops the theory. The 

third section describes our data and sources. The fourth section of the paper discusses the 

empirical results from analyzing the cross sectional data across the seven South American 

countries.  The fifth section uses future climate scenarios to predict the impact of 

climate change.  Assuming that long-term intertemporal effects resemble the measured 

cross sectional effects, we predict the impact of climate change on our sample of farms.   

Further assuming that climate impacts depend only on climate, we then extrapolate the 

results to every country in Latin America.  The paper concludes with a discussion of 

policy implications and caveats. 

2. Theory 

The Ricardian model assumes each farmer maximizes net income subject to the 

exogenous conditions of their farm.  Specifically, the farmer chooses the crops, 

livestock, and inputs that maximize:  

 

IRKLXCiq PKPLPXPSWCIRKLXLQPMax
i

−−−−= ),,,,,,,(   π                (1) 

 

where π is net income, Pqi is the market price of crops and livestock i, Qi is a production 

function for crops and livestock i, X is a vector of annual inputs such as seeds, fertilizer, 

and pesticides, L is a vector of labor (hired and household), K is a vector of capital such 
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as tractors and harvesting equipment, C is a vector of climate variables, IR is a vector of 

irrigation choices, W is available water for irrigation, S is a vector of soil characteristics, 

Px is a vector of prices for the annual inputs, PL is a vector of prices for each type of labor, 

PK is the rental price of capital, and PIR is the annual cost of each type of irrigation system.  

If the farmer chooses the crops and livestock that provide the highest net income 

and chooses each input in order to maximize net income, the resulting chosen net income 

will be a function of just variables that are exogenous to the farmer (variables he cannot 

choose):  

 

),,,,,,,(*
IRKLXq PPPPSWCPf=π                                         (2) 

 

In a competitive land market, rents would be equal to the net profit from the land 

(Ricardo 1817).  The present value of these rents would equal land value.    

There are consequently two ways to estimate a Ricardian model: one is to use 

land value as the dependent variable (Mendelsohn, Nordhaus, and Shaw 1994) and the 

other is to use net revenue per year as the dependent variable (Mendelsohn et al. 2001; 

Kurukulasuriya et al. 2006; Seo et al. 2005).  Both measures of land value are expressed 

in USD/ha.  Land value or net revenue per hectare is regressed on climate, soils, and 

other economic variables across space.  This study is the first to compare land values 

and net revenue using the same sample.  A priori, the land value measure is expected to 

be a better measure because it reflects the expected value of net revenue.  The net 

revenue measure, in contrast, captures the random features of a single year such as the 
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weather that year.   

In repeated studies, the land value per hectare of cropland has been found to be 

sensitive to seasonal precipitation and temperature (Mendelsohn et al. 1994; 2001; 

Kurukulasuriya et al. 2006).  Further, because the response is nonlinear, a quadratic 

functional form has been used for climate. Our model is then, 

 

(3)                                                                                                             

)]([            

)(

arg
22

,
0

22

,
0

ij
j

j

elkkkkkkk
winsumk

k

kkkkkkk
winsumk

ki

Zr

DPePdTcTba

PePdTcTbaV

ε+⋅+

∗⋅′+⋅′+⋅′+⋅
′

+′+

⋅+⋅+⋅+⋅+=

∑

∑

∑

=

=

 

 

where the dependent variable is land value (or net revenue) per hectare, T and P represent 

temperature and precipitation variables, Dlarge is a dummy for commercial farms, and Z 

represents a set of relevant socio-economic variables.  Although previous Ricardian 

studies in other regions have been able to discern four distinct seasons, the seasonal 

climate variables in this data set are highly correlated and therefore the seasonal 

coefficients were found to be insignificant.  The model consequently relies on only 

winter and summer temperature and precipitation.  

In Latin America, there is a large difference between small household farm and 

large commercial establishments.  We wish to test whether the climate sensitivity of 

both types of farms are the same.  The model (3) separates small farms from large farms 

by including climate variables multiplied by the dummy variable for the large farms.  
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The change in land value due to a marginal change in temperature for small and 

large farms is then: 
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Note that the relevant temperature in (4) may be different for small and large 

farms.  For example, if one were interested in the marginal effect at the mean for each 

farm type, one would use the small farm mean temperature and large farm mean 

temperature respectively.  A similar result holds for precipitation.  Annual effects are 

the sum of the summer and winter effects.  That is, we add the same change in 

temperature or precipitation to each season.   

We also explore estimating a separate regression for rainfed and irrigated land (as 

suggested by Schlenker et al. 2005).  Estimating separate regressions for rainfed and 

irrigated land assumes that the farms of each type are exogenous, independent of climate.  

In separate papers, we explore whether farmers choose irrigation or rainfed 

(Kurukulasuriya and Mendelsohn 2006; Mendelsohn and Seo 2006) depending on 

climate.     

The Ricardian model does not readily translate into a model of a single crop.  

Individual crops have their own net revenue function with respect to climate.  The 

Ricardian function is the locus of all the maximum net revenue choices across the full set 
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of crops.  Figure 1 depicts a set of such crop specific net income functions with respect 

to temperature.  At cool temperatures, farmers would choose to grow wheat.  As 

temperatures rise, farmers would switch from wheat to corn.  As temperatures grow 

warmer, they might shift from corn to millet which is more heat tolerant. The Ricardian 

function, (2), captures the locus of maximum profits for each temperature.  It reveals the 

net effect of changing an exogenous variable, in this case, temperature.  The assumption 

across space is that farmers find the outputs and inputs that maximize net income given 

the climate they face.  Cross sectional data can therefore be used to trace out the 

Ricardian function.   

We assume that farmers will continue to maximize profits if climate changed and 

so remain on the Ricardian function over time as well.  The change in welfare, ΔV, 

resulting from a climate change from C0 to C1 can then be measured as follows. 

 

)()( 01 CVCVV landlandland −=Δ                                             (4) 

 

Whether farmers remain precisely on the Ricardian function each year is not 

likely as there is a great deal of variance in weather as well as uncertainty about the path 

of climate change.  There could be substantial transition costs over time (Kelly et al. 

2005).  We argue that the Ricardian model measures long-term impacts after 

adjustments have been resolved. 

Note also that this measure of welfare assumes that prices are constant. With an 

inelastic demand for food, changes in the world supply of food would change food prices.  
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Because the analysis assumes prices do not change, the Ricardian model overestimates 

the welfare benefits/losses of increases/decreases in global output.  Further, it is 

important to remember that welfare reflects what happens to consumers as well as 

farmers.  Reductions in prices would clearly benefit consumers whereas increases in 

prices would benefit farmers.  However, although it is likely that climate change will 

have large impacts on local production, it is not as clear what impact climate change will 

have on global production because some regions will become more productive as others 

become less so (McCarthy et al. 2001).  Consequently, it is not evident how prices will 

change.      

3. Data 

We collected 2500 surveys from seven countries in Latin America. Argentine, Uruguay, 

Chile, and Brazil were chosen from the ‘Southern cone’ region, and Venezuela, Ecuador, 

and Colombia were chosen from the Andean region. Countries were chosen to cover a 

wide range of climate zones and given the availability of researchers.  The distribution 

of surveys used by country is displayed in Table 1.   

The districts were sampled to obtain representation of each climate zone within 

each country.  A wide range of climates are therefore present in the sample.  Of course, 

climates that could not support any agriculture were not surveyed.  In each country, 15-

30 districts were selected and 20-30 households were interviewed in each district.  

Within each district, cluster sampling was done to control the cost of the survey.  We 

treat this sample as though it were a representative sample of farms in Latin America 

although it is not a truly random sample.   

The surveys collected data about farming activities and crop and livestock 
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production during the period from July 2003 to June 2004.  The surveys also recorded 

climate and weather related perceptions of the farmers.  Data on farm size and land 

value per hectare were also collected.  Land values vary substantially by country as 

shown in Table 1.  The Andean countries (Colombia, Ecuador, and especially 

Venezuela) have distinctly lower land values.  This reflects smaller farms, poorer 

growing conditions, and more labor intensive farming technologies.    

The climate data come from two sources: temperature observations from the US 

Defense Department Satellite and rainfall observations from World Meteorological 

Organization.  In earlier comparisons across Brazil, it was found that the temperature 

measures from the satellite were superior to the interpolated weather station measures 

(Mendelsohn et al 2006a).  Most rural areas do not have a weather station nearby and so 

require interpolation.  The satellites make direct observations over the entire land area 

using microwave imagers. These measures are very effective at capturing temperature but 

cannot directly capture precipitation.  Satellites can measure soil wetness but this index 

is inferior to the interpolated station measures of precipitation because it is influenced by 

irrigation, large water bodies, and dense forests (Mendelsohn et al. 2006a).   

Soil data were obtained from the FAO digital soil map of the world CD ROM. 

The data was extrapolated to the district level using Geographical Information System. 

The data set reports 26 major soil groups, soil texture, and land slope at the district level. 

Some variables used in earlier Ricardian studies of the US such as the precise 

latitude of the farm, water availability, and some soil definitions are not available in this 

study.  However, this study includes detailed data about individual farms, farming 

activities, and farmers that was not available in the US studies.   
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4. Results 

Our analysis is inclusive of all the crops in the region.  The most important crops are 

cereals (wheat, maize, barley, rice, oats), oil seeds (soybean, peanuts, sunflower), 

vegetables/tubercles (potatoes, cassava), a variety of perennial grasses, and specialty 

crops such as cotton, tobacco, tea, coffee, cacao, sugarcane, and sugar beet. Major 

tree/shrub crops include a large variety of fruits, oil palm, and others.  The analysis also 

includes the value of livestock.  Latin American farms rely a great deal on beef cattle 

and dairy cattle but also chickens, pigs, and sheep.  

Although commercial agriculture and agro-industry businesses are well developed 

in a few countries, there are many places in the continent that still rely on small 

household farming systems.  In rural communities in Central America and the Andean 

valleys and plateaus for example, small farms are part of subsistence lifestyles with heavy 

reliance on labor inputs. These small farms may be more sensitive to climate change than 

large commercial farms (Rosenzweig and Hillel, 1998). We test this hypothesis by 

examining the climate sensitivity of both small and large farms. Small farms are defined 

as farms with less than 30 hectares of land.   

Two climate regressions are reported in Table 2.  Both regressions rely on an 

unweighted regression of the whole sample of farms2.  However, the first regression 

uses land value as the dependent variable and the second regression uses annual net 

revenue.  The geological variables such as elevation, slope, texture, and the various 

types of soils are significant determinants of net revenue and especially land value.  In 

                                            
2 Although Mendelsohn, Nordhaus and Shaw [1994] use weighted regressions, their unit of observation is 
a county not a farm.  There is substantial variation in the number of farms in a county, a problem that does 
not exist in this study. 
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the land value regression, many soils are beneficial (Cambisols, Ferralsols, Phaeozems, 

Luvisils, Arenosols, Vertisols and Yermosols), while Regosols are harmful.  In the net 

revenue regression, fewer soils are significant; Arenosols and Vertisols are beneficial. 

Both regressions agree that farms have higher value when the texture of the soil is a mix 

of sand and clay but lower value when the soils are just clay.  Both models agree that 

households with electricity earn more revenue but only the land value regression also 

valued farms with a computer.  Electricity and computers may contribute to productivity 

or they may simply reflect other relevant factors such as proximity to urban markets.  

The age of the head of the household has a negative effect but is significant only in the 

net revenue regression.  The gender of the farmer is insignificant.  A dummy variable 

for countries in the Andes region is highly negative in both regressions.  The variable 

may reflect technology or other regional characteristics.  For example, the Southern 

Cone countries have a more intensive trading network that may help support agriculture.     

From the regression coefficients on temperature, it appears that net revenues are 

highly sensitive to especially summer temperature.  Large farms have a slightly different 

response to summer temperature compared to small farms.  The negative squared terms 

reveal that both types of farms have a hill-shaped response to temperature.  From the t-

statistics of the precipitation coefficients, it is clear that rainfall has a less significant 

effect on net revenues than temperature.  The insignificant coefficients on the large farm 

precipitation interaction terms imply that small and large farms have similar precipitation 

responses.  The F statistics to test the hypothesis that the set of large farm interaction 

parameters are zero is 8.4 in the land value regression and 9.5 in the net revenue 

regression. In both cases, the hypothesis is rejected at 1% significance level.  In other 

words, small and large farms have different climate sensitivities. 
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In Table 3, marginal effects and elasticities are presented for the mean climate in 

the sample.  Both regressions imply that summer warming decreases farm land values 

for both small and large farms whereas winter warming is predicted to be beneficial 

(though negative and insignificant for small farms in the net revenue regression).  The 

net effect of a 1˚C annual warming is to decrease land values by 111 USD for small farms 

and by 78 USD in large farms.  A similar result is found for net revenues. The marginal 

results confirm the hypothesis that small farms are slightly more vulnerable to warming 

than large farms.  The land value regression implies that summer precipitation is 

beneficial and winter precipitation is harmful.  This confirms earlier research.  

Precipitation in the summer helps net revenues whereas precipitation in the winter helps 

pests. 

However, the net revenue regression implies that summer and winter precipitation 

is harmful.  A 10 percent increase in annual rainfall would increase the land value of 

small farms and have no effect on the land value of large farms.  In contrast, a ten 

percent increase in rainfall would reduce the net revenues for both small and large farms.  

However, the difference in these results between the net revenue and land value 

regressions is not statistically significant according to the bootstrap analysis.   

Figure 2a plots land values against annual temperature for small and large farms. 

Both types of farms have a hill-shaped response, but the optimum temperature (highest 

net revenue) is slightly lower in the small farms (14˚C) versus large farms (16˚C). The 

net revenue response functions are also hill-shaped for small and large farms (Figure 2b).  

However, with the net revenue response function, the optimum temperature for small 

farms is even lower (8˚C).  The land value results imply that small farms at 14˚C 
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generally have higher net revenues, but in the particular year of the sample, small farms 

with cooler long run temperatures had higher annual revenue.  In practice, the weather 

during the sample year for farms near the equator was normal but the weather in the more 

southern hemisphere was cooler than normal.  This difference can explain some of this 

variation between the land value and net revenue results.  

Figure 3a shows the response of land value to rainfall for small and large farms 

and Figure 3b shows the net revenue response.  The small and large farm responses to 

precipitation are similar.  Land values tend to increase with more annual precipitation 

but net revenues decrease with precipitation for both small and large farms.   

We also conduct a Ricardian analysis on subsamples of rainfed farms and 

irrigated farms following Schlenker et al 2005.  Table 4 shows the results of these two 

regressions on land value.  There is no question that the rainfed and irrigated models are 

different.  They respond differently to many soil types, altitude, mixed soil texture, 

electricity, computers, and the age of the head of household.  Although some of the 

differences are hard to explain, generally irrigation is more sensitive than rainfed to other 

factors that affect net revenue.  The high cost of installing irrigation is profitable only if 

the farm is otherwise highly productive.  The dummy variable for the Andes region is 

highly negative for rainfed but zero for irrigated land implying the problems with farms 

in the Andes region applies strictly to rainfed farmers.   

 However, the key comparison in Table 4 concerns climate. Both the rainfed and 

irrigated farm models have many significant temperature coefficients but few significant 

precipitation coefficients. The individual interaction terms between climate and large 

farms suggests that large and small farms of each type have similar climate response 
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functions. However, the set of large farm interaction parameters are significant.  The 

hypothesis that the set of large farm interaction parameters is zero is rejected at 1% 

significance level according to the F test statistics of 6.3 in the rainfed regression and 5.5 

in the irrigated land regression. In other words, large and small farms have significantly 

different climate coefficients. 

 In order to test this more formally, we compute the marginal impacts of climate 

in Table 5.  The marginal temperature effects of rainfed and irrigated lands are quite 

different.  Rainfed farms are very sensitive to summer temperatures.  Small farms have 

a negative temperature elasticity of -2.8 and large farms of -1.7.  Small irrigated farms 

have no response to summer temperature and large irrigated farms actually benefit from 

warmer summer temperatures.  Warmer winter temperatures benefit small rainfed farms 

whereas warmer winter temperatures are harmful to both small and large irrigated farms.  

The results for summer precipitation are more consistent across farm types although large 

irrigated farms have surprisingly high elasticities.  The results for winter precipitation 

follow a mixed pattern being harmful to large rainfed farms and small irrigated farms but 

beneficial to large irrigated farms. The positive effect of an increase in winter 

precipitation on small rainfed farms and the positive effect of an increase in winter 

temperature on large rainfed farms are not significant. Most of the marginal climate 

effects for irrigated farms are not significant.  However, an F test of whether rainfed and 

irrigated farms have the same climate response coefficients is rejected at the 1% level 

(F=9.16) for small farms and at the 5% level (F=2.25) for large farms. 

5.  Climate Scenarios 

In order to predict climate change impacts for the coming century, we examine climate 
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change scenarios predicted by Atmospheric-Oceanic Global Circulation Models 

(AOGCM’s).  We rely on a broad set of scenarios that predict a wide range of outcomes, 

consistent with the expectations in the most recent IPCC report (Houghton et al. 2001).  

Specifically, we use the A1 scenarios from the following models: CCC (Boer et al. 2000), 

CCSR (Emori et al. 1999), and PCM (Washington et al. 2000).  In each case, a country-

specific forecast is generated by weighting each model grid zone by its population.  

Table 6 summarizes the climate scenarios of the three climate models.  The Latin 

American mean temperature and rainfall predicted for the year 2020, 2060, and 2100 are 

presented. The models provide a range of predictions: PCM predicts a 1.9°C increase, 

CCSR predicts a 3.3°C increase, and CCC predicts a 5°C increase in average temperature 

in 2100.  The temperature projections of all the models steadily increase over time. The 

models also provide a range of rainfall predictions.  PCM predicts a general increase in 

rainfall, whereas CCSR and CCC predict a reduction by 2100.  The rainfall predictions 

of the models do not steadily increase but rather have a noisy pattern over time.  The 

climate change predictions, however, are country-specific.  For example, even though 

the mean rainfall for Latin America might increase (decrease), some countries will 

nonetheless experience a reduction (increase) in rainfall. 

For each climate scenario and each time period, we add the climate model’s 

predicted change to the baseline temperature in each district.  We then multiply the 

climate models predicted percentage increase in precipitation times the baseline 

precipitation in each district or province. This gives us a new climate for every district in 

Latin America.  We then compute the land value per hectare (or net revenue) of the 

current climate and each new climate.  Subtracting the future land value (net revenue) 
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estimate from current land value yields a change in land value per hectare in each 

location.  We also examine the percentage change in the value of land (net revenue) per 

hectare.    

 Table 7 shows the results for small farms in the sample.  With the Ricardian 

model of the entire sample, all three climate scenarios predict that warming will be 

harmful to small farms and that the damage will increase over time as temperatures rise.  

According to the CCC scenario, by 2100, small farms will lose 61% of their land value.  

The CCSR predicts that by 2100, small farms will have lost 36% of their land value.  

PCM predicts small farms will lose only 13% of their income by 2100.  These different 

predictions are largely due to the difference in predicted temperature change across the 

three models.  The net revenue results for the full sample are almost identical to the land 

value results.  Both sets of regressions in Table 2 make very similar predictions about 

future climate change impacts.  All the Ricardian results using the entire sample are 

significant except for the 2020 PCM prediction. 

 The Ricardian model results for small rainfed farms are quite similar to the small 

farm results using the entire sample.  The severe climate scenarios generate similar large 

losses (compare the first, second and third columns for CCC and CCSR in Table 7).  

However, the results for PCM are different. The rainfed model suggests the PCM 

scenario is highly beneficial at first with the benefits eroding over time as temperatures 

rise.  The response for irrigated farms is far more muted.  The CCC and CCSR 

scenarios are predicted to be harmful but much less so.  With the PCM model, the net 

revenues of small irrigated farms are consistently expected to be higher for the entire 

century.  These results within the subsamples give an impression of how climate will 
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affect each land type.  However, they are probably less reliable as a description of the 

total welfare impact because they assume that farmers have no choice about farm types.  

It is likely that farmers will switch farm types as climate changes (Mendelsohn and Seo 

2006).   

 Table 8 shows the results for large farms in the sample.  The land value results 

for the full Ricardian regression and all the climate scenarios are almost identical with the 

results for small farms.  The severe climate scenario will result in substantial losses of 

net revenue whereas the more modest scenario leads to smaller losses. The results from 

the full Ricardian model suggest that small and large farms have identical climate 

sensitivities.  In contrast, the large farm results in Table 8 from the rainfed and irrigated 

samples are different from the small farm outcomes in Table 7.  The rainfed results 

suggest that big farms are a little more sensitive to climate change than small farms.  

They suffer slightly larger damages in each scenario.  However, large irrigated farms 

generally benefit from warming.  In fact, the larger and more severe the warming, the 

larger are the benefits.   

Our final analysis extrapolates the results to all countries in Latin America.  The 

analysis assumes that climate impacts are dependent only on the climate in each location.  

The purpose of this analysis is to present the likely distribution of climate effects across 

districts.  Using the full Ricardian model, we predict the change in land value per 

hectare by 2100 for each district in Latin America using the PCM, CCSR, and CCC 

scenarios for small and large farms.  Figure 4a describes the PCM results for small 

farms across Latin America.  The PCM scenario is generally predicted to be beneficial 

for small farms but the scenario will not have the same impact on each district.  The 
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impacts will depend on initial climates.  Small farms in the currently cooler regions of 

Argentina and Chile and high mountains of Bolivia will gain more than average.  Small 

farms in the relatively hot regions of Venezuela, Colombia, and northern South America 

and Central America will see losses.   

A completely different picture emerges in Figure 4b with the 2100 CCC scenario 

for small farms.  The CCC scenario is generally harmful to small farms.  This is 

especially evident in the Amazon and the rest of Brazil but it even extends to Paraguay 

and northern Argentina.  Farms in a few regions benefit in southern Argentina, Chile, the 

Pacific coast, and northern Mexico, but the scenario is generally grim for small farms in 

Latin America.  The overall magnitude of the damage from the CCSR 2100 scenario in 

Figure 4c falls between the results for the PCM and CCC scenarios.  However, 

distribution of impacts across space is similar to the results from the CCC 2100 scenario.  

In Figure 5a, we see the results of the 2100 PCM scenario for large farms.  Large 

farms benefit from the PCM scenario in all but a few places in northern South America 

where there are small losses.  Farms in Argentina, Chile, Paraguay and Mexico 

especially benefit from the slight increase in temperature and large increase in 

precipitation.    

In Figure 5b, we see the results of the 2100 CCC scenario for large farms.  The 

CCC scenario is harmful to large farms in general but there is a lot of variation in the 

impacts across the landscape.  Large farms in Bolivia and Paraguay are especially hard 

hit by the CCC scenario.  Damages are also high for the Amazon basin and northern 

Argentina. However, large farms in Mexico, Peru, southern Chile, and southern Argentina 

all benefit from this scenario.  The distribution of impacts with the CCSR scenario in 
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Figure 5c is similar to the results from the CCC scenario in Figure 5b but there are 

slightly higher damages in the Amazon basin, Ecuador, and Peru. 

6. Conclusion 

We examine the vulnerability of Latin American agricultural production to climate 

change. Surveys were collected across 7 countries in South America.  Four countries are 

from the Southern Cone region and three countries are from the Andean region. Using 

cross sectional analyses, we test the effect of climate, soils, and other control variables on 

both land value and net revenue. 

Our results indicate that many of the control variables explain the geographic 

variation in land value and net revenues across Latin American farms.  Many soils are 

relatively beneficial to farms, whereas a few soils are harmful.  Soils with some mix of 

sand and clay command relatively higher profits whereas clay soils are relatively harmful.  

Farms with electricity earn significantly higher profits and farms with computers have 

higher land values. 

However, the main focus of this study concerns the sensitivity of farm values to 

climate. Both land value and net revenue are sensitive to temperature and precipitation.  

The land values and net revenues of farms have a hill-shaped relationship with 

temperature.  Farms at moderate (temperate) temperatures earn more profits compared 

to farms at extreme (tropical) temperatures.  Small farms and large farms have very 

similar responses to temperature and summer precipitation.  However, small and large 

farms did have different responses to winter precipitation.  Large farms located in places 

with higher winter precipitation had lower land values but winter precipitation had no 

effect on the land value of small farms.  Rainfed farms and irrigated farms have 
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different responses to climate.  The elasticity of land value to summer temperature was -

2.8 for small and -1.7 large rainfed farms but the elasticity for irrigated farms was zero 

for small farms and +0.9 for large farms.  Further, large rainfed farms have higher 

values in places with more precipitation but large irrigated farms have higher values in 

dryer places.  

Using the cross sectional results, we also predicted how future AOGCM scenarios would 

change land values and net revenues.  Three climate models, CCC, CCSR, and PCM, 

were used to predict a range of climate outcomes.  Looking at just results within the 

sample, the CCC scenario predicts the largest damage, the PCM scenario predicts the 

smallest damage, and the CCSR scenario predicts a moderate damage in between. For 

both small and large farms, CCC predicts a gradual increase in damage from about 16% 

in 2020, to 33% in 2060, to 61% in 2100.  In contrast, the CCSR model predicts 

damages of about half that size and the PCM model about one fourth as large.  Another 

interesting result from the climate simulations is that small and large farms have very 

similar final impacts.  The hypothesis that the impacts to small farms would be much 

larger than the impacts to large farms was not supported by the results.  

We also compared using net revenues instead of land values as the dependent 

variable of the Ricardian regression, the measure of farm profitability.  The results from 

the net revenue analysis were quite similar although not identical to the land value 

analysis.  Temperature has a hill-shaped relationship with net revenue as it does with 

land value.  However, precipitation is predicted to be strictly harmful to net revenue.  

In contrast, farms with more summer precipitation had higher land values.  However, 

the predicted impacts of the climate scenarios, suggested the net revenue impacts were 
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very similar to the land value results.  The CCC scenario generates large damages and 

the PCM scenario much smaller damages.  

Looking across Latin America, the climate change impacts to each farm are 

predicted to vary across the landscape.  Places that are currently cool generally will 

benefit from warming.  However places that are currently hot will generally be damaged 

by warming.  Further, each climate scenario has its own prediction of how climate will 

change in each country.  These country-specific predictions also have a very large effect 

on the distribution of impacts over the landscape.    

For policy makers, the results of this analysis reveal that Latin American 

agriculture is vulnerable to climate change.  If global warming is mild, the impact will 

be small. However, if severe scenarios come to pass, farmers could lose up to 62% of 

their net revenue.  This would be a stunning blow to the agricultural sector in Latin 

America.  The impact would be even more devastating to the most vulnerable regions in 

Latin America.  Countries and international agencies may want to direct resources at 

providing relief and new opportunities for the rural poor who are likely to be the most 

affected by climate change.  They may also want to facilitate the migration of people 

from the parts of the countryside most damaged by warming to more urban settings as 

part of a general development strategy.    

There are a number of caveats that readers should keep in mind when interpreting 

these results.  First, the cross sectional analysis is vulnerable to omitted variables.  If 

important variables have been left out of the analysis and they are correlated with climate, 

they can bias the results.  Second, the analysis did not consider carbon fertilization 

which is predicted to increase future crop productivity (Reilly et al 1996).  Third, the 
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analysis did not include changes in prices.  If some of the more severe scenarios come to 

pass, there may be changes in wages, other inputs, and output prices.  These price 

changes will moderate the welfare impacts.  Fourth, the analysis did not take into 

account future technological change.  In general, technical change is expected to 

increase overall crop and livestock productivity.  However, technical change could be 

directed specifically to deal with higher temperatures or dryer conditions.  For example, 

Brazil has developed a new soybean variety to grow in the hot and dry conditions of the 

Mato-Grosso region.  Such climate specific technological changes would increase the 

potential benefits and reduce the damages from climate change.   
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Table 1: National Means of the Variables. 

 
Var. Argentine Brazil Chile Colombia Ecuador Uruguay Venezuela
Temperature 14.4 20.2 9.3 16.8 14.8 15.2 21.8
Precipitation 72.1 122.6 77.8 162.9 99.6 101.4 83.8
Land Val/Ha 1818 2606 962 65 2280 1018 3
Size (Ha) 122.8 176.6 39.9 61.8 84.0 50.3 111.8
N 395 639 369 341 174 119 226
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Table 2: Ricardian Regressions Using Whole Sample 
 

 Land Value Net Revenue 
Variable Coef. T-stat. Coef. T-stat 
Intercept         -2409 -3.66 -64.21 -0.23 
Temperature summer 476 5.87 140 4.01 
Temperature summer squared -17.0 -6.95 -4.81 -4.53 
Temperature winter 166 3.46 -18 -0.82 
Temp winter squared -4.46 -2.89 0.42 0.59 
Precipitation Summer 2.97 1.58 -0.66 -0.84 
Precipitation Summer Squared 0.00 -0.46 0.00 1.10 
Precipitation Winter -3.14 -1.56 -1.80 -2.29 
Precipitation Winter Squared 0.00 0.26 0.00 0.09 
Temp summer*Large Farms -171 -2.52 -87 -2.96 
Temp summer Sq*Large Farms 6.73 2.83 2.16 2.13 
Temp winter*Large Farms 45.5 0.59 56.4 1.67 
Temp Winter Sq*Large Farms -2.26 -0.88 -1.00 -0.88 
Prec summer*Large Farms 0.33 0.11 -1.24 -0.86 
Prec summer Sq*Large Farms 0.00 -0.19 0.00 0.52 
Prec winter*Large Farms -1.40 -0.41 1.77 1.31 
Prec winter sq*Large Farms 0.00 -0.03 0.00 -0.58 
Soil Cambisols 5.92 1.64 1.62 1.18 
Soil Ferrasols 10.96 4.51 0.80 0.87 
Soil Phaeozems 5.98 2.50 1.16 1.24 
Soil Luvisols 9.88 3.27 0.19 0.18 
Soil Arenolsols 18.58 3.59 7.10 3.35 
Soil Regosols -11.55 -3.71 -0.54 -0.33 
Soil Vertisols 13.82 4.86 5.01 4.36 
Soil Yermosols 35.48 4.21 0.92 0.31 

Altitude -0.19 -1.85 -0.06 -1.38 

Electricity dummy 832 5.60 129 2.10 

Computer dummy 397 3.59 49 1.07 

Texture(Mixed) 706 5.23 232 4.30 

Texture(Clay) -1134 -6.75 -258 -3.89 

Age of the head -4.12 -1.50 -2.00 -2.03 

Female dummy -197 -1.20 -26 -0.40 
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Andes dummy -1749 -11.39 -390 -6.14 

N 2263  1378  

R-sq 0.24  0.14  

F-test for Large Farm 
Interaction Terms 8.42**  9.54**  
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Table 3: Land Value and Net Revenue Marginal Effects and Elasticities. 
 

Land Value 
Summer 
Temperature 

Summer 
Precipitation 

Winter 
Temperature 

Winter 
Precipitation 

Small Farms  
Marginal 
Effects -158.33** 2.47** 46.84** -2.83** 
Elasticities -1.88** 0.19** 0.40** -0.14** 
Large Farms     
Marginal 
Effects -93.34** 2.29** 14.53 -4.28** 
Elasticities -1.49** 0.27** 0.18 -0.27** 
  
Net Revenue   
Small Farms  
Marginal 
Effects -33.44** -0.17 -6.22 -1.76** 

Elasticities -1.59** -0.06 -0.22 -0.37** 

Large Farms  

Marginal 
Effects -51.90** -0.68* 21.44** -0.45 

Elasticities -7.57** -0.81* 2.37** -0.21 

Calculated from results in Table 2. 
** denotes a significance at 99% confidence level and * denotes a significance at 95% 

confidence level. 
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Table 4: Regressions of the Land Value of Irrigated and Rainfed Farms 
 

 Rainfed Irrigated  
Variable Coef. T-stat. Coef. T-stat 
Intercept         -3406 -4.43 2083 1.34 
Temperature summer 344 3.62 235 1.40 
Temperature summer squared -13.8 -4.94 -6.69 -1.24 
Temperature winter 353 6.82 -317 -2.17 
Temp winter squared -9.17 -5.63 6.64 1.42 
Precipitation Summer 7.53 3.54 8.77 1.28 
Precipitation Summer Squared -0.01 -2.33 -0.01 -0.51 
Precipitation Winter 0.06 0.03 -13.63 -1.90 
Precipitation Winter Squared 0.01 0.69 0.06 1.81 
Temp summer*Large Farms 105 1.48 -531 -2.03 
Temp summer Sq*Large Farms -0.56 -0.23 15.47 1.72 
Temp winter*Large Farms -144.7 -1.86 27.2 0.08 
Temp Winter Sq*Large Farms 2.26 0.88 2.02 0.17 
Prec summer*Large Farms -3.75 -1.13 30.49 1.85 
Prec summer Sq*Large Farms 0.01 1.01 -0.12 -1.99 
Prec winter*Large Farms -5.02 -1.48 26.14 1.59 
Prec winter sq*Large Farms 0.00 -0.34 -0.11 -1.56 
Soil Cambisols 5.15 1.42 -0.89 -0.08 
Soil Ferrasols 10.01 4.03 22.64 3.45 
Soil Phaeozems 2.12 0.88 26.73 3.74 
Soil Luvisols 14.63 4.74 -12.53 -1.40 
Soil Arenolsols 16.59 3.27 17.49 1.05 
Soil Regosols -8.04 -2.57 -8.77 -0.96 
Soil Vertisols 20.54 5.03 9.42 2.13 
Soil Yermosols 19.20 0.63 26.28 2.42 

Altitude -0.09 -0.79 -0.51 -2.15 

Electricity dummy 585.4 4.03 1337.1 2.54 

Computer dummy 445.1 3.78 105.8 0.43 

Texture(Mixed) 534.1 4.00 1997.4 4.57 

Texture(Clay) -1089 -6.55 -961.8 -1.83 

Age of the head -0.26 -0.10 -23.01 -2.75 

Female dummy -272.5 -1.62 292.7 0.70 
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Andes dummy -1756 -10.90 -130 -0.29 

N 1753  510  

R-SQ 0.28  0.26  

F-test for Large Farm 
Interaction Terms 6.38**  5.57**  
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Table 5: Rainfed and Irrigated Farm Marginal Effects and Elasticities. 
 

Rainfed  
Summer 
Temperature 

Summer 
Precipitation 

Winter 
Temperature 

Winter 
Precipitation 

Small Farms 
Marginal 
Effects -184.93** 4.33** 90.63** 1.02

Elasticities -2.80** 0.46** 1.02** 0.06

Large Farms 
Marginal 
Effects -110.22** 2.61** 3.96 -4.78**

Elasticities -1.68** 0.30** 0.05 -0.29**

 
Irrigated  
Small Farms 
Marginal 
Effects 3.87 7.37 -170.17* -5.51

Elasticities 0.03 0.24 -0.80* -0.15

Large Farms 
Marginal 
Effects 34.49 14.88 -51.39 4.73

Elasticities 0.85 1.83 -0.93 0.46

Calculated from results in Table 4. 
** denotes a significance at 99% confidence level and * denotes a significance at 95% 
confidence level. 
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Table 6: AOGCM Climate Scenarios. 
 

 NOW 2020 2060 2100 
Temp Summer ˚C  

CCC 19.9 21.4 (+1.5) 22.7 (+2.8) 24.9 (+5.0) 

CCSR 19.9 21.1 (+1.2) 22.0 (+2.1) 23.0 (+3.1) 

PCM 19.9 19.8 (-0.1) 20.6 (0.7) 21.3 (+1.4) 

Temp Winter ˚C    

CCC 16.4 17.7 (+1.3) 19.0 (+2.6) 21.6 (+5.2) 

CCSR 16.4 17.8 (+1.4) 18.7 (+2.3) 19.6 (+3.2) 

PCM 16.4 17.6 (+1.2) 18.3 (+1.9) 19.0 (+2.6) 

Prec Summer mm/mo    

CCC 162 158 (-2.5%) 143 (-11.7%) 142 (-12.3%) 

CCSR 162 165 (+1.9%) 166 (+2.5%) 158 (-2.5%) 

PCM 162 157 (-3.1%) 166 (+2.5%) 165 (+1.9%) 

Prec Winter mm/mo    

CCC 75 73 (-2.7%) 71 (-5.3%) 76 (+1.3%) 

CCSR 75 76 (+1.3% 72 (-4.0%) 70 (-6.7%) 

PCM 75 99 (+32.0%) 99 (+32.0%) 92 (+22.7%) 
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Table 7: Climate Change Impacts from AOGCM Scenarios to Small Farms. 
 

 
Land Value: 

All 
Net Revenue: 

All 
Land Value: 

Rainfed 
Land Value: 

Irrigated 
Small Farms 

Baseline 1728 449.3 1748 1807 
2020     
CCC -272** (-16%) -81** (-18%) -239** (-14%) -235** (-13%) 

CCSR -223** (-13%) -68** (-15%) -189** (-11%) -121 (-7%) 
PCM 13 (+1%) -30** (-7%)  230** (+13%) 1007** (+56%) 
2060     
CCC -570** (-33%) -160** (-38%) -529** (-30%) -519** (-29%) 

CCSR -387** (-22%) -108** (-24%) -368** (-21%) -172 (-10%) 
PCM -121** (-7%) -69** (-15%)  98* (+6%) 944** (+52%) 
2100     
CCC -1060** (-61%) -288** (-64%) -1004** (-57%) -702 (-39%) 

CCSR -617** (-36%) -170** (-38%) -590** (-34%) -438* (-24%) 
PCM -228** (-13%) -91** (-20%) -5 (0%) 1082** (+60%) 

Impacts to small farms in the sample measured in USD/ha.  .  
* implies a significance at 95% confidence level and ** at 99% confidence level. 
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Table 8: Climate Change Impacts from AOGCM Scenarios to Large Farms. 
 

 
Land Value: 

All 
Net Revenue: 

All 
Land Value: 

Rainfed 
Land Value: 

Irrigated 
Large Farms 

Baseline 1135 200 1284 777 

2020     
CCC -173** (-15%) -127** (-64%) -208** (-16%) 116 (+15%) 

CCSR -154** (-14%) -84** (-42%) -184** (-14%) 119 (+15%) 
PCM -61 (-5%) -32 (-16%) -74 (-6%) -23 (-3%) 
2060     
CCC -373** (-33% -49 (-24%) -449** (-35%) 323 (+42%) 

CCSR -248** (-22%) -39 (-20%) -300** (-23%) 231 (+30%) 
PCM -138* (-12%) 13 (-6%) -165** (-13%) 10 (+1%) 
2100     
CCC -702** (-62%) -83 (-42%) -837** (-65%) 811 (+104%) 

CCSR -397** (-35%) -58 (-28%) -483** (-38%) 394 (+51%) 
PCM -191** (-17%) -17 (-8%) -228** (-18%) 35 (+5%) 

Impacts to large farms in sample measured in USD/ha. 
* implies a significance at 95% confidence level and ** at 99% confidence level. 
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Figure 1: Ricardian Model of Net Income and Temperature  
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Fig 2a: Estimated Land Value of Small and Large Farms Versus Temperature 
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Figure 2b: Estimated Net Revenue of Small and Large Farms Versus Temperature 
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Fig 3a: Estimated Land Value of Small and Large Farms Versus Precipitation 
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Figure 3b: Estimated Net Revenue of Small and Large Farms Versus Precipitation  
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Figure 4a: PCM 2100 for Small Farms  
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Fig 4b: CCC 2100 for Small Farms 
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Fig 4c: CCSR 2100 for Small Farms 
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Fig 5a: PCM 2100 for Large Farms 

 
 
 
 
 



 45

Fig 5b: CCC 2100 for Large Farms 
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Fig 5c: CCSR 2100 for Large Farms 

 


