WORKING PAPERS

Debt and International Finance

International Economics Department
 The World Bank
 March 1991
 WPS 621

Sensible Debt Buybacks for Highly Indebted Countries

Enrica Detragiache

Concerted agreements in which debt repurchases are linked to reduced interest rates or new-money requirements can make buybacks at a fair price viable, while preventing a free-rider problem among lenders.

WORKING PAPERS

Debt and International Finance

WPS 621

This paper - a product of the Debt and International Finance Division, International Economics Department - is part of a larger effor in PRE to understand the benefits and costs of voluntary marketbased debt and debt service reduction operations. Copies are available free fiom the World Bank, 1818 H Street NW, Washington DC 20433. Please contact Sheilah King-Watson, room S8-(440, extension 33730 (32 pages).

Previous studies indicate that debt buybacks at market prices benefit lenders the most because the lack of a seniority structure in sovereign lending distorts secondary market prices upward.

Detragiache examines whether welfareimproving buybacks would arise at the "fair" price. If so, policy intervention is needed to remove the distortion. In a model of intertemporal consumption smoothing, buybacks
at the fair price are desirable if the country experiences unusually heavy export carmings and if large reserve holdings tend to increase transfers to creditors in default states.

Concerted agreements in which debl repurchases are linked to cuts in interest rates or new money requirements can make buybacks at the fair price viable, while preventing the free-rider problem among lenders.

[^0]Sensible Debt Buybacks for Kighly Indebted Countries

by
Enrica Detragiache*
Department of Economics The Johns Hopkins Untversity
Baltimore, MD 21218

Table of Contents

1. Introduction 1
2. The Model 4
3. Reserve Accumulation 12
4. Investment in Physical Capital 18
5. Negctiated Debt Buybacks 21
6. More on the Lender Side of the Market 26
7. Conclusions 28
References 31

* I would like to thank Ishac Diwan and Eduardo Fernandez-Arias for especially helpful discussions. Support from the Debt and International Finance Division. International Economics Department of the World Bank is gratefully acknowledged.

1. Introduction.

In recent years. as weil as in previous international debt crises. highly indebted countries (HICs) hare devoted considerable resources to repurchasirg some of their outstanding debt at a discount on the secondary mariet. Recent buybacks nare deen of various nature, sometimes financed by donors' funds, sometimes through the country's own reserves. In some instances they have been part of larger agreements with creditors. while other times they have been carried out on the country's own initiative and through intermediaries. In some cases they nave been carried out as debt for equity swaps, or as swaps for exit bonds. In any case, economists and policy adrisors have been debating on the rationale for such buybacks and about their desirability. One of the central questions is whether it is appropriate for international institutions or potential donors to commit considerable amounts of funds to promote debt repurchases. as they are currentily dcing, or whether HICs would profit more from aid earmarked for investment or consumption.

A lot of the early debate focused on the beneficial effects of debt reduction on investment in the indebted country!. The presence of a large debt overhang, acting as a distortionary tax. reduces the expected marginal return from investing in the indebted country. A buyback, by reducing the volume of debt outstanding reduces the distortion, and makes the world pattern of production more efficient [see for instance Froot (1989)]. Bu'ow and Rogoff (1989), howeves, crit:cized the very foundations of this argument. Firsi of all. they correctly pointed out that buybacks should be regarded as a use of funds alternative to investment, and that the larger the overhang the less beneficial are buybacks

[^1]compared to investment. Bulow and Rogoff also argued that debt bupbacks at market prices make creditors better off, because debt is repurchased at its average price rathei than at the (!ower! marginai price, and that this anomaly has such a strong effect that courtries are likely to be better off if they do not busback any debt at all, unless additionai concessions are obtained from the creditors. This result also implies that donors who want to help a highly indebted country would do better giving aid to finance consumption or investment. rather than to finance debt buybaciks at the market price.

Debt bugbacks are an investment in a pa-iicular type of asset, and theit attractiveness can be evaiuated in terms of their rate of return and of their covariance with the countiry's consumption, as models of intertempora' asset pricing indicate. The divergence between the marginal and average price of debt. stressed by Bulow and Rogoff. arises because each creditor expects to share in default proceeds in proportion to his claims, no matter how much debt the country had contracted at the time of the loan. If a seniority structure could be established in international sovereign lending, the divergence would disappear. and debt buybacks would occur at a "fair price", that is a price that jields an expected rave of return equal to the risk-free interest rate. Since lenders are modeled as risk-neutrai. in a competitive equilibrium they should purchase assets at that rate. Hence, the fact that countries are forced to repurchase debt at the average price is a distortion. and in equilibrium rational and optimizing countries retire too little debt. This same distortion generates a bias in faror of too much borrowing.

This paper is concerned with trying to determine if and under whit circumstances debt buybacks at the fair price can be welfare-improving. If such buybacks exist, there is a scope for trying to remove the distortion. and possible policies to achieve that result need to be discussed.

The anaiysis of debt buybaciss is carried out in a model of intertemporai optimization, in which a risk-arerse planner maximizes fuitire expected utility. Introducing risk-aversion also aliows to discuss issues of intertemporai consumption
 treated as an asset. and if for some parameter values the asset is in positive demand when it is sold at the fair price welfare-improving buybacks exis:.

When interested in smoothing consumption. a country may want to buyback debt if it experiences a particularly favorable state of nature, such as exceptional!'s high expor: revenues. so as to transier some of the revenues into the future. Investirg in debr repurchases, however, yields a positive rate of returin only in states of the warid in which debt is expected to be serviced. since oniy in those states a reduced face vaive of debt induces smailer tiansfers to creditors. But future repayment states tend to be high income states. and intra-temporai consumption smoothing would require transferring more consumption to the low-income states. If the country has access to an alternative asset that pays a rate of return comparabie to buybacks. and that ailows to transfer consumption to default states, such asset would dominate debt repurchases. In particular, foreign exchange reserves always dominate buybacks. even if the latter take piace at the fair price. if reserves do not increase the transfer to creditors in default states. In principle, officia. reserv:s cannot be attached by creditors. but empirical evidence on secondary market pzices suggests that the stock of reserves has a significant and positive impact on expected repayment. When this is the case debt buybacks at the fair price can be welfare improving.

Investment in physical capital is also anaiyzed. Here the results ciepend not only on how much of the returns lenders can seize in default states, but also on the corariance of
the 1 arginal prod t of capita: with consumption. If investment is in a ploduction that is positively correlated with aggregate output, it :ends to increase the volatility of aggregate consumption. In this case, even if the marginal product of capitad is equa! to the expected return on buybaciss, buybacks mas be welfare-improring.

The second part of the paper looks at how the distortion due to the lack of seniority can be eliminated if buybacks are accompanied by concessions such as a reduction in interest rates or new monev requirements. Schemes can be devised so thit no lender has an incentive to deriate from the agreement. For this to be the case, concessiors must be large enough to drive the secondary market price to what would be the post-buyback fair price if no concessions were made. Since bargaining between the parties is not lik. !y to remove the distortion compietely. there seems to be a rationaie for poiicy measures that enhance the attractireness of buybacks. Receni episodes of debt reduction agreements are discussed from this perspective.

Finally, other potential aspects (besides the lack of seniority) that may distort banks valuation of HIC debt are briefly discussed. The presence of mispriced federal deposit insurance, and the asymmetry of the corporate-tax system are likely to affect secondary market prices of HIC debt. The conclusions summarize results and open questions.

2. The Model.

The highly indebted country is a smanl open economy, that receives an endowmen: of a traded good v_{t} every period. v_{t} is the realization of an independentiy and identically distributed random process Y, with suppost Y. Let prob $\{Y \geq y\}=G(5)$ and $G^{\prime}(5)=$
g(y). The country has inherited from the past a stock of debt. in the form of a sequence of one-period pure discount bonds with fare ralue d_{t}. For simplici+r, let $d_{t}=d \forall t$. D is the present discounted vaiue of inherited debt at any date. The cr antry can aiso issue new one-period discount bonds b_{t}. Let $p\left(b_{t}\right)$ be the price at which these new bonds are sold. A negative vaiue for b_{t} will be interpreted as a debt buyback. For the moment no other asset is assumed to be available to the indebted country. At every period the country can choose to default on her debt. at the cost of being forced into financiai autarky and of losing an amount $\lambda\left(y_{t}\right)$. As usual, it is assumed that the loss is increasing with income, and that it accrues to the creditors. Under these assumptions. the maximum utility that the country can achiere : f it defaults at t is
\because

$$
V^{\mathrm{d}}\left(\Gamma_{\mathrm{r}}\right)=u\left(y_{t}-\lambda\left(y_{t}\right)\right)+\frac{\delta}{(i-\delta)} E[u(Y-\lambda(Y))]
$$

where $u(\cdot)$ is a concave utility index. δ is the rate at which the country discounts the future, and E is the expectations operator ${ }^{2}$. Notice that if default occurs, payments to creditors become state-contingent. and with $\lambda^{\prime}(\cdot)>0$ consump. is less variable than output. So debt with default risis offers some risk-shifting opportunities for countries, but

[^2]is far from allowing the country to fully insure against output fluctuations ${ }^{3}$.
The price at which new bond issues are purchased by competitive, risk-neutral investors depends on how the proceeds in case of default are shared among the creditors. This, in turn, depends on whether seniority rules are enforceable. Bulow and Rogoff (1988) argue that in sovereign lending ail lenders are treated pari passu. hence the default proceeds are shared in proportion to claims. This stance seems to be supported by the empiricai observation that recent debt reschedulings have treated all lenders in the same way. The price at which b_{t} nits of a new bond could be issued if seniority existed, which will often be referred to as the fair price for reasons that will become clear later, is
\[

$$
\begin{equation*}
\mathrm{p}\left(t_{\mathrm{t}}\right)=\beta\left[i \mathrm{i}-G\left({ }_{\mathrm{y}}{ }_{\mathrm{t}+1}^{*}\right) j\right. \tag{2}
\end{equation*}
$$

\]

where $B=(1+r)^{-i}$ and r is the ienders' npportunity cost of funds. \forall_{t+1}^{*} is the level of
 default. Tinis vaiue is in general a function of b_{t}. With seniority, and assuming that the outstanding debt is large enough not to be fully serviced with certainty, junior lenders do not expect to receive any of the default proceeds. On the other hand. as shown by Bulow and Rogoff (1988), without seniority the country is able to issue at price

$$
\begin{equation*}
p\left(b_{\mathrm{t}}\right)=\beta\left\{\left[1-\mathcal{G}\left(\mathrm{y}_{\mathrm{t}+1}^{*}\right)\right\}+\phi\left(\mathrm{g}_{\mathrm{t}+1}^{*}\right)\left(D_{\mathrm{t}}+b_{\mathrm{t}}\right)^{-1}\right\} \tag{2}
\end{equation*}
$$

${ }^{3}$ Some authors. such as H. Grossman and J. Van Hupck (1988). T. Worrall (1990), and recently K. Kletzer and B. Wright (1990), hold the view that banks and sovereign borrowers write an implicit contract that (except for default states) mimicks a fully state-contingent contract. This view seems at odds with the fact that countries default when they are hit by bad shocks. rather the:- the other way arcund.
where

$$
\phi\left(J_{5+1}^{*}\right)=\int_{Y_{t+1}^{d}}\left[\lambda(5)+\frac{E \underset{i}{ }(Y)}{r}\right] \delta(5) d 5
$$

is the expected value of the default proceeds at t. $Y_{i=1}^{d} \subset Y$ is the set of default states at $t+1$. The difference between the iwo prices, oi course, depends on the size of λ, on the likelihood of a default. and on the value of debt outstanding. If the country is buying back debt, the presence of junior creditors aliows to repurchase at a lower price. Withou: seniority rules: by increasing the level of debt the country reduces the value of oid creditors' claims, while debt buybacks have the opposite effect.

The lack of seniority has a startling side-effect, when borrowing behavior is examined. Notice that if debt is large enough that $G\left(\mathrm{y}_{\mathrm{t}+1}^{*}\right)=1$, the issue price is zero with seniority, maaning that no new borrowing is possible, as it should be. Inspection of (2^{\prime}), on the other hand, reveals that this price is positive for any bounded amount of debt. But this means that the country can raise any bounded amount of money without increasing furure payments, as long as it offers a high enough interest rate. The new loans are effectively paid off by reducing payments to existing creditors. In such a framework, no lending would arise in equilibrium. Eithe: vanks expect to be able to enforce their seniority rights. or ther tacitly collude. and refuse to extend new loans at high interest rate beyond a certain thresiold. in practice, most HiCs are unable to increase their long-term borrowing even though they are paying low interest rates on it. Short-term credit. which typicaily carries larger spreads, has not increased but rather diminisned since the early

180s. At least at first inspection. the tacit collusion hypothesis seems the most likely. A more detailed anaiysis of this issue is left to future extensions ${ }^{2}$. For the purposes of this model. it will be assumed that ienders collertively impose a ceiling \bar{j} on the total amount of indebtedness of the country. The exact value of \bar{b} has no bearing on the analysis.

Let $\epsilon_{t}=-\frac{b_{c}}{p_{t}} \frac{\partial p_{t}}{\partial b_{t}}$ be the inverse of the elarticity of the demend for new bonds. Then using (2')

$$
\begin{equation*}
s_{t}=\frac{b_{t}}{p\left(b_{t}\right)} p\left({ }^{*}{ }_{t+1}^{*}\right)\left(D_{t}+b_{t}\right)^{-2}=\frac{b_{t}}{\left(b_{t}+D_{t}\right)}\left\{p\left(b_{t}\right)-\{1-G(\cdot)] \beta\right\} \tag{3}
\end{equation*}
$$

\bar{r} or smaii duydacks ϵ_{t} is ciose to zero, and it is aiways iess than one.
Let's now turn to the decision problem of a planner within the indebted countre.
Define the indicator function ϕ_{t} that takes the value 1 if the country repays and zero if it defaults. The problem is to choose values of c_{t}, ϕ_{t}. and b_{t} that solve

$$
\begin{gathered}
\max E_{\hat{i}} \sum_{t=1}^{\infty} \delta^{t} u\left(c_{t}\right\} \\
\text { s.to } c_{t} \geq \hat{U}, \dot{b}_{0}=\hat{0}, \phi_{t} \in\{0, i\}, \dot{b}_{t} \leq \bar{b} \\
c_{i}=y_{t}-\phi_{t}\left[b_{t-1}+d-p_{t}\left(b_{t}\right) b_{t}\right]+\left(1-\phi_{t}\right) \lambda\left(y_{t}\right) \\
\phi_{t}=0 \forall t>\tau \text { if } \phi_{\uparrow}=0
\end{gathered}
$$

[^3]This problem can be rewritten in a recursive way. Let's drop the subscript t and dencte by a prime rariables pertaining to the next period. The solution to the planner's problem is a ralue function

$$
V(\mathrm{D}, \mathrm{y})=\max \left[\mathrm{V}^{\mathrm{I}}(\mathrm{~b}, \bar{y}) \cdot V^{\mathrm{C}}(\mathrm{y})\right]
$$

where V^{d} is as defined in (1) and V^{r} is the value function under repayment. defined as

$$
\begin{gathered}
V^{z}(b, v)=\max _{b^{\prime}} u\left(c_{\bar{i}}\right)+\delta E_{t}\left\{\max \left[V^{\tau}\left(b^{\prime}, y^{\prime}\right), V^{d}\left(y^{\prime}\right)\right]\right\} \\
\text { s.to } b^{\prime} \leq \bar{b}
\end{gathered}
$$

where $c_{r}=y-d-b+p\left(b^{\prime}\right) b^{\prime}$. At every period the default level of income is implicitly defined by

$$
V^{r}\left(b, y^{*}\right)=V^{d^{\prime}}\left(y^{*}\right)
$$

Let μ_{c} be the multipier associated with the constraint on the volume of borrowing. The first order and envelope conditions for this problem yield

$$
\begin{equation*}
V_{1} \mathrm{I}_{1}(\mathrm{~b}, \mathrm{y})=-\mathrm{u}_{1}\left(\mathrm{c}_{\mathrm{z}}\right) \quad \forall \mathrm{g} \in Y_{\mathrm{r}} \tag{5}
\end{equation*}
$$

where ε is defined in (3) above. The complementary slaciness conditions associated with the credit constraint are
(6)

$$
\mu(b-5)=0, \quad \mu=0
$$

Notice that default is more attracive when income is low, for two zeasons: The loss $\lambda(\mathrm{y})$ is smailer when is iow. and the future expected vaiue of repayment is likely to be smalier. since b^{\prime} : is larger for low y and V^{r} is a decreasing function of b.

If the credit coustraint is not binding. manipulating (4) and (5) vields

$$
\begin{equation*}
u_{1}\left(c_{i}\right)=\left[\frac{\varepsilon}{\left[p\left(b^{1}\right)\left[1-\epsilon_{]}\right]\right.}\right] \int Y_{\Gamma}^{\prime} u_{1}\left(c_{\Gamma}^{1}\right) g(y) d y \tag{7}
\end{equation*}
$$

Define expected marginà utiiity conditionai on repayment

Hence (7) becomes

$$
\mathrm{E}\left[\frac{\delta u_{1}\left(c_{\Gamma}^{!}\right)}{u_{!}\left(c_{r}\right)} ; Y_{\Sigma}^{!}\right]=\frac{\left[i-G\left(r^{* \prime}\right)\right]}{\left.p\left(b^{\prime}\right)!1-\epsilon\right]}
$$

If default occurs with zero probability and the country behaves like a small agent ($\varepsilon=0$), at an optimum the expected marginai rate of suhstitution across periods is equal to the
risk-free interest rate $(1+r)$. since when $G\left(y^{* \prime}\right)=0 p\left(b^{\prime}\right)=3=11+r^{1-1}$. In this case. there is perfect consumption smoothing over time, although no consumption smoothing across states of nature: With no asset paying a state-contingent return the coustry cannot obtain any insurance. When the current va'ue of y is large, the country wants to reduce the stock of debt through buybacis.

On the other hand, with a positire provain ai inian an. \because as the on'z asse: available. income can be transferred only across repayment states. The expected dona yield is equalized to the marginal zate of substitution conditional on repayment occurring in the next period. With seniority, $\mathrm{p}\left(\mathrm{b}^{i}\right)=\beta\left[1-G\left(y^{* \prime}\right)\right]$, and the bonds are expected to yield the risk-free interest rate, as it shou'd be since lenders are competitive and risk-neutral. In this sense. the price of debt with seniority is fair. while under the pari passu ru'ョ new borrowing is too cheap and debt buybacks too expensive. At the fair price,

$$
E\left[u_{1}\left(c_{r}^{1}\right) \mid Y_{r}^{\prime}\right]=u_{1}\left(c_{1}\right)
$$

Buybacks are welfare improving if the current income is so favorable that it exceeds expected future income in repayment states. If the probability of default is large. Y_{I}^{1} contains only the upper tail of the distribution of Y, and the probability that a state of the world in which buybacks are needed is smali. Hence. it is less likely that countries whose debt is sold at very large discounts could benefit from a repurchase. Note, however, that Y_{r}^{1} is the set of repayment states after the buyback.

A second distortion comes from the fact that the country is likely to behare as a large agent. an take into account the effects of increased voiumes on the price. With $\epsilon \neq 0$. both buybacks and new borrowing take place in smalle: quantities.

Finally. if the credit constraint is binding no new borrowing is possible even if there is an unfarorabie realization, and the exient of iniertemporal consumption smoothing that can be achieved is very smali.

3. Reserve Accumulation.

The set-up proposed in the preceding section. although it highlights the role of bank debt in intertemporal consumption smoothing, is too restrictive to realistically describe the menu of assets available to a highly indebted economp. Countries can accumulate reserves or physical capital as an alternative to debt buybacks when they want ic :ransiter consumption to the future. Moreover. asset accumuiation allows to transfer consumption also to default states, which is impossible if only debt buybacks are permitted. This option is very valuable if states of the world in which default occurs tend to be low-consumption states. On the other hand, if more reserves or more physical capital increase the transfer to creditors in default states (because for instance they can be partially seized), there is an incentive not to accumulate therr.

Let's assume that the debtor country can accumulate foreign exchange reserves s_{t} that gield a (gross) rate of return equal to $\hat{\gamma}$. Suppose for the moment that the iransfer to creditors if defauit occurs does not depend on the level of reserves. Under these assumption the utility from defaulting at t is defined recursive!y as

$$
\begin{gathered}
r^{\left.\cdot \dot{\mathrm{a}}(s, y)=\max _{s} u\left(c_{d}\right)+\delta E V^{\dot{d}}\left(s^{\prime}, s^{\prime}\right)\right]} \\
\text { s.to } s \geq 0
\end{gathered}
$$

where $c_{d}=5-\lambda(5)+\gamma s-s^{\prime}$. At an interio optimum the following condition holds

$$
V_{1}^{\dot{Q}_{1}}(s, f)=\gamma u_{1}\left(c_{d}\right)
$$

The default level of output $y^{* \prime}$ can be obtained as in section 2. Since reserves do not affect proceeds in case of default. the expressions for $p(b)$ derived in section 2 still hold. To keep things simple, throughout this section it with be assumed that the country takes the price of bonds as parametric, so $\epsilon=0$. The value function in repayment states is now

$$
\begin{gathered}
V^{r}(s, b, v)=\max _{s, b} u\left(c_{i}\right)+\delta E \max \left[V^{r}\left(s^{\prime}, b^{\prime}: v^{\prime}\right), V^{d}\left(s^{\prime}, y^{\prime}\right)\right] \\
\text { s.to } b^{\prime} \leq \bar{b} \cdot s^{\prime} \geq 0
\end{gathered}
$$

where $c_{r}=g-(d+b)+p\left(b^{\prime}\right) b^{\prime}+\gamma s-s^{\prime}$. Let η be the multiplier associated to the constraint on reserves. if the credit ceiling is not binding, the first order and envelope conditions yield

$$
\begin{align*}
& u_{1}\left(c_{I^{\prime}}^{\prime}\right)=\delta \gamma\left[\int_{L} Y_{:}^{\prime} u_{1}\left(c_{I^{\prime}}^{\prime}\right) g(v) d y+\int Y_{\dot{d}} u_{!}\left(c_{\dot{Q}}^{!}\right) g(v) d \overline{]}+\eta\right. \tag{9}\\
& u_{1}\left(c_{r}^{i}\right)=\frac{\delta}{p\left(b^{\prime}\right)} \int Y_{r} u_{1}\left(c_{r}^{i}\right) g(y) d y \tag{10}
\end{align*}
$$

while the complementary slackness conditions are

$$
\eta s=0, \quad \eta \geq 0
$$

The first equation is the demirative of the objective function with respect to reserves. Since reserves increase future utility in both repayment and default states, the marginal utility of curient consumption musi be equal to expected future marginal utility over all possible states. Combining (9) and (10) and rearranging

$$
\begin{equation*}
E\left[u_{1}\left(c_{d}^{\prime}\right) ; Y_{d}^{\prime}\right]=E\left[\left.u_{1}\left(c_{\frac{1}{\prime}}^{\prime}\right) \right\rvert\, Y_{r}^{\prime}\right]\left[\frac{1-G\left(r^{* 1}\right)}{G\left(y^{* 1}\right)}\right]\left[\frac{1-p\left(b^{\prime}\right)}{p\left(b^{\prime}\right) \gamma}\right] \tag{11}
\end{equation*}
$$

The meaning of this equation becomes clear once we notice that if $p\left(b^{\prime}\right)$ is the fair price and if reserves pay the risk-free rate $\left(\gamma=\frac{1}{\beta}\right)(11)$ becomes

$$
\mathrm{E}\left[u_{1}\left(c_{\Gamma}^{1}\right) \mid Y_{\Gamma}^{\prime}\right]=\mathrm{E}\left[u_{1}\left(c_{\dot{d}}^{1}\right) \mid Y_{\mathrm{d}}^{1}\right]
$$

At an optimum. the marginal rate of substitution betwren default and repayment states must be equal to one: With two assets, one that pays a negative return in repayment states and nothing in default states. while the other pays a fixed return in every state, the country can obiain some insurance. If there is seniority and $\gamma=\frac{1}{3}$, the insurance is offered at fair terms. and expected marginal utilities are equalized across states.

Since default states tend to be jow-income states, expecied marginai utilities can be equalized only through accumulating new debt. which is the only way to lower consumption in repayment states without reducing consumption in default states as wel..

 of reserves ireducme tuture coasumptions. Wut at the same time inciedse debt whoom
 default states are low-income states. and 11 reserves can be arcumuiated at the risk-itre rate without increasing the traste: in creators ir case of defabl, tuybarks are diwab c.............. exen it inav take viare at the tarr price.
 country perpetually increases her stock of debt. Since the levei of reserves fluctuates depending on the state of nature the ne: st ch of foreign assets in the our:y fiuntuates as weil. This strange outcome stems firm the eneral lack of financiaj instruments to msure against future aggregate shocks. If there was an asse: paying a return in default states alone. debt would be run down when current income is large.

The assumption that countries ran hold reserves without increasing defald: payments at all seems extreme. Empiricai evidence suggests that reserves do affect -xpected repayment: Both Arharya and Diwan (1983) and Ozler and Huizinga (19G0) find a positife and significant coefficient for the reserve-to-GNF ratio in regressions expiamme the secondary markei price of debi. This is pazaling since in primizin offiriai reserves cannot be attached by reditors according to international law isee 1). Folkerts-lamaan

[^4]1'4sills. In practice there mav be doubts as to whether this aspect of soverengn mmunty
 frozen in 197°). for instance) Such ruies alwavs depend on the willngness of the lending aintry's güremmeri ic couperate, which is guided by political considerations that are hard to forespe

Another, perhap, more appealing, argument in explain why reserves increase payments to creditors has to do with the interpretation of the defauit transferi. In section 2 it was suggested that $\lambda_{1} \cdot$: reflects the ability of creditors to punish a default. Bu: this need not always be the rase: To service foreign debt. HIC governments not only have to be w:ling :a do sc, but they must be able to generate a sufficiently large budget surplus iu finance the payments. This internal transfer may often be probiematic in countries in which the tax-base is eroded by tax-evasion, capital flight, and political constraints. The government ran try to increase domestic borrowing. or use the inflation tax. but both these remedies can on!y raise a limited amount of funds. If this domestic-finance constraint is tighter than the no-default constraint for some values of \mathbf{y}. there is a region in which the transfer to credit or depends on the size of the government's budget surplus. In this region, foreign exchange reserves (which are owned by the Central Banis. a part of the government) increase the transfer to creditors one-for-one.

A third reason why HICs may be reluctant to keep a large volume of reserves is if they expert foreign aid (or concessional lending) to come to their rescue when they are hit by a bad shock. Countries that have large foreign exchange reserve holdings are not likely

[^5]to recenve much aid. so the value of the expected subsidy from this mbin it msurance
 checking whether the inflow of concessional lending and foreign aid is negativeiv related 10 the level of reserves ${ }^{8}$.

As one mav expect. if reserves increase default transfers and this effect is strong enough, investment in debt buybarks emerges again as a possibly attractive asset. Let default proceeds be now $\lambda(y, s)$, with $\lambda_{2}>0$. Solving for the optimal post-default path under this set-up will gield the optimal sequence of reserve holdings s, which in turn determines the equilibrium value of the secondary market price. Going back to the necessary conditions for optimalits, equation (11) now becomes

$$
\begin{equation*}
E\left[u_{1}\left(c_{d}^{\prime}\right)\left(1-\lambda_{2}\right) \mid Y_{d}^{\prime}\right]=E\left[u_{1}\left(c_{r}^{\prime}\right) \mid Y_{\mathrm{r}}^{\prime}\right]\left[\frac{1-G\left(y^{* 1}\right)}{G\left(y^{* i}\right)}\right]\left[\frac{1-p\left(b^{\prime}\right) \gamma}{p\left(b^{\prime}\right) \gamma}\right] \tag{12}
\end{equation*}
$$

Now some of the returns from reserves are taxed away in default states. So the beneficial insurance effects of reserves are watered down, while their overall expected return falls below the risk-free interest rate. For a sufficiently large λ_{2}, the country may benefit from buybacks at the fair price, if a favorable realization of y occurs: The country wants to transfer consumption to the next pericd. But this is possible only to the extent that asset arcumulation does not result in an increase of payment to creditors. In repayment states, payments are limited by the size of the obligation, so both a debt buyback and reserve accumulation are effective in transferring consumption to those states. Transferring consumption to default states is more problematic; because payments are determined

[^6]
 maner is lager hlles womld save more and they would use teser". . ion investment in
 explicitly statecontingent.

Nute that if the cuntry has a linedi winty function, buydacks at the fais price aiwavs dominate reserves. as tong as $\lambda_{2}>0$. With risk-aversion. on the other hand the size of λ_{2} matters, and it is therefore rucial torvaluate empirirally the degree by which reserves are taxed away by creditors. Cnfortunately. the two empirical studies mentioned above suggest very different sizes for λ_{2}. Ozier and Huizinga obtain an extremely smal! coetficient. while Acharya and Diwan a very large one. Assuming that λ is homogeneous of degree one in reserves, with a debt to GNP ratio of 0.72 , an interest rate of 3% and a 50% secondary market discount. Acharya and Diwan's reanlt imnlv an nemonent vaiue of λ_{9} over defau'i states of 0.74 . This means that if the probability of defatilt is less than $74 \%, \lambda_{1}$ is on average greater than one. On the other hand. this parameter would be close to zero if Ozler and Huizinga's values are correct. Obviously, more empirical work is needed to sclve the issue.

4. Investment in Physical Capital.

The main difference between investing in foreign exchange reserves and in the production :s output (aside from differences in expected rates of return) is that the latter: yields random returns. For a risk-averse country, the attractiveness of investinent will then generally depend on the covariance beiween the marginal product of capital and
marginal utility. This section examines the case in which investment is in the production of more of the only good in the economy (output), and its marginal product is positivels correiated with current consumption. This would be the case of an HIC investing in the production of he: export staple, for instance. Since the country is generally unable to obtair insurance against aggregate shocks. this type of investment has undesirable properties from the point of view of consumption smoothing. Hence, even if the expected marginal product of capital is above the risk-free rate and returns from investment do not increase default transfers, a buyback at the fair price can be welfare improving.

Suppose that output $\boldsymbol{\nabla}$ is now produced by means of capital, and let $\mathbf{w} \mathbf{f}(\mathbf{k})$ be the production function. \mathbf{w} is the realization of an i.i.i. . productivity shock \mathbf{W} that takes values in some set $W . G(\cdot)$ and $g(\cdot)$ are now the c.d.f. and p.d.f. of the productivity shock. For future reference, define \bar{w} to be the unconditional mean of $W, \bar{w}_{I}=E\left[W \mid W_{\Gamma}\right]$ the mean conditional on repayment in the next period. and $\bar{w}_{d}=E\left[W \mid W_{d}^{\prime}\right]$ the mean conditional on default in the next period. Let q be the rate of depreciation of the capital stock, and i_{r} be new investment. The raiue function under default is now

$$
\begin{gathered}
V^{\mathrm{d}}(\mathrm{k}, \mathbf{w})=\max _{\vdots} u[\mathbf{w} f(\mathrm{k})-\mathrm{i}-\lambda(\mathbf{w}, \mathrm{k})]+\delta \mathrm{E}\left[\mathrm{~V}^{\mathrm{d}}\left(\mathrm{k}^{\prime} ; \mathbf{w}^{\prime}\right)\right] \\
\text { s.to } \quad \mathrm{k}^{\prime}=\mathrm{k}(1-\mathrm{q})+\mathrm{i}
\end{gathered}
$$

(now the loss in case of default is a function of the capital stock as well). The value function in case of repayment is

$$
\begin{aligned}
V^{I}(k . b . w)= & \max _{\vdots} u\left(c_{r}\right)+\delta E \max \left[V^{r}\left(k^{\prime} ; b^{\prime}, w^{\prime}\right), V^{d}\left(k^{\prime}, w^{\prime}\right)\right] \\
& \text { s.to } k^{\prime}=k(1-q)+i . b^{\prime} \leq \bar{b}
\end{aligned}
$$

where $c_{r}=w f(k)-i-(d+b)+p(b)$ b. Let $f_{1}(k)=\frac{\partial f}{\partial k}$, and suppose $q=0$ for simplicity. Also take the case less farorable to buybacks. in which increased investment does not affect the loss in case of defauit. By combining first order and envelope conditions as in the previous sections, and if the credit ceiling does not bind, one gets

$$
p(b) u^{\prime}\left(c_{I}\right)=\delta \int W_{I}^{\prime} u^{\prime}\left(c_{I}^{\prime}\right) g(W) d W
$$

$u^{\prime}\left(c_{r}\right)=\delta\left[\int_{[} W_{r}^{\prime \prime}\left[w \hat{1}_{1}\left(k^{\prime}\right)+1\right] u^{\prime}\left(c_{\mathrm{i}}^{\prime}\right) g(W) d W+\int W_{d}^{\prime}\left[w f_{1}\left(k^{\prime}\right)+1\right] u^{\prime}\left(c_{d}^{\prime}\right) g(W) d W\right]$

Let $\left.\operatorname{cor}_{\mathrm{r}}{ }^{[} \mathrm{w}, \mathrm{u}^{\prime}\left(c_{\mathrm{r}}^{1}\right)\right]$ dencte the covariance between productivity and the marginal utility of consumption conditional on repayment, and analogously for cov ${ }_{d}\left[w, u^{\prime}\left(c_{d}^{1}\right)\right]$. Under the assumptions, these covariances are negative, since w is positively correlated with consumption. and marginal utility is a decreasing function of c. Let $w^{* \prime}$ denote the default Sevel of the shock. Combining the two equations above and using the definitions
where

$$
\mathrm{K}=-\left\{\left[1-\mathrm{G}\left(W_{\mathrm{r}}^{\prime}\right)\right] \operatorname{cor}_{\mathrm{r}}\left[w \cdot \mathrm{u}^{\prime}\left(\mathrm{c}_{\mathrm{r}}^{\prime}\right)\right]+\mathrm{G}\left(W_{\mathrm{d}}^{\prime}\right) \operatorname{cov}_{\mathrm{d}}\left[w^{\prime} \cdot \mathrm{u}^{\prime}\left(\mathrm{c}_{\mathrm{d}}^{1}\right)\right]\right\}\left\{\mathrm{G}\left(\mathbf{w}^{* \prime}\right),\left[w_{\mathrm{d}} \mathrm{f}^{\prime}\left(\mathbf{k}^{\prime}\right)+1!\right\}^{-:}>0\right.
$$

Except for the term K . equation (13) is just a modified version of (11). the corresponding optimal insurance condition under reserve accumulation. Afte: some manipulations it ca: be shown that if p is the fair price, and if the expected marginal product of capital $\bar{w} f^{\prime \prime}\left(\xi^{\prime}\right)$ $=:$, The product of the two terms in brackers on the RHS of (13) is equal to .. So if $K=$ 0 expected conditional marginal utilities would be equalized. But if \mathbf{w} is positively correlated with consumption, $\mathrm{K}>0$ and when bugbacks and investment gield the same rate of return the country wants to skew consumption towards repayment states. For K sufficiently large, this may require debt buybacks.

As in the case of reserves. it is likely that in default states some of the returns from new investment are captured by the creditors, which in turn makes transferring consumption to default states even costlier.

5. Negotiated Debt Buybacks.

The lack of an enforceable seniority structure in international sovereign lending makes it impossible for a country to repurchase her debt at a price corresponding to an expected return equal to the risk-free rate, even if lenders are risk-neutral. Lenders are willing to sell their loans only if they can get more than their opportunity cost of funds. These observations suggest that there is a case for subsidizing debt buybacks (and taxing new borrowing), or for promoting concerted agreements that make buybacks more attractive to debtors. In practice most large debt buybacks have taken place within a
broader concerted agreement, if nothing else because lenders must unanimously waive sharing clauses for buybacks to go through [see K. Froot (1989)]. Since buybacks at the market price make creditors strictly better off as a group. if countries bargain over a buyback deal they shouid be able to extract some additional concessions, even is international institutions do not intervene in the process.

The simplest way to remove the distortion in the buyback price would be to try to force creditors to sell at the fair price. Obviously, however. each individuai lender has an incentive to free-ride on such an agreement, since they make a rapital gain if they hold or to their claims. Fortunately, it is possible to design slightly more complicated agreements
 is the fair price. Two examples of such schemes are discussed here. The first one is a permission to buyback debt accompanied by a reduction in the interest rate on outstanding obligations. For an appropriate choice of interest rate reduction, the country can end up purchasing the debt at exactly the fair price, while no lender has an incentive to free-ride.

Let B be the amount of debt that the country wants to retire and g be the interest rate carried by debi maturing in the next period. The fair price for the buyback is then (all the rest of the notation is like in section 2)

$$
\mathrm{p}=\beta\left[1-\mathrm{G}\left(\mathrm{y}^{* \prime}\right)\right](1+\mathrm{g})
$$

If the country offers to repurchase at this price, and no interest rate reduction is granted. no lender would sell. The price at which lenders are willing to sell, if the interest rate on the outstanding debt is reduced by k is

$$
\left.\mathrm{p}^{*}=\beta!1-G\left(p^{* \prime}\right)\right](1+g-k)+\beta \varphi\left(\nabla^{* \prime}\right)(D-B)^{-1}
$$

If no lender should profit from free -riding it must be $p=p^{*}$. hence

$$
\left.\dot{x}=\boldsymbol{p}\left(y^{* \prime}\right\}\left\{!1-G\left(y^{* \prime}\right)\right\}(D-B)\right\}^{-i}
$$

The value of is iess than r if

$$
g\left[1-G\left(y^{* \prime}\right)\right](D-B)>\varphi\left(y^{* \prime}\right)
$$

Hence. if expected future interest payments exceed expected default proceeds. for any amount of debt that the country wishes to retire, there is a level of interest rate reduction such that the creditors are willing to seil at the fair price. After the deal. creditors are exactly as well off as they were before. If the country can credibly threaten not to buyback any debt unless enough interest rate reduction is granted, she can extract all the surplus and pay exactly the fair price. A more realistic bargaining outcome will leave some gains to the creditors. and the price at which the concerted buyback occurs would be somewhere between p and p^{*}. This means that the distortion is not compleiely removed. In this case there is an efficiency argument to subsidize debt buybacks. and the funds committed by international institutions to this purpose are not a pure transfer to the parties involved, but generate welfare gains.

An agreement of the type just described resembles the Chilean buyback of 1988. In that vear Chile had an unusually large trade surpius thanks to favorabie copper prices, and creditors agreed to allow the country to use CS $\$ 500$ million of reserves for debt buybacks
either on the secondary market or in private negetiations to be carried out in the next threz years. In the same fear, Chile obtained that the spread paid on outstanding loans be reduced to $13 / 16$ percent. In November. $\$ 299$ million of debt was retired at an average discount of 44 cents on the dollar, which was the secondary market discount [World Debt Tables (198仑 $-\hat{\delta} 9)$!. This episode seem to correspond well to the concerted agreement just described.
in the second type of concerted buyback a "new moner" requirement is imposed on barks that do not sein their debt at the buyback price. This scheme is discussed by Diwan and Kietzer (1990) in reference to the Mexican debt reduction agreement of 1989. This agreement was not a buyback, but a swap of debt for exit bonds. Since the exit bonds (a discount bond or a par bond with a lower interest rate) implied lower expected debt service debi reducion was achieved. To induce banks to agree to the swap, the exit bonds were enhanced in various ways through coliateral and partial guarantees. So the operation was similar to a buyback, in which the vaiue of the enhancements corresponds to the cash spent for direct repurchases. Banks were required to commit new funds in proportion of the exposure that was not swapped. This requiremert .s just a way to force creditors who do not exit to finance part of the buyback. Let x be the amount of new money (as a fraction of exposure) that lenders who do not sell their claims must extend. Notice that to achieve the desired level of debt reduction now the country has to retire more debt, since the new money increases total indebtedness. In particular, $B+x(D-B)$ will have to be repurchased. The price at which lenders are willing to sell. given that they have to relend a fraction x of residual exposure is

$$
p^{* \prime}=\left\{\rho\left[1-G\left(y^{*}\right)\right\}(1+g)+(D-B)^{-1} \beta \not \partial\left(y^{*}\right)\right\}(1+x)-x
$$

For every unit of debt not sold a creditor must invest x of new money which will yield an expected repayment equal to the expression in brackets. Th. value of x such that $p=p^{* 1}$ is

$$
x=\frac{i}{d}\left[\frac{\beta\left(\dot{j}^{\prime}\right)}{(D-B)}\right]
$$

where $d=1-B\left[1-G\left(y^{*}\right)\right](1+g)+(D-B)^{-1} S O\left(y^{* 1}\right)$ is the discount at which the dedt would be soid aiter the buyback, in the absence oi a new money requirement. Such a requirement is a transfer to the debtor because lenders are forced to issue at par loans that are traded at less than face vaiue. Another way of interpreting the formuia above is that what lenders gain on each unit of buyback $\left.\left(\beta, y^{* 1}\right)(D-B)^{-1}\right)$ must be exact! equa! tc what they iose ($d x$).

A debt buyback accompanied by a new money requirement has recently been carried out by the Philippines. US $\$ 1.3$ billion of debt was retired at a 50% discount. At the same time, US $\$ 714$ million in new money was extended, so that the buyback was more than fully financed by the creditors. Banks could still have been better off. if the market value of debt after the deal had increased sufficiently. In practice, the market value of debt fell from US $\$ 0.19$ billion to US $\$ 4.96$ billion, and banks lost from the Philippine buydack 9 . When countries can strike such good deals (or when creditors are so generous), it is not hard to buybacks can increase their weifare aside from intertemporai consumption smoothing considerations.

[^7]Finaily attempts to repurchase debt at above the market price sucn as the Mexican swap in 1988 [see R. Lambdany (1988)', and Chile's second buyback in 1989, resulted in very little debt being tendered. showing that more complex deals are necessary to deal with feee-riding.
5. More on the Leiciei $\underset{\sim}{\circ} \mathrm{C}=$: he Market.

Aside from the lack of seniority, other elements may put a wedge between the secondary market price of debt and the fair price. One of these elements is the presence of (mispriced) Federal Deposit Insurance (FDI) in the Cnited States. Since deposits are fully insured. and insurance premia do not depend on the riskiness of a bans's portfolio. the secondary market price is equa! to expected payments conditiona! on the bank not going bankrupt in the next period: Repayments occurring in bankruptey states go to depositors. as part of the bankruptcy proceeds. If the deposit were not insured, these payments would lower the interest rate on deposits. With insurance they simpiy accrue to the FDI. and since insurance premia are flat they do not affect banks' profits. If the probabilits of bankruptcy is not zero. the conditional expectation is smaller than the unconditional one, and the secondary market value of debt is lower than the present va!ue of expected repapments. This distortion tends to offset the distortion due to lack of seniority.
S. Ozler and H. Huizinga (1990) raise the issue of the effects of federal deposit insurance on secondary mariset prices. They find that the debt of countries to which baniss are more exposed trades at a higher price. This is explained through a model in which, because of FDI. banks do not care about expected repayments in bankruptcy states: If banks are very exposed to country A and country A repays, the bank is unlikely to go
bankrupt. Converseip, repayment by a small debtor do not affect the probability of bankruptcy. Since it is the returns in those bankruptcy states in which countries repay that are missing from banks' valuation. ceteris paribus banks value more debt of countries to which they are highly exposed. Consistent with the FDI hypothesis, Ozler and Huizinga also find that strengtinening capitai requirements would increase the market price of debt. -uniousif, however, they conclude that their findings "strengthen the arguments that buybacks may be harmful to countries ${ }^{1 "}$. In fact. debt buybacks ailow countries to take advantage of the presence of subsidized FD..

In a recent paper. A. Demirguc-Kunt and I. Diwan (1990) study the consequences of book-value regulations on banks behavior. Loans that are valued at a discount on the secondary market can be carried on the books at face vaiue, according to U.S. regulatory practices. If some of the debt is sold, howeser, the entire portfolio must be written down. Since a larger book value of asset allows to increase leverage, which in turn increases the implicit subsidy from the FDIC, selling debt at a discount generates an extra-cost to commerciai banks. This effect tends to bias secondary market prices upward. A study of the 1989 Brazilian rescheduling confirms that banks financial strength is positively correlated with their willingness to exit at a discount.

Another aspect of banks' environment that potentially distorts secondary market prices is the asymmetry of the tax system. In the U.S.: the tax system is not neutral with respect to the time pattern of profits and losses reported by corporations: Losses generate tax-credits that can be carried back up to tinree years into the past (meaning that banks san obtain a refund of taxes paid in the previous three gears up to the amount of the credit). If the tax-credit exceeds taxes paid in the previous three pears. losses can be carried forward for fifteen gears, but no interest accrues on them. This amounts to lending
to the government at zero interest rate. After a few vears of low profitability, the tax cost of posting losses can be very significant, and banks have an incentive to keep assets such as HIC loans at face value in their books until a period of profitability occurs. Banks who have no: recenily been and are not very profitable would demand a higher price for selling their loans on the secondary market. Hence. the asymmetry in the tax system tends to bias secondary market prices upwards. The size of the bias is going to be more significant in periods in which commercial baniks are not very profitable and interest rates are high.

6. Conclusions.

Whether a rational and optimizing government would ever repurchase debt on the secordary market if it could do so at a fair price is a rather complex issue. Debt buybacks are best viewed as the purchase of an asset. In the context of intertemporal consumption smoothing, countries are more likely to benefit from such a purchase when they experience unusuaily favorable levels of income (or foreign exchange earnings). The attractiveness of debt buybacks also depends on whether they pay larger expected rates of return than other assets. and on how the returns are dis ributed across states of nature. Debt buybacks should yield an expected return equal to the risk-free interest rate, if the distortion due to the lack of seniority rights in sovereign lending was removed. Returns, however, are concentrated exciusivels in non-default states, which tend to be high consumption states. So debt buybacks appear to be a rather unattractive asset from the point of view of insurance. Nonetheless, highly indebted countries may not have much better alternatives to cary consumption into the future: Accumulation of foreign exchange reserves could provide an expected rate of return equal to the risk-free rate in all states of nature, but for
a number of reasons (that need more careful theoretical and empirical investigation) it is likely to increase payments to creditors in default states. Large reserves are also likely to reduce the amount of concessional lending that the country can receive. When these effects are taken into account, reserves yield less than the risk-free rate in expected value, and the returns are skewed towards high income states.

As to investment in physical capital, if projects that yield large rates of return tend to be positiveiy correatea witn output aiso this aiternative is not very attractive from an insurance point of view. Moreover, investment does not provide an "efficient" way of transferring consumption to default states if the returns are partiaily appropriated by creditors. On the other hand, i^{\prime} the country has investment projects that tend to be negatively correlated with output and yieid a rate of return not too far from the risk-free rate, these projects should be preferred to debt repurchases.

From this perspective, attempts at eliminating the bias against ouybacks due to the absence of seniority should yield welfare improvements, at least under some circumstances. Burbacks that are accompanied by an appropriate reduction of the spread at which outstanding debt is rescheduled or by new money requirements can reduce the distortion, while requiring a minimum amount of coordination among banks. Both schemes have been :icilized successfully. Of course, if it was possible to create an enforceable seniority structure in sovereign lending the distortion would be directly eliminated.

Finally, the rate of return on buybacks is also likely to depend on the characteristics of the creditors. There are indication that the presence of (mispriced) federal deposit insurance tends to distort downwards the secondary market price of debt, thereby increasing the rate of return on buybacks. On the other hand. the requirement that forces
banks to write down to market value the entire portfolio of debt. if some of it is sold at a discount, tends to have the opposite effect. Also, the asymmetiry of the tax system is likely to bias upwards secondary market prices. in periods of low bank profitability. These zonsiderations suggest that more sophisticated modelling of the lenders' side of the market is needed to interpret observed secondary market priras correctly.

References

S. Acharya and I. Diwan. "Sovereign Debt Bupbacks as a Signal of Creditworthiness". PPR Working Paper .No. 318, The World Bank, December 1989.
J. Bulow and K. Rogoff, "Sovereign Debt Repurchases: No Cure for Overhang", NBER Working Paper 2850. 1989.
S. Claessens and I. Diwan, "An Analysis of Debt Reduction Schemes Initiated by Debtor Countries", PPR Working Paper No. 153, The World Bank, March 1990.
A. Demirguc-Kunt and I. Diwan, "The Menu Approach to Developing Country External Debt: An Analysis of Commercial Banks' Choice Behavior", The World Bank, August 1990.
I. Diwan and K. Kletzer, "Voluntary Choices in Concerted Debt Deals", mimeo, The World Bank. May 1990.
K. Froot. 'Buybacks. Exit Bonds, and the Optimality of Debt and Liquidity Relief'; International Economic Review, 1989.
P. Krugman, "Market Based Debt Reductions", forthcoming in J.Frenkel ed. Analytical issues in Debt. International Monetary Fund. Washington D.C.
F. Lamdany. "Bolivia. Mexico. and beyond...". mimeo. The World Bank. June 1988.
S. O'Connell. 'A Bargaining Theory of International reserves". mimeo. 1988
S. Ozier and H. Huizinga 'Secondary Market Prices for Developing Country Debt: The Role of Creditor Country Factors', mimeo, 1990.

1. Worrall, "Debt with Potential Repudiation", European Economic Review, July 1990.

World Bank, World Debt Tables 1988-89, Washington DC.

PRE Working Paper Senes

	Itle	Author	Date	Contact forpaper
WPS607	Abolishing Green Rates The Effects on Cereals, Sugar, and Oilseeds in West Germany	Donald F. Larson Simon Glance Brent Borrell Merlinda Ingco Jonathan Coleman	March 1991	D. Gustafson 33714
WPS608	Cross-Country Studies of Growth and Policy: Methodological. Conceptual, and Statistical Problems	Ross Levine David Renelt	March 1991	$\begin{aligned} & \text { CECMG } \\ & 39175 \end{aligned}$
WPS609	A Sensitivity Analysis of Cross. Country Growth Regressions	Ross Levine David Renelt	March 1991	$\begin{aligned} & \text { CECMG } \\ & 39175 \end{aligned}$
WPS610	Can Preshipment Inspection Offset Noncompetitive Pricing of Developing Countries' Imports? The Evidence from Madagascar	Alexander J. Yeats	March 1991	J. Jacobson 33710
WPS611	Tariff-based Commodity Price Stabilization Schemes in Venezuela	Jonathan R. Coleman Donald F. Larson	March 1951	$\begin{aligned} & \text { S. Lipscomb } \\ & 33718 \end{aligned}$
WPS612	Education and Productivity in Developing Countries: An Aggregate Production Function Approach	Lawrence J. Lau Dean T. Jamison Frederic F. Louat	March 1991	WDR Office 31393
WPS613	Price-Wage Dynamics and the Transmission of Inflation in Socialist Economies: Empirical Models for Hungary and Poland	Simon Commander Fabrizio Coricelli	March 1901	$\begin{aligned} & \text { O. Del Cid } \\ & 39050 \end{aligned}$
WPS614	Accountablity in Public Services: Exit, Voice, and Capture	Samuel Paul	March 1991	E. Miadrona 37496
WPS615	Socialist Economic Growth and Political Investment Cycles	Heng-fu Zou	March 1991	A. Bhalla 37699
WPS616	Optimal Nonlinear Income Taxation for the Alleviation of Poverty	Ravi Kanbur Michael Keen Matti Tuomala	March 1991	J. Sweeney 31021
WPS617	International Poverty Projections	Sudhir Anand Ravi Kanbur	March 1991	J. Sweeney 31021
WPS618	Poverty and Development: The Human Development Report and the World Development Report, 1990	Ravi Kanbur	March 1991	J. Sweeney 31021
WPS619	Foreign Direct Investment in Sub-Saharan Africa	Laurence Cockcroft Roger C. Riddell	March 1991	S. King-Watson 33730

		PRE Workng Papel		
	Itle	Auther	Date	Contact fer paper
WPS620	Have Commercial Banks Ignored History?	Sule Ozler	March 1991	S King-Watson 33730
WPS621	Sensible Debt Buybacks for Highly Indebted Countries	Enrica Detraglache	March 1991	S. King-Watson 33730
WPS622	How Factors in Creditor Countres Affect Secondary Market Prices for Developing Country Debt	Sule Ozler Harry Huizinga	March 1991	S. King-Watson 33730
WPS623	World Bank-Supported Adjustment Programs: 「ountry Performance and Effectiveness	Vittorio Corbo Patricio Rojas	March 1991	A. Oropesa 39075
WPS624	Choosing Policy Instruments for Pollution Control: A Review	Gunnar S. Eskelard Emmanuel Jimenez	March 1991	A. Bhalla 37699
WPS625	How Trade and Macroeconomic Policies Affect Economic Growth and Capital Accumulation in Developing Countries	Ramen Lopez	March 1991	K. Cabana 37946
WPS626	The Macroeconomics of the Public Sector Deficit: The Case of Colombia	William Easterly	March 1991	$\begin{aligned} & \text { R. Luz } \\ & 39059 \end{aligned}$

[^0]: The PRE Working Paper Series disseminates the findings of work under way in the Banki Polsy, Revearch, and Extemal Affairs Complex. Anobjective of the series is to gethese findings out quickly, esen if presentationsare lexs dan fully pollahed.

[^1]: For a survey. see S.Claessens and I. Diwan (1988).

[^2]: ${ }^{2}$ The model can also be interpreted as one in which in default states bargaining between the country and her creditors takes place. In this case $\lambda\left(y_{t}\right)$ is the solution to the bargaining game that takes place in every period. In general, it could be the case that at least for some histories of the shock the transfer $\lambda\left(y_{t}\right)$ depends on the face value of accumulated debt. if the country can return to soivency with some probabiiity. To keep the probiem tractable, this possibility is reglected here.

[^3]: not observed in sovereign lending, while they exist in domestic credit markets (junt-bonds and credit cards, for instance). Without seniorits and with substantial default proceeds to be appropriated, high-interest rate debt is a way of "ripping off" existing lenders, and the financial community would sanction it. This is not the case when seniority works and default proceeds are small. as in domestic lending.

[^4]: ${ }^{3}$ As S. O'Connell (lamol puts it. the country borrows to finance tie arcumulation of reserves.

[^5]: ithis empiricai evidence also contradicts O^{\prime} Connell's bargaining model. in which reserves increase the debtor's bargaining power in defauit states. and hence should reduce the transfer.
 iI thank Eduardo Fernandez-Arias for suggesting me this line of reasoning.

[^6]: ${ }^{8}$ In this case, the first best policy would be for in:ernational institutions not to make aid a function of the level of reserves. A precommitment problem obviously arises here.

[^7]: It is possible to snow that buybacks financed by creditors make the creditors better off if and oniv if the couuntry is on the wrong side of the dedt-Lafier curve, that is if the elasticity of the secondary market price to the face value of debt is greater than one

