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1. INTRODUCTION

Domestic markets for industrial products are often small in developing countries.

Accordingly, scale economies in the manufacturing sector can critically influence market

structures, growth prospects, and trading patterns. While the potential importance of these

effects has long been recognized by students of development, there has been very little

convincing research on their empirical significance.' This study exploits plant-level panel

data from Chile to provide direct new evidence.

The existing empirical literature is cloudy partly because data in developing countries

are scarce. But more importantly, regardless of country, there are serious problems with the

methodologies that have been used to document returns to scale (RTS). At least four

approaches are in the literature. The first amounts to asking managers what size they would

need to be to reach maximum efficiency. The problem with this methodology is that managers

have some sense for the profitability of plants at alternative sizes, but they are likely to have

trouble isolating the effects of technology from other factors. For example, when market

power is exercised by large firms, managers may confuse their relative profitability with scale

efficiency. Also, even if big plants do have lower unit costs, it may be because plants with

superior management and/or market niches tend to grow largc, while others shrivel and die.

Hereafter this phenomenon will be referred to as the 'Demsetz effect".2

1 For example, Bhagwati (1988) laments that '. .. although the arguments for the success
of the export promotion strategy based on economies of scale and X-cfficiency are plausible,
empirical support for then is not available." Similarly, Rodrik (1988) notes that ". . . there is
practically no direct evidence on the importance of scale economics in specific industrial
sectors of the developing countries.' Finally, Berry (1990) concludes that 'neither the evidence
on the relation of size to unit costs or profits nor the implications of survival analysis suggest
a prevalence of economies of scale, scope, or size in LDCs. But neither do thcse data contradict
such a possibility."

2 Demsetz (1973) argued that this evolutionary process explains the correlation between
size and profitability typically found in industrialized countries. Jovanovic (1982) has
formalized the argument in a dynamic learning model where firms discover their efficiency
through market experience, and eventually expand or exit.
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The second approach is to ask engineers how big plants should be in order to be

efficient. Berry (1990) notes that this type of analysis, in addition to being very costly, has its

own biases. Engineers typically hold the basic technology fixed while va-ying output levels,

so alternative technologies that are efficient at a small scale are ignored, and returns to scale

tend to be overstated. Also, engineers tend to ignore non-production costs (e.g., management

and distribution) that may rise more than proportionately with plant size.

Stigler (1958) advocated a third approach. He argued that industries exhibiting a wide

range of plant sizes in perpetuity must have flat long run average cost curves. The obvious

problem with Stigler's 'survivor test' is that it presumes perfect competition, long run

equilibrium, and no uncertaintv. As Jovanovic (1982) and Jovanovic and Lach (1989) have

shown. plants of varying efficiency can coexist indefinitely if they are learning about the

market and thcir own technology. Product market imperfections confound matters further, as

in Pakes and McGuire (1991).

Finally, econometric techniques can be used to estimate cost functions or production

functions that allow the investigator lo infer the relation between size and efficiency. One

problem with this approach is that it requires data on plants with varying degrees of scale

efficiency. If Stigler's survivor effect is operative, competition will omit inefficient plants

from the sample and prevent the cross-sectional identification of returns to scale.3 On the

other hand, among industries characterized by "dominant-fringe" market structures, the sheer

number of fringe firms may render the influence of the major producers negligible in standard

estimators. Econometric studies based on cross-sectional variation arc also likely to confuse

Demsetz effects with scale effects, and to suffer from significant measurement error bias. The

latter problem is especially acute for capital stocks and factor prices.

Despite the drawbacks of the econometric approach. sevcral considerations lead us to

3 More subtle selectivity problems can bias studies based on panel data, as will be seen
later.
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use it in this study. First, we have access to a large panel data set that allows us to deal with

Demsetz effects and measurement errors.4 As will be seen, both of these phenomena turn out

to be important. Second, unlike engineering studies and attitudinal surveys, panel-based

econometric estimales infer RTS from the obsen'ed temporal variation in inputs and outputs.

Hcnce they come closer to describing the realized scale effects that accompanied demand shifts

and policy changes during the sample period.

The paper is organized as follows. Section 2 presents our assumptions regarding

technology and behavior. Then S-ction 3 discusses alternative estimators that deal with

'differcnt aspects of the econometric problems we face. Finally, applications of the alternative

estimators to various 3-digit and 4-digit industries are reported in Section 4. and an attempt

is made to determine which RTS estimates are the most reliable.

f . TECHNOLOGY AND BEHAV')R

A. Technology

Our interest is in estimating plant-level RTS, controlling for other determinants of the

relationship between inputs and outputs. To this end, we begin with a simple Cobb-Douglas

representation of technology for a particular industry:

(2.1) Yit = &Lit + IK j + eit .

Here i = 1, , N is the firm subscript, t = 1, , T is the time-period subscript, and the industry

subscript is suppressed. Y is the logarithm of real value added, L is the logarithm of labor

(measured in efficiency units), K* is the logarithm of the true capital stock, and eit is an error

4 Our data cover virtually all Chilean manufacturing plants with at least ten workers
over the time period 1979 - 1986. They were supplied to the World Bank by the Chilean
government in connection with the research project "Industrial Competition, Productive
Efficiency, and Thtir Relation to Trade Regimes," (RPO-674-46).
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term.

The error term is assumed to have three components that are unobscrvable to ;he

econometrician:

(2.2) e*, = pi+ .-t + 'it-

The first component, pi, is a plant-specific effect that reflects heterogeneous technologies and

management skills. The second component, ;t, is a time effect that is common to all plants.

It relects RTS at the industry level. general changes in capacity utilization, and technological

innovation. Both pji and rt may be correlated with the exogenous variables. Remaining noise

is represented by tit, which is assumed to be identicaliv independently distr;buted across plants

and time and uncorrelated with the exogeno is variables.

B. Behavior

To characterize producer behavior we adopt the perspective of Olley and Pakes (1990)

and Pakes and Ericson (1988). Given current capital stocks, managers are presumed to

maximize expected future profits by deciding whether to operate in the coming period, and if

so. what investment and employment levels to choose. Becausc period t profits depend on P

and rt, and because managers are likely to have information on both of these error components,

investment and employment levels are generally correlated with the disturbance eit. More

precisely, under reasonable assumptions, the cross-sectional correlation between plants'

productivity and their capital stocks is positive, so ordinary least squares estimates of equation

5 Although this functional form is restrictive, it can he made more flexible bv allowing
the coefficients to vary across groups of plants. In particular, the coefficients can be indexed
by the size range of firms being examined, thus providing a basis for testing whether measured
returns to scale depend upon plant size (cf. Mellor (1975) and Griliches and Ringstad (1971)].
Our experimeuts along these lines (available on request) revealed no clear tendency for RTS
to rise or fall with plant size, so we do not pursue this issue further herein.



(2.i ) tend to overstate returns to scale.6 This is the Demisetz effect, and any consistent

estimator of production technologies must control for its presence. Factor demands are

uncorrelated with ti so long as its realizations are unanticipated by managers.

3. ESTIMATORS

A. Dealing Witb Plant and Time Effects

The bias due to Demsetz effects can be elimi,nated if the error components Pi and Tt can

be removed from the production function disturbance; in this subsection we review the

standard ways of doing so. For the time being it is convenient to assume that all explanatory

variables are measured without error; this assumption will be relaxed in Section B.

The Within Estimator

Perhaps the most common way to sweep out the plant effecis, pi, is known as 'within'

estimation. It amounts to including plant-specific dummy variables in the regression, which

is equivalent to performing OLS on variables expressed in terms of deviations from their plant-

specific means. That is, any variable x;t appearing in the regression is replaced by iit:

T
(3.1) i = xj -(lI/T) E xit, i= 1, ..

The within estimator identifies structural coefficients bv exploiting the temporal variation in

the data. The time effects x, may remain a source of bias but they can be swept out by

including annual time dummies in the model or by further transforming all variables i,i to be

6 Formal representations of the correlation between market share and productive
efficiency may be found in the industrial evolution models of Pakes and Ericson (1988), Pakes
and McGuire (1991), and Jovanovic (1982). Of course, it is easy to establish this correlation
in static frameworks (cf. Zellner, Kmenta, and Dreze (1966), Mundlak (1978), and Chamberlain
(1984)1.
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deviations from their yeaf-specific means. Elimination of time effects also serves to control

for sector-wide measurement errors in ouptut growth due, for example. to inappropriate price

deflators.

The Difference Estimators

An alternative way to sweep out plant effects is to difference the data. The jth

'difference estimator" amounts to OLS on variables transformed as:

(3.2) dJxi, = xt - xit-,;

where dJ denotes the difference operator. If there are T time periods in the panel, any j value

between I and T- I may be chosen.

Like the within estimator, this technique permits consistent estimation of the structural

coefficients when plant effects are correlated with included explanatory variables. Time

dummies can be used to control for variation through time that is common to all plants, as

before. However, unlike the within transformation, the difference transformation yields

transformed disturbances that involve only tit and Ei, j, rather than than a weighted average

of all years' disturbances. This feature of difference estimators affords morc flexibilitv than

the within estimator when treating measurement error or simultaneity problems. For this

reason we base most of the remaining analysis on difference estimators.

Li Dealing with Measurement Error

The Problem

Thus far we have ignored the possibility of measurement error in observed capital

stocks. If this assumption is unwarranted, none of the estimators described above is consistent.

We now discuss the types of bias that this problem is likely to introduce and estimation

techniques that eliminate them. Throughout, we assume that the measurement error plagues
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only the econometrician: plant managers are presumed to know ,it when they choose factor

stocks.

Suppose the capital stock observable to the econometrician may be written as the 'true*

stock, plus noise:

(3.3) Kit,5 Kit + vil,

where Eivit, = 0. var(vi,l = ay, rj = corr(vit,v.t.j), and vit is uncorrelated with pi, tt, and ei,.

The jth difference estimator taj, bh) for (a, 3) emerges from OLS estimation of:

(3.4) djYi1 = a(dJL,t) + P(diKil) + dJ(et - vi).

Generalizing Griliches and Hausman (1986), it can be shown that the associated RTS estimator

(aj + bj) has asymptotic bias (n-os, 1 fixed):

(3.5) plim l(aj + bj) - (a + P)J = 2(y - 1)(1 - r.)po2 / var(dJKP)

Hcre y is the population r,gression coefficient when diL is projected on diK and time dummies,

ard var(dJKp) is the residual variation in the projection of dJK on d1L and time dummies.

Notice that the bias is negative so long as y < 1, and its absolute magnitude depends iirectly

on the noise-to-signal ratio, 2vI / var(dJKP).

As Griliches and Hausman (1986) note, noise-to-signal ratios depend on the relative

magnitudes of serial correlation in Kp and v, which in turn depend on j. If KF is covariance

stationary, then var(djKp) = 21var(K ;)(t-pj) + oa(I-rj)J, where p = corr(K , K it.j). By

equation (3.5), the smaller (l-rj)/(l-pj) is, the smaller the RTS bias is. High r, values are

associated with low bias, ceteris paribus, because persistcnt measurement error is eliminated by

differencing the data. Small pj values are also associated with low bias because they increase
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the variance of djKp, given var(K ,). More generally, the asymptotic bias declines .'eyond some

difference length if three plausible conditions are met: rj reaches a lower bound at this

difference length, var(d'Kp) grows monotonicaily with j,and the auxiliary regression of labor

on capital yiclds a coefficient y < 1.

Correcting for Measurement l3rror

Going to longer difference estimators may well reduce measurement error bias, but it

is unlikelv to eliminate it entirely. Moreover, reliance only on the longest differences for

parameter estimates means ignoring sample information. Measuren;ent error bias can be

eliminated without eliminating sample information bv adopting the Generalized Method of

Moments (GMM) estimator discussed in White (1982), Griliches and Hausman (1986), and

Arellano and Bond (1988). This estimator has the added advantage of correcting for a general

form of heteroskedasticity. A brief exposition of the GMM technique is provided in Appendix

1.

The GMM estimator uses instruments to deal with measurement error, and the set of

valid instrumental variables depends upon the process that the errors follow. If they are

serially uncorrelated or follow a low-order MA process. then leads and lags of capital are

available as instruments [cf. Griliches and Hausman (1986)1. However, for several reasons,

capital stocks constructed using the perpetual inventory method are likely to reflect

measurement errors correlated across long periods. First. measuremcnt error in vear t

investment is spread to all future yearF in which the acquired assets are not fully depreciated.

Second, the flow of services generated by a unit of capital may not smoothly decay at the

assumed depreciation rate. More likely, the flow of services depends upon the vintage of the

capital, as Pakes and Griliches (1984) find in their analysis of U.S. manufacturing.

Given Lbe above observations, we consider three variables to be rcasonable instruments

for net capital in a given difference equation: the change in employmcnt level between the
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inital and final periods of the difference, the change in net purchases of machinery and

cquipment between the initial and final periods of the difference, and the change in real wages

between the initial and final periods. Each proposed instrumcnt requires some justification.

First, so long as managers don't anticipate gi, when choosing employment levels, employment

is 3rthogonal to the current period disturbance. Second, if the measurement error in capital

stocks cotnes from longer term items (land and buildings), machinery and equipment will be

correlated with growth in the flow of capital services, but uncorrelated with the measurement

error v. Finally, unless real wages are completely unpredictable they will be correlated with

expected profits, and they should thus be correlated with true capital stocks.

Each of these arguments is subject to criticism, of course, so the results will be compared

with those from un-instrumented difference estimators to check whether the coefficients move

in the expected direcLion. If simple difference estimators are used, the biases due to

measurement error are:

(3.6) plim (aj - a) = I2(1-r1)a2 / var(djKp)l yD j_ I, T- I
n-a

(3.7) plim (bj - J) - f2(1-rj)a) / var(d'Kp)j p j = t,, T-I
n~o

Hence instruments that eliminate measurement error bias should typically reduce the estimated

a value, increase the estimated 1 value, and (by equation 3.5), increase estimated returns to

scale.

C. Selectivity Bias

The Problem_

It is well known that young plants tend to be small and to have relatively high failure
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rates. It is also true that among these plants, the least efficient ones fail more frequently. 7

So if plants that are not observed in all sample years are left out of the analysis altogether, the

estimated change in input per unit change in output may be biased. For example, if the less

efficient plants require relatively large increments to inputs per unit change in output, their

omission would likely lead to KITS estimates that were too high. On the other hand, if the

inefficient plants are those that are in the increasing-returns range, then selectivity bias might

cause RTS estimates to be too low [cf. Pakes and Olley (1990)].

Estimators thbat Correct for Selectivity Bias

To examine the nature and importance of selectivity bias, we proceed in two stages.

First, we apply the estimators introduced above to the subset of plants that is observed for the

entire. sample period. This 'balanced' subsample is useful as a reference case because most

studies of returns to scale deal only with such plants. We then add plants that are missing for

some portion of the sample period, but that can be observed for some of the difference

equations. This brings in plants that enter the sample and stay in for at least a year as well as

plants that exit after the terminal year of the jth difference equation.

Second, we make a selectivity correction for plants that are observed in the initial year

of a difference equation but not in the final year. This corrects for the bias induced by

systematicaliv under-representing failing plants in the sample. The sclectivity correction is

made using a Heckman (1979) two-stage estimator. which amounts to estimating a Probit model

that forecasts whether a plant present in year t-j is still present in year t, then using the

resultant parameter estimates to construct a Mills ratio that is added to the set of explanatory

variables in the jth difference equation. The Probit equation that we use expresses the

probability of survival as a function of the size of the plant (measured by number of workers

in year t-j)and a dummy variable that indicates whether the plant is a new entrant in year t.

7 For evidence that this is the case in our Chilean panel, see Liu (1990b).



The Probit model coefficients are allowed to vary across time so that the estimated

probabilities can respond to changing economic conditions in a general way.

4. APPLYING THE ESTIMATORS TO CHILEAN DATA

A. Overview

Research Stejie

In this section we report on the application of various estimators to Chilean panel data

and interpret the results. First, in part 4B, we look for evidence of the various specification

problems discussed in Section 3. Comparisois of OLS and withir. estimators provide evidence

on the importance of Demsetz effects; comparisons of long and short difference estimaators

(inter alia) provide evidence on the importance of measurement error; comparisons of balanced

panel results with those based on extended samples, with and without Mills ratio corrections,

shed light on the importance of selectivity bias. Then, in part 4C, we present results obtained

with GMM estimators that are robust to the specification problems uncovered.

Data

The data we use cover virtually all Chilean manufacturing firms with at least 10

workers observed at least once during the period 1979 - 1986. Outputs are deflated using

sector-specific output price deflators, intermediate goods are deflated using price indices

constructed from sectoral output prices using the 1977 Chilean input-oijtput table, and energy

usage is measured using a plant-level Laspeyres quantity index based on physical volumes and

values reported. Capital stocks are imputed by applying the perpetual inventory method to

deflated investment figures for each of four capital goods categories.8 A more detailed

8 Base-vear capital stocks are taken from 1980 financial statements. In 1979 firms were
instructed to revalue their capital stocks according to market worth (the 'retacacion tecnica"),
so these statements should roughly reflect replacement costs.
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description of the data may be found in Liu (1990a).

B. Evidence on Specification Problems

Demsetz Effects

As discussed earlier, so long as efficient plants grow more rapidly and survive longer

than inefficient plants. ordinary least squares is likely to overstate returns to scale. This bias

can be eliminated by sweeping plant-specific efficiency effects out of the disturbance term

with either a within or a difference estimator. co comparisons of OLS results with either of these

alternatives should suggest whether a bias is present. To this end, Table I reports OLS and

within estimates for the various 3-digit industries. 9 Clearly the OLS estimates indicate that

most industries exhibit increasing returns to scale, but the within estimates show returns to

scale lcss than unity. Accordingly, we conclude that Demsetz effects are potentially

significant, and hereafter we work only with within or differentce estimators.

Caoital Stock Measurement Error

If correlation between plant effects and factor stocks were the only problem with OLS

estimators, the within estimator would be consistent. However. the within estimates of RTS

reported in Table I are too low to be plausible, and other patterns in the data suggest that

capital stock measurement error is part of the explanation. Specifically, recall from Section

3B that when certain conditions are satisfied, measurement error biases RTS estimates

downward by an amount that delines with the length of the difference estimator used. These

conditions are: (I) the serial in correlation of measurement errors, corr(i,,vit ), reaches a

lower bound beyond some j, (2) variances in differenced capital stocks grow monotonically

9 Though not reported, time dummies are included in all regressions. Estimates in this
table are based only on plants that report data in all years; industries with less than 20 such
plants are not analyzed.
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with the difference length, and (3) the auxillary regression of labor on capital yields a

coefficient y < 1. Although the first condition cannot be directly addressed, Panels B and C

in Table 2 suggests that the second and third conditions do hold. Moreover, Table 3 shows that,

as predicted, short difference estimators typically yield returns to scale estimates substantially

lower than long (fifth, sixth, and seventh) difference estimators, though this pattern is not

evident for some industries, and in seve.al industries it is not monotonic. We conclude that in

many industries measurement error is a non-trivial problem.

Selectivity Bias

Selectivity bias may also partly account for the low within and difference estimates of

RTS reported above. Recall from Section 3C that this bias may occur on two levels. First, if

a balanced panel is used (as in Tables 1, 2, and 3), plants that do not appear in all sample years

are left out of the analysis altogether. Second, even if an extended panel is used, plants that

drop out of the sample before the final year of a particular difference equation will be left out

of that equation. To gauge the first bias, we compare simple difference estimates based on

balanced data with those based on all available observations for each of the equations. Table

4 presents the simple difference estimators for the extended samples. which display quite large

increases in degrees of freedom. Their relation to the Table 3 estimates is summarized in Table

5, which shows the proportional increase in estimated RTS based on first through seventh

difference equations. The change in estimated RTS is substantial for a number of industries,

confirming the Olley and Pakes (1990) finding that omission of entering and exiting plants can

lead to significant biases in technology estimates. It is clear that entering and exiting plants

differ from incumbents not only in terms of their mean productivity levels (plant effects), but

in terms of their RTS.10 However, the manner in which thev differ varies across industries.

10 For further analysis of the nature of this difference. see Liu (1990b).
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The doininant pattern seems to be that moving from the balanced to the extended sample

increases estimated RTS among the shorter differences. The lack of response among longer

differences is at least partly explained by the fact that disparties in sample coverage (balanced

vs. extended) decline with length of the difference, disappearing entirely for the longest

(seventh) difference.

The results based on extended panels may themselves be subject to bias if plants present

in year t-j but not in year t differ systematically from those that surive the period. To

investigate this effect we use Heckman's (1979) two-step procedure. First, to predict exit

patterns between vears t-j and t, we fit the following Probit equation:

(4.1) Sit = a + 3SOD8 0.i + 81181.1 + ITLTLit-j + it,

where S, > 0 indicates that the i't plant exited between periods t-j and t, D80 i and D81 i are

dummies that indicate whether the plant was a new entrant in 1980 or 1981, and TLt -j is the

log of the total labor force of the ith plant in year t-j, which serves as as a proxy for firm

size.11 A different Probit is fit in cross section for each of the T-j years associated with the

jth difference estimator; the dummies are dropped in equations where they are irrelevant or an

insufficient number of entering plants is observed. 12

Table 6 reports results for the probabilities of survival across the years spanned by the

1 We also estimated Probit equations that express the probability of survival as a
function of the size of the plant and of its type of legal organization (proprietorship,
partnership, corporation, or other). Business type did little to explain survival and the business
type dummies were often perfectly collinear with the new entrant dummies, so we opted to
discard the business type dummies.

12 It would be possible to reap an efficiency gain by pooling these regressions and using a
random effects Probit estimator. If this were done in the manner suggested bv Chamberlain
(1980), it would also be possible to allow for effects that are correlated with the explanatory
variables. Our intuition is that these extensions will matter more for the coefficients of the
Probit than for the Mill's ratio, so we have not pursued them.



fifth, sixth, and seventh difference equations.13 As predicted by recent theories of industrial

evolution, large firms are significantly less likely to exit in every year for almost all industries.

Notice that from Stigler's (1958) perspective, the coefficient on our firm size proxy is itself an

indicator of the importance of scale economies. In fact it is probably a better indicator than

the one Stigler used because it describes the behavior of individual firms rather than that of

the size distribution." V/e will return to this point later. Finally, although the number of

new entrants (reported as n80 and n81) is typically too small to permit accurate estimation of

080 or Dp when estimates of these coefficicnts are significant thev are always positive.

The size dependence of survival rates does not itself imply that production function

estimates are biased. To address this question, we use the Probit results to construct Mills ratios

for sample-selection corrections of the OLS estimates of the individual long-difference

equations. Table 7 shows the increase in estimated RTS for each long difference equation

when the sample-selection correction is employed: the corrections are almost uniformly quite

small. Hence, unlike in Olley and Pakes (1990), our results based on extended samples do not

appear to require further correction. This contrast with Olley and Pakes could be due to the

fact that their estimator exploited both between and within variation, whereas our estimators

rer.ove time-invariant plant effects entirely.' 5

13 We focus on the long differences because, in addition to the reasons given in Section
4C below, they are most likely to be contaminated by selectivitv bias. Note that whether a
plant was a new entrant in 1979 cannot be discerned from our sample. Also, we are only able
to analyse new entrants for the years 1980 and 1981 because plants did not report capital stocks
after those years. (Stocks were imputed using investment data and 1980 or 1981 stocks for all
plants in existance by 1981.) Finally, the sample sizes reported in Table 6 are different from
those reported in earlier tables because the frequency of missing data for employment levels
differs from that of variables used in previous regressions.

14 Nonetheless, like cross-sectional RTS estimators, it is contaminated by De:nsetz
effects if inherently efficient plants last longer and grow bigger. This is presumably one
reason our size coefficients are almost all negative.

15 That is, the model used by Olley and Pakes will pick up selectivity effects if failing
firms systematically differ from others in terms of efficiency lcvels, whereas our model is only
sensitive to selectivity bias if failing plants exhibit lower or higher inrEmena output per unit
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C. Robust Estimators

We now turn to estimates obtained with the GMM estimator. If the instruments at our

disposal (machinery and equipment growth, real wage rates, and employment growth) are valid,

these results are robust with respect to measurement error in the capital stock,

heteroskedasticity, and selectivity bias.16 For several reasons we hereafter limit the analysis

to estimators that pool only the longer differences (i.e., fifth, sixth, and seventh

differences). 17 First, gestation lags in capital stocks probably make the association between

the true flow of capital services and measured changes in capital particularly weak over short

periods. Second, by limiting the analvsis to long differences we effectively leapfrog the severe

recession that bottomed out during 1982 and 1983.18 This is desirable because rapidly

shrinking indutries are likely to have extreme excess capacity, and our instruments probably

do not do an adequate job of recovering the true flow of capital services.

Overview of the Results

Findings for all 3-digit industries with sufficient data are reported in Table 8. Before

discussing our findings regarding returns to scale, several observations are in order. First it

appears that the GMM estimators do lessen measurement error bias. In particular, earlier

incremental input.

16 rinally, to reduce the problem of selectivity bias that was discussed in the previous
seciton, we are working with the extended sample, i.e., all plants for which data are available
in .he relevant years. Corresponding results for the balanced sample are contained in Table
8A in the Appendix.

17 The sample sizes given in Table 8 are for the number of firms that appear in at least
one of the equations involved in the GMM estimator. The samples differ somewhat from the
samples employed for the simple difference estimators because the frequency of missing values
for the instrumental variables differs from that of the variables Seing instrumented.

18 Only two of the three fifth difference equations are used in the estimator that
encompasses all long differnces. This is because the remaining fifth difference equation is
redundant when both sixth difference equations are included.
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discussion suggests that the elimination of measurement error should increase the coefficient

on capital. This is precisely the pattern we find when comparing estimates based on seventh

differences in Table 8 with the those in Table 4.19 Theory also predicts that, on average,

returns to scale estimates should rise when measurement error is eliminated. We find that this

effect occurs in nine of the 16 industries when going from OLS to GNIMI estimates. The RTS

pattern is not as strong as that for the capital coefficient because it is counterbalanced by

decreases in the coefficient on labor (cf. equations 3.5 and 3.6).

However, one troubling feat'tre of the GMM results remains. Recall that we attributed

the systematic distinctions across simple difference estimators in Table 4 to biases induced by

measurement error and/or selectivity problems. The GMM estimator applied to the extended

sample (with and without Mills ratio corrections) is designed to eliminate these sources of bias,

thus eliminating the systematic association between the sample period and estimated RTS.

Nonetheless, RTS estimates based on seventh differences, on pooled sixth and seventh

differences, and on pooled fifth, sixth and seventh differences vary considerably.- 0 Similar

results emerge when we apply the GMM estimator to those 4-digit industries for which we have

adequate data (Table 9). This finding could mean that estimates exploiting fifth and sixth

differences are relatively sensitive to biases deriving from gestation lags and lingering effects

of the recession. Whatever the explanation, it appears that the instruments are not always

effective in the fifth and sixth differences. So we focus on the seventh difference estimators

in most of what follows, sacrificing degrees of freedom for apparent reductions in bias.

Returns to Scale

We have already seen that implausibly low returns to scale result from simple

19 This comparisons is made for seventh differences in order to hold the sample
composition constant across estimators.

20 Griliches and Marisse (1988) report a similar finding in their three-country study of
manufacturing sector panel data.
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'difference' and "within" estimators. Are the seventh difference GMM estimates similarly low?

Table 10, which ranks industries by RTS, reveals that some clearly are. However, with but one

exception. the industries with low RTS estimates are suspect because their average rate of

value-added growth was less than negative 40 percent. 2 1 As already noted, rapidly shrinking

industries are likely to have extreme excess capacity, and our instruments are unlikely to

correct for the discrepancy between true and measured capital fiows. Leaving these rapidly

shrinking groups aside, the other RTS estimates are fairly evenly distributed over the plausible

range of .8 to 1.2, and none is more than two standard deviations from constant RTS (refer back

to Table 8). Also, unlike other estimators that are based on temporal variation in the data (cf.

Tables 2 and 3), the relative elasticities of output with respect to labor and capital seem closer

to those one might infer from factor shares under the assumption of competitive profit

maximization. 2 2

Table 9 reports estimates for more disaggregated (4-digit) industries. These provide

additional details on the particular products generating increasing returns, and are less subject

to the aggregation biases caused by heterogeneous products (via price deflators) and

technologies (via variable coefficients). Results at the 4-digit level may also be useful in

assessing the plausibility of changing composition of 3-digit industries as the explanation for

witbin-industry heterogeneity over time, which was mentioned above. Here, note that

structural metal products (e.g., bridges, container tanks, metal door frames) are partly

responsible for the high rank of metal products, and automobiles are partly responsible for

increasing returns in transportation equipment. These findings square well with what is known

abouL technology in these sectors. Notice also that some sectors that show decreasing returns

at the 3-digit level show increasing returns in particular products. Notably, meatpacking,

21 The excepted industry (non-electric machinery, 382) has oniv 25 observations.

22 Capital's share in value added for the manufacturing sector as a whole was in the
neighborhood of .6 to .7 during the sample period.



19

seafood processing, and bakeries are sources of scale economies althoueh the food industry

(312) shows overall RTS slighty below unity. Also. while the textile industry shows decreasing

returns overall, knitting shows scale economies. We caution however, that only two of the ten

non-suspect industries show RTS significantly different from unity.

Our methodology is designed to reveal the plant-level scale effects that are realized as

industries move through business cycles and regime changes. Hence, unlike engineering studies,

the estimates do not capture sunk start-up costs, and they do not necessarily reflect the scale

economies that might be reaped if existing plants were torn down and replaced with bigger

ones. Nonetheless, it is interesting to ask whether there is some correspondence between the

ranking of industries according to our estimates and rankings based on engineering studies of

firms in industrialized countries. The latter tend to find that scale economies are most

important in automobiles, certain metal products, iron/steel, electric machinery, and

chemicals.23 Refcrring again to Table 10, it is noteworthy that (after excluding suspect

industries) transportation equipment, metal products, and electric machinery are ranked among

the top five in our estimates as well.

Finally, we may test the plausibility of our GMM estimates by asking whether those

industries where failure probabilities fall most rapidiv with plant size are also the ones with

the highest estimated RTS. To this end we look at the Spearman rank correlation coefficient

between seventh difference (79-86) estimates of -PTL from Table 6 and seventh difference RTS

estimates from Table 8 (or Table 10). Remarkably, this coefficient is .69 with a 't' ratio of 4.41

when all fifteen industries are used, and .80 with a "'t" ratio of 5.37 when the four "suspect'

' 3 This list is based on Pratten's (1990) survey, Berrv's (1989) survey, and Scherer and Ross's
(1990) summary of engineering studies. In summarizing their rankings, we have ignored
industries that could not be analysed in our study for lack of data or because of rapid
shrinkage.
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industries are excluded.2 4 It is tempting to conclude that our version of Stigler's survivor test

has considerable empirical validity, and that it provides strong support for the GAIM estimates.

The alternative interpretation is that some feature of our research design has induced a

spurious associatiera between OTL and RTS estimates. However, it is not obvious to us what this

might be, as we have tested our results for selectivity bias and found them to be robust.

5. CONCLUSIONS

This study is the first we are aware of to provide systematic panel-based econometric

estimates of the plant-level returns to scale in LDC manufacturing industries. 25 As such, we

believe it sheds new light on several issues of interest to policy-makers. The first is whether

increases in plant size cause efficiency improvements. If such causality is present over the

production ranges in which plants operate, there are productivity gains associated with policies

that promote 'bigness' in manufacturing plants. On this issue, we find that although several

4-digit sectors show increasing returns, general expansion of the manufacturing sector cannot

be expected to yield strong plant-level scale economies.26 Specificallv. if we take our "best'

estimates at face value, thev imply that the returns to -cale in manufacturing are scattered

across the range of .8 to 1.2 at the 3-digit level, and .7 to 1.6 at the 4-digit level. None of the

3-digit RTS estimates is significantly different from unity, and only two of the 4-digit

24 The correlations reported here are based on three-digit industries appearing both in
Table 6 and Table 10. It was not possible to estimate our Probit model for transport equipment
(384), given the small number of exiting plants. Nor did we estimate the production technology
for miscellaneous manufacturing (390).

25 There do exist cross-sectional analyses of returns to scale bascd on industrial census data.
For the Chilean case, see Mellor (1975); Corbo and Mellor (1979), Tvbout (forthcoming); and
Tybout, de Melo and Corbo (forthcoming).

26 It would be possible to ask whether the particular production shifts that accompanied
Chile's opening to foreign competition resulted in better exploitation of scale economies.
However, to do this properly, one needs to recognize the possibilitv of returns to scale in the
production of intermediate inputs, for which input-analvsis is necessarv.
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estimates are.

The second issue we address is whether efficicncy causes plant growth, as Demsetz and

others have argued. An affirmative answer means that positive correlations between size and

profitability need not constitute a case for anti-trust activity. By comparing technology

estimators that control for plant-specific efficiency effects with those that do not, we find

evidence that Demsetz eliects are indeed important. A corollary to this finding is that most

returns to scale estimates based on cross-sectional data tend to overstate plant-level returns to

scale as we have defined it here.

As a by-product, our analysis appears to have re-opened the possibility of using Stigler's

survival test as a quick first pass on the importance of returns to scale. However, unlike earlier

applications of this test based on the plant size distribution, our results suggest using the

sensitivity of failure probabilities to plant size as an index of RTS.

The methodology developed herein appears to yield sensible results in many sectors, but

some industries suffer from too few observations or too rapid shrinkage to permit reasonable

infcrence. These problems could be reduced with more attention to the details of each sector

and their implications for choice of instruments.
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Appeodiz 1: The Generalized Method of Moments o(GMM) Estimator

The GMIW estimator can be used to pool information from the T-1 first-difference

equations (based on periods l and 2, periods 2 and 3,etc.), the T-2second-difference equations

(based on periods I and 3, periods 2 and 4, etc.), the T-3 third-difference equations, and so

on.27 To see how this is done, imagine that we organize the data into blocks of n observations,

one block corresponding to each of these H = T(T-t)/2 equations. 28 We may then define the

explanatory variable matrix to be X = (XlX(n . Xh', XH')'(nH X ), where if the hth nlock

corresponds to the jth difference ending in period t, its representative row is (diL1t,dJK,t).

Similarly, output changes may organized into the vector Y = (y1 'Y ,' *" Yh . . . YHT), with

representative row for the h block (dJY,1 ). Finally, by equation (3.4) the associated

disturbance vector is V = (VI', . . Vh' , VII')'(nH X I) where Vh = djet - pdiv, has representative

element (dJeit - d:v11).

Given the availability of appropriate instruments, the correlation between Xh and Vh

induced by measurement error can be removed. Suppose Zh is the (n x rh) matrix of

instrumental variables available for the hth difference equation. (Zh has representative row

Zih and each column of Zh is orthogonal to Vh.) Then defining m = Erh and Z (nH x m) = diag[Zhl,

(h = 1. .. , H), the m orthogonality conditions E{Z'V} = I) form the basis of the GMM estimator

that efficiently exploits all the information in the data.

n
To construct the GMM estimator define U(m x m) = (I/n) E z 'viv z; where zi (H x m)

diag(z1 l, Zi2, . . ZiH) and vi (H x 1) is a vector of residuals from the H equations for the ith firm

obtained with some consistent initial estimator (e.g., two-stage least squares) or an iterative

27 Although shorter difference estimators will be discarded in this paper's application, it
is convenient to leave them in for the present exposition.

28 For expositional purposes we ignore entry and exit and assume that n plants are observed
in all periods. Arellano and Bond (1988) present the necessary modifications for the case of
unbalanced panels. Also, for now we assume that enough equation-specific instruments are
available to permit the use of all H equations.
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procedure. Then the coefficient estimator is:

A A

I (ce, 03)' = IX'ZU'tZ'X- 1 X'ZU'tZ'Y,

and its covariance matrix is estimated by n(X'ZU'IZ'Xl[l.
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Table I

Total and Within Estimators of Cobb-Douglas Technology
(Balanced Sample)

Y = aL + BK +

Sector Estimator df t (t ratio) a (t ratio) RTS (std. error)

Total 5366 0.7937 (45.55) 0.3961 (37.05) 1.1898 0.0118
312 Within 4694 0.5303 (19.98) 0.1399 ( 5.22) 0.6702 0.0349

Total 333 1.1164 (17.20) 0.2296 ( 5.69) 1.3460 0.0464
313 Within 290 0.6023 ( 5.68) 0.0564 ( 0.50) 0.6587 0.1512

Total 1254 0.7178 (24.64) 0.2686 (12.37) 0.9864 0.0168
321 Within 1096 0.4384 ( 8.40) 0.2301 ( 4.49) 0.6685 0.0670

Total 1054 0.9957 (32.28) 0.1254 ( 5.07) 1.1211 0.0233
322 Within 921 0.5942 (10.30) 0.1502 ( 2.76) 0.7444 0.0712

Total 454 0.9615 (18.19) 0.1770 ( 5.21) 1.1385 0.0291
324 Within 396 0.6019 ( 6.65) 0.2274 ( 2.67) 0.8293 0.1091

Total 846 0.7865 (16.65) 0.2731 ( 8.33) 1.0626 0.0325
331 Within 739 0.5330 ( 6.18) 0.2700 ( 2.64) 0.8030 0.1205

Total 310 0.8746 (12.01) 0.3956 (8.49) 1.2702 0.0448
332 Within 260 0.6002 ( 4.79) 0.1873 (1.81) 0.7875 0.1512

Total 619 0.6874 (20.03) 0.3331 (12.86) 1.0205 0.0206
342 Within 540 0.3640 ( 6.40) 0.2202 ( 3.00) 0.5842 0.0807

Total 590 0.7043 (15.51) 0.4007 (12.28) 1.1049 0.0285
352 Within 515 0.2521 ( 4.62) 0.1674 ( 2.71) 0.4195 0.0750

Tot*al 230 0.7097 (12.09) 0.3699 ( 7.62) 1.0796 0.0388
355 Within 200 0.3076 (3.30) 0.3413 ( 3.04) 0.6489 0.1286

Total 366 0.6069 (9.42) 0.2651 ( 6.15) 0.8720 0.0443
356 Within 319 0.3351 ( 2.53) 0.5210 ( 4.59) 0.8651 0.1459

Total 302 0.7549 (11.95) 0.3129 ( 9.68) 1.0678 0.0394
369 Within 263 0.5090 ( 5.46) 0.1111 ( 1.42) 0.6201 0.1139

Total 1110 0.9404 (29.31) 0.2272 (10.27) 1.1676 0.0219
381 Within 970 0.4515 ( 7.99) 0.1472 ( 3.00) 0.5987 0.0693
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Table I (continued)

Sector Es.imator fl ri (t ratio) ti RTS (sd. erro

Total 261 0.7406 (12.60) 0.3437 ( 8.65) 1.0843 0.0454
382 Within 327 0.2831 ( 3.42) 0.0709 ( 0.85) 0.3540 0.1011

Total 182 0.6470 ( 8.76) 0.4011 ( 7.17) 1.0481 0.0427
383 Within 158 0.4778 ( 4.49) 0.2746 ( 1.86) 0.7524 0.1719

Total 230 0.8780 (10.66) 0.2341 ( 3.90) 1.1121 0.0462
384 Within 200 0.6989 ( 5.52) 0.2916 ( 2.05) 0.9905 0.1571
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Table 2: Evidence on Serial Correlation In Measurement Error
(Balanced Sample)

Para A: Autocorrelation Coefficients for Observed Capital Stocks

Industry
A utocorrelation

Coefficient 312 313 321 322 324 331 332 342

PI 0.9881 0.9873 0.9883 0.9729 0.9906 0.9875 0.9872 0.9910
P 2 0.9772 0.9714 0.9762 0.9511 0.9791 0.9758 0.9709 0.9821
P 3 0.9642 0.9608 0.9662 0.9284 0.9670 0.9628 0.9572 0.9730
P4 0.9482 0.9535 0.9560 0.9098 0.9569 0.9488 0.9443 0.9628
P 5 0.9345 0.9382 0.9427 0.8799 0.9441 0.9368 0.9231 0.9538
P6 0.9175 0.9149 0.9212 0.8474 0.9281 0.9216 0.8988 0.9450
P 7 0.8901 0.8848 0.9024 0.7981 0.9116 0.8930 (0.8398 0.9257

352 355 356 369 381 382 383 384

P1 0.9847 0.9816 0.9801 0.9897 0.9800 0.9759 0.9938 0.9893
P2 0.9671 0.9647 0.9610 0.9804 0.9610 0.9565 0.9836 0.9758
P3 0.9462 0.9461 0.9453 0.9746 0.9447 0.9258 0.9705 0.9607
p4 0.9283 0.9329 0.9251 0.9686 0.9257 0.8883 0.9567 0.9470
P5 0.9059 0.9145 0.8928 0.9623 0.9007 0.8649 0.9397 0.9260
p6 0.8826 0.8817 0.8561 0.9512 0.8737 0.8420 0.9272 0.9051

0.8538 0.8384 0.7995 0.9393 0.8226 0.7986 0.9129 0.8762

PaR B: Consistent Point Estimates of y Coefficient from Auxiliary Regression

Industry

Estimator 312 313 321 322 324 331 332 342

Within 0.1447 0.0413 0.1647 0.2046 0.2417 0.16t6 0.1653 0.1956
1" Difference 0.0364 -.0112 0.0291 0.0451 0.0099 0.0589 0.0033 0.0934
2nd Difference 0.0880 0.0069 0.1091 0.1406 0.1080 0.1353 0.0796 0.1559

3rd Difference 0.1246 0.0572 0.1529 0.2071 0.2142 0.1973 0.0982 0.1864
4t' Difference 0.1766 0.0655 0.1868 0.2220 0.3132 0.2173 0.2080 0.2293
5th Difference 0.2023 0.0343 0.2234 0.2885 0.3387 0.2031 0.2537 0.2883
6th Difference 0.2394 0.0303 0.2719 0.3127 0.3933 0.1536 0.3502 0.2627
7'1 Difference 0.2471 0.1401 0.3530 0.3248 0.3576 0.1147 0.4755 0.2733

352 355 356 369 381 382 383 384

Within 0.1543 0.1876 0.3562 0.1472 0.1646 0.2581 0.0828 0.2863
lI" Difference 0.0448 0.0537 0.1124 0.1251 0.0211 0.0361 0.0168 0.0945
2nd Difference 0.1005 0.0641 0.2067 0.1321 0.1193 0.1626 0.0455 0.1250
3rd Difference 0.1464 0.1421 0.1766 -.0140 0.1297 0.2106 0.0731 0.2392
4 th Diffcrence 0.1635 0.1844 0.3512 0.1454 0.1594 0.2900 0.1197 0.2710
5th Difference 0.1887 0.2718 0.5229 0.1756 0.2344 0.3762 0.1593 0.3820
6't Difference 0.2310 0.3382 0.7275 0.2913 0.2913 0.6077 0.1171 0.4471
7't Difference 0.3341 0.4921 1.1180 0.2990 0.4405 0.8402 0.0732 0.4764
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Table 2 (continued)

Part C: Varances of Differenced Log-Capital: var(djK)

Industry

j 312 313 321 322 324 331 332 342

1 0.0635 0.0780 0.0679 0.0855 0.0586 0.0529 0.0530 0.0551
2 0.1203 0.1800 0.1346 0.1532 0.1298 0.1007 0.1179 0.1063
3 0.1895 0.2566 0.1909 0.2269 0.2010 0.1523 0.1836 0.1621
4 0.2735 0.3109 0.2504 0.2941 0.2545 0.2103 0.2392 0.2252
5 0.3492 0.4187 0.3304 0.3991 0.3306 0.2664 0.3389 0.2753
6 0.4433 0.6156 0.4564 0.5217 0.4175 0.3454 0.4684 0.3394
7 0.6010 0.9618 0.5612 0.7145 0.5405 0.4918 0.7487 0.4720

352 355 356 369 381 382 383 384

1 0.0615 0.0612 0.0797 0.1478 0.0967 0.1016 0.0288 0.0627
2 0.1319 0.1181 0.1510 0.2727 O.l858 0.1817 0.0762 0.1394
3 0.2171 0.1767 0.2249 0.3582 0.2634 0.3131 0.1369 0.2188
4 0.2907 0.2174 0.2969 0.4424 0.3559 0.4724 0.2014 0.2962
5 0.3814 0.2650 0.4017 0.5546 0.4767 0.5738 0.2830 0.3852
6 0.4768 0.3687 0.4851 0.7492 0.6062 0.6502 0.3505 0.4699
7 0.6015 0.5009 0.5383 1.0946 0.8234 0.9517 0.4459 0.5900



30

Table 3: Simple Difference Estimators by 3 Digit Industry
(Balanced Sample)

Industrv 312

E4iM-AQL_ ttr£- -A- it rati RtS

tS' Difference 4695 0.4408 (14.92) 0.0999 (2.36) 0.5407
2 d Difference 4024 0.4766 (15.31) 0.1633 (4.31) 0.6399
3 d Difference 3353 0.5524 (17.31) 0.1616 (4.71) 0.7140
4'h Difference 2684 0.5817 (17.04) 0.1518 (4.67) 0.7335
5 th Difference 2011 0.5443 (14.40) 0.1226 (3.65) 0.6669
6"' Difference 1340 0.5957 (13.73) 0.1067 (2.94) 0.7024
71' Difference 671 0.5593 (10.00) 0.1335 (3.03) 0.6928

lndustry 313

ESLiMator . (Lj_ U1 mi RTs

I" Difference '91 0.3535 (2.57) 0.0497 (0.25) 0.4032
2aid Difference 249 0.3257 (2.57) 0.0416 (0.30) 0.3673
3 d Difference 207 0.5013 (3.79) 0.1701 (1.30) 0.6714
4't Difference 165 0.6577 (4.81) 0.0794 (0.57) 0.7371
5 'h Difference 123 0.5815 (4.15) 0.0425 (0.28) 0.6240
6t' Difference 81 0.8039 (5.21) -0.1924 (.1.25) 0.6115
7't Difference 39 1.2323 (6.85) 0.1491 (0.90) l.3814

Industry 321

Estimator Lt dAti f. rA&i) RTS

t" Difference 1097 0.2980 (5.08) 0.1405 (1.78) 0.4385
2nd Difference 940 0.3673 (6.11) 0.1754 (2.55) 0.5427
3rd Difference 783 0.4489 (7.53) 0.1984 (3.14) 0.6473
4 'h Difference 626 0.4827 (7.30) 0.2465 (3.78) 0.7292
S'h Difference 469 0.5237 (6.73) 0.2634 (4.01) 0.7871
6"h Difterence 312 0.5315 (6.25) 0.2637 (4.00) 0.7952
7'h Difference 155 0.5161 (4.16) 0.2292 (2.48) 0.7453
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Industry 322

Estimator df (t ratio) j it ratio) RT_

I"' Difference 922 0.2631 (3.94) 0.1242 (1.53) 0.3873
2 d Difference 790 0.4647 (6.88) 0.0785 (1.06) 0.5432
3 rd Difference 658 0.5291 (7.57) 0.1220 (1.73) 0.6511
4 1h Difference 526 0.7155 (10.00) 0.1087 (1.60) 0.8242
5 th Difference 394 0.7832 (9.85) 0.1894 (2.88) 0.9726
61h Difference 262 0.7453 (8.02) 0.1735 (2.40) 0.9188
7 th Difference 130 0.9427 (8.48) 0.1348 (1.66) 1.0775

Industrv 324

Estimator df a (t ratio) fi__ (t ratio) RTS

I' Difference 397 0.2102 (2.05) 0.1728 (1.30) 0.3830
2nd Difference 340 0.4673 (4.35) 0.1832 (1.62) 0.6505
3 ,d Differencc 283 0.6884 (5.97) 0.1879 (1.80) 0.8763
41h Difference 226 0.6741 (5.69) 0.2066 (1.98) 0.8807
5rh Difference 169 0.5988 (4.83) 0.3088 (2.85) 0.9076
¶)h Difference 112 0.7691 (5.55) 0.1738 (1.45) 0.9429

7 th Differencc 55 0.9458 (5.1(1) 0.1638 (1.01) 1.1096

Industrv 331

Estimator df a (t ratio) JO (t ratio) RTS

I" Difference 740 0.4531 (4.46) 0.2076 (1.29) 0.6607,nd Difference 634 0.5228 (5.17) 0.2121 (1.52) 0.73493rd Difference 528 0.5584 (5.15) 0.2843 (2.12) 0.8427
4 th Difference 422 0.6165 (5.72) 0.2730 (2.21) 0.8895
51h Difference 316 0.5586 (4.88) 0.3359 (2.69) 0.8945
6fh Difference 210 0.5191 (3.89) 0.2974 (2.11) 0.8165
7 'h Difference 104 0.3634 (1.88) 0.1734 (1.05) 0.5368

Industry 332

Estimator df a (t ratio) A (t ratio) RTS

I" Difference 271 0.3977 (2.69) 0.2333 (1.26) 0.6310
Ind Difference 232 0.4574 (3.62) 0.1606 (1.25) 0.6180
3". Difference 193 0.6931 (4.93) 0.1026 (0.76) 0.7957
4th Difference 154 0.6071 (3.79) 0.2201 (1.66) 0.8272
5th Difference 115 0.8513 (4.90) 0.1569 (1.29) 1.0082
6 th Difference 76 0.6666 (2.85) 0.2257 (1.58) 0.8'23
71h Difference 37 0.5607 (2.04) 0.1953 (1.30) 0.7560
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Industry 342

Estimator df raioL ( ratio) RTS

It" Difference 540 0.2646 (4.20) 0.1217 (1.01) 0.3863

2 nd Diffcrence 462 0.3916 (6.55) 0.1704 (1.77) 0.5620
3rd Difference 384 0.4218 (6.21) 0.2227 (2.52) 0.6445
4 1h Difference 307 0.2459 (3.17) 0.3013 (3.45) 0.5472
51h Difference 230 0.3393 (3.80) 0.2342 (2.47) 0.5735
6 1h Difference 152 0.4183 (4.11) 0.2023 (1.81) 0.6206
7 th Difference 74 0.5883 (6.02) 0.1845 (1.74) 0.7728

Industry 352

Estimator df r- ft ratio) RTS

ll' Diffcrence 516 0.0419 (0.72) 0.0327 (0.33) 0.0746
2nd Difference 442 0.1780 (2.94) 0.1423 (1.77) 0.3203
3rd Diffcrence 368 0.2290 (3.57) 0.1455 (1.99) 0.3745
4 ,h Difference 294 0.3488 (4.93) 0.1391 (1.83) 0.4879
,th Difference 220 0.3899 (4.75) 0.1579 (1.89) 0.5478

6th Difference 146 0.3781 (4.04) 0.2475 (2.71) 0.6256
7th Difference 72 0.2053 (1.51) 0.2014 (1.65) 0.4067

Industry 355

Estimator df ( Ct ratio) f (t ratio) RTS

isl Difference 201 0.3183 (3.09) 0.2079 (1.37) 0.5262
2nd Difference 172 0.1649 (1.52) 0.2276 (1.56) 0.3925
3rd Difference 143 0.2307 (2.14) 0.2611 (1.89) 0.4918
4 1h Difference 114 0.2521 (2.18) 0.3319 (2.31) 0.5840
5 th Difference 85 0.3953 (2.96) 0.4466 (2.83) 0.8419
6th Difference 56 0.4748 (2.84) 0.3898 (2.34) 0.8646
7 th Difference 27 0.5682 (2.30) 0.3408 (1.62) 0.9090

Industry 356

Estimator d t ratio) (It ratio) RTS

1il Difference 320 0.1934 (1.37) 0.0809 (0.48) 0.2743
2 ,d Diffcrence 274 0.3026 (2.15) 0.2533 (1.72) 0.5559
3rd Difference 228 0.3489 (2.32) 0.5225 (3.62) 0.8714

4ih Difference 182 0.3984 (2.44) 0.6528 (4.52) 1.0512
5 th Difference 136 0.3897 (1.98) 0.6586 (4.55) 1.0483
6th Difference 90 0.1938 (0.72) 0.6778 (3.78) 0.8716
7th Difference 44 0.6187 (1.49) 0.3840 (1.64) 1.0027
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Industry 369

-Estimaor- df a (t ratio) r( rtio) RTS

jSI Difference 264 0.3069 (3.03) 0.1200 (1.18) 0.42692ld Difference 226 0.4049 (4.07) 0.1895 (2.15) 0.5944
3rd Differcnce 188 0.4858 (4.41) 0.1133 (1.22) 0.5991
4 th Difference 150 0.5530 (4.35) 0.2211 (2.10) 0.7741
5 1h Difference 112 0.5946 (4.09) 0.0380 (0.32) 0.6326
61h D ifcrcnce 74 0.6108 (3.71) -0.0387 (-0.31) 0.5721
71h Difference 36 0.7923 (4.13) 0.0753 (0.54) 0.8676

Industry 381

Estimator df a (t ratio) -i (t ratio) RTS

I" Difference 971 0.2912 (4.34) 0.1637 (2.07) 0.4549
2nd Difference 832 0.3283 (5.39) -0.0100 (-0.16) 0.3183
3 rd Difference 693 0.4805 (7.25) 0.0197 (0.31) 0.5002
4 1h Difference 554 0.4527 (6.42) 0.1564 (2.55) 0.6091
5,h Difference 415 0.5315 (6.40) 0.1863 (3.04) 0.7178
6,h Difference 276 0.6700 (7.12) 0.2330 (3.64) 0.9030
7 th Difference 137 0.6271 (5.14) 0.2497 (3.11) 0.8768

Industry 382

Estimator df (t ratio) ft (t ratio) RTS

lth Difference 228 0.0798 (1.03) 0.0587 (0.47) 0.1385
2,h Difference 195 0.2926 (3.21) 0.0647 (0.54) 0.3573
31h Difference 162 0.2973 (3.28) -0.0032 (-0.03) 0.2941
4 ,h Difference 129 0.3667 (3.20) 0.0532 (0.50) 0.4199
5 ,h Difference 96 0.3612 (2.79) 0.0527 (0.48) 0.4139
6 th Difference 63 0.4457 (2.67) 0.0630 (0.53) 0.5087
7 th Difference 30 0.2964 (1.13) 0.1181 (0.78) 0.4145

Industry 383

Estimato,r df (t ratio) A (t ratio) RTS

I't Difference 159 0.2143 (1.68) 0.0020 (0.01) 0.1040
2nd Difference 136 0.4268 (3.49) 0.2990 (1.33) 0.7258
3 rd Difference 113 0.7028 (5.33) 0.1644 (0.83) 0.8672
4 1h Difference 90 0.4923 (3.42) 0.3927 (2.15) 0.8850
5 th Difference 67 0.4172 (2.90) 0.2639 (1.73) 0.6811
6 th Difference 44 0.5934 (4.71) 0.2782 (1.92) 0.8716
7 th Difference 21 0.4164 (2.09) 0.2986 (1.29) 0.7150
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Industry 384

Esimator ff(t ratio) li

is' Diffcrence 201 0.6261 (4.00) 0.0924 (0.3S) 0.7185
sad Difference 172 0.7574 (5.24) 0.0288 (0.16) 0.7862
3rd Difference 143 0.6610 (4.08) 0.2394 (1.31) 0.9004
4 th Diffcrence 114 0.6664 (4.03) 0.3637 (2.02) 1.0301
5th Differcnce 85 0.7266 (4.43) 0.4299 (2.51) 1.1565
6th Difference 56 0.4165 (1.96) 0.4626 (2.12) 0.8791
7 th Difference 27 1.1125 (4.63) 0.1511 (0.60) 1.2636
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Table 4: Simple Difference Estimators by 3° Digit Industry
(Extended Sample)

Industry 312

EstirnaLor rAtiot raRio L 

I' Difference 6757 0.4551 (18.73) 0.1258 (3.16) 0.5809

2,'d Difference 5547 0.5088 (19.49) 0.1742 (4.92) 0.6830

3 td Difference 4403 0.5627 (20.21) 0.1620 (4.94) 0.7247

4 th Difference 3351 0.5817 (19.47) 0.1469 (4.75) 0.7286
5"' Differcnce 2378 0.5735 (16.87) 0.1181 (3.68) 0.6916

6't Difference 1487 0.6054 (14.94) 0.1115 (3.19) 0.7169

7 'h Difference 669 0.5593 (10.00) 0.1335 (3.03) 0.6928

Industry 313

Estimator df (t ratio) J- (t ratio) RTS

1" Diffcrence 488 0.2347 (2.63) 0.1258 (0.70) 0.3605

21j Difference 391 0.3098 (3.04) 0.0501 (0.35) 0.3599

3 rd Difference 302 0.4000 (3.70) 0.1764 (1.32) 0.5764

4!h Difference 222 0.5543 (4.61) 0.0349 (0.24) 0.5892

5th Difference 154 0.4483 (3.29) 0.0385 (0.24) 0.4868

6 ih Difference 94 0.7867 (5.20) .0.2027 (.1.27) 0.5840
7't Difference 39 1.2323 (6.85) 0.1491 (0.90) 1.3814

Industry 321

Estimator df C9 (t ratio) iJ (t ratio) RTS

I"' Diffcrence 1926 0.3272 (6.18) 0.0599 (0.81) 0.3871

21d Difference 1529 0.4192 (7.45) 0.1251 (1.88) 0.5443

3rd Difference 1173 0.5439 (9-15) 0.1181 (1.83) 0.6620

4"h Difference 864 0.6158 (9.89) 0.1987 (3.17) 0.8145

5"h Difference 599 0.6054 (8.53) 0.2092 (3.42) 0.8146

60h Difference 362 0.5521 (6.70) 0.2541 (3.93) 0.8061

7ih Difference 155 0.5161 (4.16) 0.2292 (2.48) 0.7453

Industry 322

Estimator df __ (t rati) f, (t ratio) RTS

I" Difference 1670 0.4330 (8.06) 0.1096 (1.43) 0.5426
2nd Difference 1306 0.4887 (8.75) 0.0782 (1.14) 0.5669

3rd Difference 985 0.5140 (8.86) 0.0650 (1.00) 0.5790

4ih Difference 717 0.6472 (10.23) 0.0803 (1.23) 0.7275

5th Difference 498 0.7486 (10.48) 0.1744 (2.73) 0.9230

6'h Difference 301 0.7198 (8.17) 0.1655 (2.35) 0.8853

7th Difference 130 0.9427 (8.48) 0.1348 (1.66) 1.0775
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Industry 324

Estimator df _ U_ (I ratio) Lt ratio) RTS

I"' Differencc 680 0.4809 (5.08) 0.1785 (1.39) 0.6594
2 nd Difference 547 0.7030 (7.26) 0.2644 (2.38) 0.9674
3 rd Difference 427 0.8056 (7.39) 0.2719 (2.52) 1.0775
4 th Difference 316 0.7285 (7.40) 0.2783 (3.22) 1.0068
5ih Differcnce 218 0.6207 (5.58) 0.3208 (3.40) 0.9415
6 ih Difference 131 (.7287 (5.88) 0.1822 (1.71) 0.9109
7 th Difference 55 0.9458 (5.10) 0.1638 (1.01) 1.1096

Industry 331

Estimator df ratio) B (t ratio) RTS

I"' Difference 1600 0.5723 (9.37) 0.2620 (3.00) 0.8343
2 fd Difference 1250 0.5563 (8.50) 0.2136 (2.62) 0.7699
3rd Diffcrence 936 0.5960 (8.16) 0.1833 (2.18) 0.7793
4 1h Difference 666 0.6840 (7.86) 0.0810 (0.90) 0.7650
51h Difference 445 0.6909 (7.45) 0.1329 (1.44) 0.8238
6 ih Diffcrence 261 0.4876 (4.07) 0.0823 (0.66) 0.5699
7 Ih Difference 104 0.3634 (1.88) 0.1734 (1.05) 0.5368

Industry 332

Estimator df i U ratio) L (t ratio) RTS

It Difference 676 0.3289 (2.71) 0.3962 (2.47) 0.7251
2 nd Difference 505 0.5311 (4.27) 0.3050 (2.23) 0.8361
3 rd Difference 359 0.6400 (5.03) 0.1594 (1.24) 0.7994
4th Difference 248 0.7135 (4.92) 0.1638 (1.24) 0.8773
5 th Difference 163 0.8442 (6.44) 0.0726 (0.68) 0.9168
6th Difference 96 0.7213 (4.14) 0.1434 (1.19) 0.8647
7 1h Difference 37 0.5607 (2.04) 0.1953 (1.30) 0.7560

Industry 342

Estimator d l (t ratio) j (t ratio) RTS

15' Difference 971 0.2182 (4.32) 0.2714 (2.84) 0.4896
2 nd Difference 780 0.2724 (5.75) 0.3127 (4.03) 0.5851
3 rd Difference 603 0.3356 (6.20) 0.2876 (3.84) 0.6232
4th Difference 442 0.2350 (3.79) 0.3735 (4.92) 0.6085
5 th Differcnce 304 0.3152 (3.99) 0.2990 (3.41) 0.6142
6 ih Diffcrence 181 0.3812 (4.17) 0.2269 (2.23) 0.6081
71h Difference 74 0.5883 (6.02) 0.1845 (1.74) 0.7728
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Industry 352

ANCim a.or ....L.(.t ralio)

I' Difference 814 0.0680 (1.14) 0.0530 (0.67) 0.1210
2"" Difference 664 0.2134 (3.46) 0.1093 (1.69) 0.3227

3rd Diffcrence 522 0.3046 (4.82) 0.1440 (2.26) 0.4486
4 1h Diffcrence 395 0.3909 (5.94) 0.1307 (1.87) 0.5216
5 'h Difference 277 0.3821 (4.97) 0.0881 (1.12) 0.4702
6 1h Difference 169 0.3488 (3.92) 0.2257 (2.55) 0.5745
7 th Difference 72 0.2053 (1.51) 0.2014 (1.65) 0.4067

Industry 355

Estimator df a (t ratio) Q ft ratio) RTS

Is" Difference 294 0.3821 (4.64) 0.1012 (0.83) 0.4833
2nd Difference 234 0.3177 (3.35) 0.0925 (0.88) 0.4102
3fd Difference 182 0.3047 (3.22) 0.1876 (1.80) 0.4923
4 1h Difference 139 0.2594 (2.39) 0.3206 (2.95) 0.5800
5 1h Difference 98 0.3317 (2.78) 0.4684 (4.16) 0.8001
6!h Difference 61 0.4873 (3.09) 0.4412 (3.31) 0.9285
7 ih Difference 27 0.5682 (2.30) 0.3408 (1.62) 0.9090

Industry 356

Estimator df _j_ (t ratio) .L (t ratio) RTS

I" Difference 663 0.3153 (3.11) 0.3146 (2.40) 0.6299
2 nd Difference 513 0.4090 (4.01) 0.3101 (2.61) 0.7191
3rd Difference 385 0.3809 (3.35) 0.5583 (4.44) 0.9392
4 th Difference 276 0.3221 (2.45) 0.6070 (4.67) 0.9291
5 1h Difference 187 0.3167 (1.93) 0.6629 (5.06) 0.9796
6 1h Difference 106 0.2192 (0.85) 0.5884 (3.39) 0.8076

7 1h Difference 44 0.6187 (1.49) 0.3840 (1.64) 1.0027

Industry 369

Estimator df t ratio t ratio) RTS

1" Difference 478 0.5685 (6.12) -0.0235 (-0.27) 0.5450
2 nd Difference 380 0.5750 (6.40) 0.0917 (1.16) 0.6667
3rd Difference 289 0.4351 (4.29) -0.0089 (-0.11) 0.4262
4 1h Difference 207 0.6258 (5.32) 0.1540 (1.70) 0.7798
5 th Difference 142 0.6210 (4.45) -0.0352 (-0.33) 0.5860
6 1h Difference 85 0.6689 (3.82) (0.0253 (-0.19) 0.6436
7th Difference 36 0.7923 (4.13) 0.0753 (0.54) 0.8676
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Industry 381

Esimaor df a. .it (t ratio) RTS

1It Difference 1859 0.3117 (6.39) 0.1236 (1.97) 0.4353
Z"j Difference 1439 0.3916 (8.32) 0.0199 (0.35) 0.4115
3'd Difference 1085 0.5515 (10.36) 0.0467 (0.80) 0.5982
4 1h Diffcrcnce 787 0.5346 (9.45) 0.1556 (2.83) 0.6902
5 th Difference 544 0.6295 (9.18) 0.1379 (2.45) 0.7674

6 Ih Difference 329 0.6723 (8.24) 0.2349 (3.86) 0.9072
7 th Difference l37 0.6271 (5.14) 0.2497 (3.11) 0.8768

Industry 382

Estimator df a (t ratio) Bi (t ratio) RTS

1th Difference 548 0.3271 (5.03) 0.0057 (0.06) 0.3328
2 th Diffcrcnce 422 0.4791 (6.78) 0.0313 (0.34) 0.5104
3 th Difference 314 0.4664 (6.26) 0.0625 (0.72) 0.5289
41h Difference 220 0.4577 (5.13) 0.0953 (1.05) 0.5530
5 ih Difference 143 0.3951 (3.44) 0.1038 (1.04) 0.4989
(th Difference 81 0.5219 (2.96) 0.0472 (0.37) 0.5691
7 th Difference 30 0.2964 (1.13) 0.1181 (0.78) 0.4145

Industry 383

Estimator df £ (t ratio) 11 (t ratio) RTS

ISt Difference 279 0.4143 (2.95) 0.2298 (0.66) 0.6441

2nd Difference 218 0.6562 (4.65) 0.6693 (2.47) 1.3255
yrd Difference 165 0.6601 (5.22) 0.1382 (0.71) 0.7983

4 ah Difference 121 0.5468 (3.97) 0.2197 (1.19) 0.7665
5th Difference 85 0.3692 (2.96) 0.2533 (1.81) 0.6225

6 ih Difference 50 0.5980 (5.00) 0.2679 (1.93) 0.8659
7 1h Difference 21 0.4164 (2.09) 0.2986 (1.29) 0.7150

Industry 384

Estimator df a it ratio) (t ratio) RTS

is' Difference 475 0.5487 (5.61) 0.0155 (0.14) 0.5642
,nd Difference 360 0.6917 (6.79) 0.0780 (0.76) 0.7697

3 rd Difference 258 0.6483 (5.51) 0.2732 (2.20) 0.9215
4 th Difference 178 0.7180 (4.92) 0.2898 (2.34) 1.0078

5lh Difference 118 0.5986 (3.94) 0.4882 (3.39) 1.0868

6th Difference 67 0.3961 (2.37) 0.4548 (2.88) 0.8509
7ih D;fference 27 1.112. (4.63) 0.1511 (0.60) 1.2636
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Table 5: Proportional Increase in Estimated RTS, Extended versus Balanced Sample

Industry

j 312 313 321 322 324 331 332 342

0.0743 -0.1059 -0.1172 0.4010 0.7217 0.2628 0.1491 0.2674
2 0.0674 -0.0201 0.0029 0.0436 0.4870 0.0476 0.3529 0.0411
3 0.0150 -0.1415 0.0227 0.1107 0.2290 -0.0752 0.0047 -0.0330
4 -0.0067 -0.2007 0.1170 -0.1173 0.1432 -0.1400 0.0606 0.1120
5 0.0370 -0.2199 0.0349 -0.0510 0.0374 -0.0790 -0.0907 0.0710
6 0.0206 -0.0450 0.0137 -0.0365 -0.0339 -0.3020 -0.0309 -0.0201
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

352 355 356 369 381 382 383 384

1 0.6220 -0.0815 1.2964 0.2766 -b0.041 1.4029 5.1933 -0.2148
0.0075 0.0360 0.2936 0.1216 0.2928 0.4285 0.8263 -0.0210

3 0.1979 0.0009 0.0778 -0.2886 0.1959 0.7984 -0.0795 0.0234
4 0.0691 0.0068 -0.1162 0.0074 0.1331 0.3170 -0.1339 -0.0216

-0.1417 0.0496 -0.0655 -0.0737 0.0691 0.2054 -0.0860 -0.0603
6 -0.0817 0.0739 .0.0734 0.i250 0.0047 0.1187 -0.0065 -0.0321
7 0.0000 0.0000 0.0000 (.0000 0.0000 0.0000 0.0000 0.0000
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Table 6: Probit Models of Plant Exit
(Extended Sample)

Industry 312

dirf. - n nx a8( n1 8 0 (L ratio 1A- (A ratio) ITI (1 ratioL
84-79 1607 461 -0.33 (-8.21)
85-8() 1490 410 73 0.43 (2.82) -0.31 (-7.08)
86-81 1417 394 58 80 0.39 (2.24) 0.05 (0.35) -0.32 (-7.24)
85-79 1607 509 -0.33 (-8.32)
86-80 1490 503 73 0.47 (3.08) -0.28 (-6.80)
86-79 1607 602 -0.29 (-7.87)

Industry 313

diff. n inx n80 n81 Ago (t ratio) -Al (t ratio) ITL' ftratio)
84-79 210 91 -0.49 (-5.19)
85-8() 185 73 12 0.51 (1.32) -0.27 (-2.84)

86-81 158 59 6 9 0.98 (2.54) ... -0.36 (-3.26)
85-79 210 101 -0.48 (-5.15)
8s-80 185 88 12 1.24 (2.37) -0.33 (-3.35)
86-79 210 113 -0.50 (-5.29)

1ndustry 321

diff. n nx n80 n81 A80 (t ratio) Al (t ratio) -TL_ (t ratio)
84-79 502 240 -0.15 (-2.92)
85-80 441 187 16 -0.08 (-0.25) -0.27 (-4.49)
86-81 403 153 14 23 0.20 (0.59) 0.19 (0.70) -0.29 (-4.49)
85-79 502 248 -0.19 (-3.61)
86-80 441 204 16 -0.02 (-0.08) -0.28 (-4.73)
86-79 502 265 -0.21 (-4.04)

Industry 322

d_L n nx Q inl &8 0 (Ltratio) A8 l (t ratio) IT,. (t ratio)
84-79) 442 232 -0.26 (-3.93)
85-80 396 199 12 0,63 (1.57) -0.21 (-3.07)
86-81 344 157 7 10 0.17 (0.35) -0.18 (-0.44) -0.30 (-3.82)
85-79 442 249 -0.26 (-3.98)
86-8l 396 210 12 0.55 (1.39) -0.22 (-3.16)
86-79 442 261 -o.25 (-3.77)
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Industry 324

diff. n nx n80 n81 A80 t ratioI -- I (t ratio) -AT' (t ratio)

84-79 184 83 -0.31 (-3.00)
85-80 154 65 6 0.07 (0.13) -0.26 (-2.28)
86-81 136 52 5 4 0.4 (0.77) 0.13 (0.20) -0.30 (-2.43)
85- 79 184 94 -0.33 (-3.26)
86-80 154 71 6 0.38 (0.71) -0.32 (-2.75)
86-79 184 9)8 -0.38 (-3.65)

Industrv 331

diff. n nx n80 n81 8 - Lraio 8 1 ( ratioL T (t ratio)
84- 79 522 286 -0.21 (-3.92)
85-80 447 216 29 -0.04 (-0.18) -0.22 (-3.35)
86-81 406 189 22 33 0.08 (0.29) 0.14 (0.59) -0.37 (-5.23)
85 -79 522 293 -0.22 (-4.00)
86-80 447 243 29 0.17 (0.70) -0.25 (-3.75)
86-79 522 319 -0.21 (-3.74)

Industry 332

diff. n nx n80 n81 A80 t ratiol .8A (I ratio) QTL (t ratio)
84-79 210 125 -0.38 (-3.17)
85-80 191 114 9 -0.22 (-0.52) -0.53 (-3.94)
86-81 169 100 9 5 -0.17 (-0.40) 0.13 (0.24) -0.72 (-4.85)
85-79 210 133 -0.39 (-3.27)
86-80 191 122 9 -0.37 (-0.86) -0.22 (-4.46)
86- 79 210 143 -0.47 (-3.86)

Industry 342

diff. n nx n8Q n81 ASO (t ratio) _.LI (t ratio) .TL (t ratio)
84-79 242 104 .0.26 (-2.92)
85-80 226 89 8 0.32 (0.67) .0.39 (-3.87)
86-81 205 81 8 3 0.28 (0.56) e.21 (0.28) -0.58 (-4.84)
85-79 242 110 -0.29 (-3.31)
86-80 226 99 8 0.18 (0.38) -0.40 (-4.09)
86-79 242 118 -0.31 (- 3.5 1)
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Industry 352

Adll( n ax- n80 n1 & (t roato .AA 1 ratio) I.TL' ft ratio)
84.79 171 47 -0.31 (-3.10)
85-80 165 39 5 0.18 (0.30) -0.36 (-3.18)
86-81 157 39 5 3 0.17 (0.28) 0.71 (0.92) .0.33 (-2.95)
85-79 171 50 -0.26 (-2.76)
86-80 165 44 5 0.02 (0.03) -0.43 (-3.85)
86 -7 171 56 -0.32 (-3.40)

Industry 355

diLf. n n,x n80 n8t A^8 (t ratio2l _.. (t ratio) L ITL- "I raiOL
84-79 63 18 0.10 (0.74)
85-80 67 22 3 0.92 (1.19) -0.002(-0.01)
86-81 58 18 3 0 6.30 (0.01) ... 0.13 (0.81)
85-79 63 21 0.03 (0.20)
86-80 67 27 3 ... 0.09 (0.61)
86-79 63 24 0.19 (1.34)

Industry 356

difr. n nx n80 n81 A80 ft ratio) -. I (t ratio) iTL? (t ratio)
84-79 170 63 -0.33 (-2.94)
85-8() 162 55 8 0.58 (1.22) -0.43 (-3.10)
86-81 149 44 6 3 0.44 (0.82) 0.67 (0.85) -0.37 (-2.90)
85-79 170 66 -0.30 (-2.72)
86-80 162 58 8 0.50 (1.07) -0.48 (-3.41)
86-79 170 7$ -0.32 (-2.89)

Industry 369

dif L. n nx n8Q ES A (t ratio)l .IA (t ratio) -ATL (t ratio)
84-79 135 53 -0.41 (-3.22)
85-80 138 50 11 0.13 (0.31) -0.54 (-4.05)
86-81 127 43 10 3 0.36 (0.83) -0.35 (-0.45) -0.43 (-3.12)
85-79 135 53 -0.36 (-2.92)
86-80 138 55 11 0.07 (0.16) -0.45 (-3.67)
86-79 135 58 -0.29 (- 2.49)
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Industrv 381

-AL f .. g.n nx -nj ni. A80 (Iratiqo A81, (I ratio)
84-79 458 224 .0.46 (-6.88)
85-8( 445 204 16 0.19 (0.57) -0.53 (-7.25)
8h-81 411 183 13 21 0.30 (0.83) 0.44 (1.45) -0.45 (-6.06)
85-79 458 233 -0.47 (-7.11)
86-8) 445 220 16 0.28 (0.83) .0.44 (-6.41)
86- 79 458 248 -0.40 (-6.23)

Industry 382

diff. n nxa n8Q J -LAI; (iQaI ... A 8 IJaliIL .ATLJLJ13A2L
84-79 169 85 -0.32 (-3.14)
85-80 140 53 5 0.44 (0.74) -0.30 (-2.60)
86-81 144 66 3 6 0.56 (0.73) 0.56 (1.05) -0.02 (-0.26)
85-79 169 90 -0.33 (-3.23)
86-80 140 67 5 0.85 (1.31) .0.12 (-1.24)
86-79 169 103 -0.20 (-2.05)

Industrv 383

diff. n_ nx n80 n81 A8 L(t ratioo -8A, (t ratio) 'Ti nt ratio)
84-79 87 48 -0.28 (-2.46)
85-80 71 29 2 0.03 (0.03) -0.35 (-2.40)
86-81 64 23 2 1 0.68 (0.78) ... -0.49 (-2.74)
85-79 87 48 -0.28 (-2.46)
86-80 71 32 2 -0.11 (-0.11) -0.37 (-2.57)
86-79 87 51 -0.31 (-2.64)

Industry 390

diff. n nx JQ LOn - 81 (t ratio _ ItratigL AT, (t ratio)
84-79 77 42 -0.28 (-1.77)
85-80 66 29 2 0.12 (0.14) -0.62 (-2.54)
86-81 63 28 1 0 ... ... -0.34 (-1.59)
85-79 77 42 -0.41 (-2.38)
86-80 66 33 2 ... -0.34 (-1.59)
86-79 77 45 -0.26 (-1.56)
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Table 7: Absolute increase in Estimated RTS when Mills Ratio Is Included
(Simple Fifth, SIxtb and Seventh Difference Equations?

Industry

DIFF 312 313 321 322 324 331 332 342

84-74) 0.0007 0.0650 0.0256 -0.0157 0.0051 0.0270 0.0046 0.0077
85-80 0.0134 -0.0152 0.0345 0.0000 -0.0279 0.0015 0.0010 0.0242
86-81 -0.0011 -0.0741 0.0046 -0.0000 -0.0146 0.0069 0.0045 0.0063
85-79) 0.0172 0.1075 0.0447 -0.0082 0.0005 0.0164 0.0056 0.0352
86-80 0.0104 0.0060 0.0265 -0.0078 -0.0390 0.0050 -0.0001 0.0042
86-79 0.0086 0.0008 0.0449 -0.0138 0.0026 0.0460 0.0291 0.0033

352 355 356 369 381 382 383 384

84- 79 -0.0006 0.0212 -0.0432 0.0017 -0.0057 -0.1608 -0.0143 -0.1892
85-80 -0.0310 0.0392 0.0064 0.0321 -0.0042 0.0231 0.0653 -0.0722
86-81 -0.0341 -0.0418 -0.0121 -0.0771 0.0071 -0.0252 -0.0137 -0.0191
85-79 0.0211 -0.0043 -0.0472 0.2308 0.0001 -0.0232 0.0156 0.0765
86-80 -0.0339 -0.0123 0.0050 0.0252 -0.0126 -0.0239 0.0145 0.0015
86-79 0.0764 -0.0394 -0.1072 0.0509 -0.0054 -0.1139 -0.0046 -0.0468
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Table 8: Iterative GMM Estimates by 3-digit Industry (Extended Data)

7 ih Djiffcrence _h and 7h D:ifferences 5th 6 th and 7 th Differences

N £ .L_ RTS N _. _ JL. RTS N a ..ft.A RTS

312 538 .502 .407 .909 693 .516 .417 .934 822 .483 .482 .965
(.072) (.078) (.083) (.054) (.067) (.072) (.047) (.066) (.069)

313 42 .719 .575 1.294 57 .489 .209 .698 65 .504 .197 .701
(.263) (.332) (.486) (.131) (.203) (.240) (.067) (.177) (.160)

321 138 .511 .304 .815 171 .732 .161 .894 201 .673 .081 .844
(.133) (.132) (.160) (.096) (.100) (.120) (.079) (.081) (.098)

322 100 .815 .219 1.034 132 .698 .244 .942 161 .623 .103 .727
(.138) (.160) (.152) (.101) (.097) (.125) (.070) (.053) (.078)

324 48 .638 .396 1.033 63 .559 .404 .963 70 .756 .225 .981
(.192) (.109) (.219) (.093) (.100) (.119) (.077) (.071) (.083)

331 91 .772 .119 .890 134 .414 .257 .671 157 .481 .227 .708
(.240) (.227) (.382) (.103) (.160) (.194) (.092) (.137) (.168)

332 28 .398 .774 1.172 48 .628 .142 .770 55 .768 .010 .778
(.407) (.389) (.210) (.153) (.124) (.175) (.115) (.100) (.134)

342 65 .566 .196 .762 96 .533 .303 .836 105 .514 .424 .938
(.107) (.119) (.134) (.080) (.101) (.104) (.061) (.097) (.098)

352 74 .155 .254 .409 97 .258 .475 .733 105 .181 .541 .722
(.138) (.162) (.202) (.090) (.122) (.144) (.071) (.109) (.119)

355 28 .343 .544 .887 33 .723 .225 .948 35 .047 .405 .452
(.228) (.293) (.300) (.112) (.138) (.153) (.090) (.110) (.086)

356 43 .990 .018 1.008 58 .319 .208 .527 74 .349 .275 .623
(.404) (.256) (.319) (.197) (.177) (.165) (.135) (.140) (.142)

369 30 .649 .417 1.066 39 .503 .194 .697 46 .481 .354 .835
(.292) (.214) (.330) (.122) (.166) (.216) (.111) (.147) (.195)

381 127 .696 .470 1.166 177 .530 .222 .752 202 .419 .174 .593
(.139) (.147) (.160) (.102) (.092) (.122) (.078) (.090) (.113)

382 25 -. 086 .462 .376 47 -.078 .521 .443 58 .037 .654 .692
(.378) (.259) (.308) (.229) (.203) (.243) (.145) (.138) (.164)

383 23 .513 .544 1.057 30 .486 .157 .643 31 .118 .215 .334
(.174) (.243) (.302) (.075) (.113) (.136) (.057) (.068) (.073)

384 28 .870 .347 1.217 35 .520 .542 1.062 43 .946 .528 1.473
(.188) (.162) (.136) (.103) (.097) (.095) (.092) (.076) (.083)
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Table 9: Iterative GMM Estimates by 4-digit Industry (Extended Datea)

7 qien 6 th and 7 th Differences_ 5 th 6 th and 7 th Diffe.-nces
N * NL RTS N a _L_ RTS N _ x .1 RTS -

3111 43 .795 .580 1.375 62 .751 .547 1.298 70 .510 .631 1.140
(.191) (.099) (.210) (.139) (.082) (.150) (.115) (.088) (.134)

3113 25 .906 -.674 .232 32 .634 .607 1.241 36 .968 .574 1.542
(.213) (.394) (.344) (.199) (.199) (.205) (.083) (.090) (.104)

31l5 20 .193 .490 .683 24 .398 -.469 -.071 27 -. 216 -. 448 -.665
(.454) (.413) (.604) (.169) (.342) (.344) (.074) (.149) (.142)

3116 42 .182 .569 .750 55 .120 .019 .139 61 .263 .090 .353
(.184) (.247) (.288) (.139) (.136) (.169) (.111) (.116) (.167)

3117 321 .775 .335 1.110 420 .658 .385 1.043 513 .662 .383 1.045
(.088) (.109) (.106) (.073) (.092) (.089) (.062) (.084) (.084)

3132 2 .860 .131 .991 30 .784 .046 .831 34 .182 .207 .388
(.157) (.346) (.256) (.123) (.116) (.125) (.054) (.120) (.103)

3211 65 .459 .263 .722 75 .516 -.019 .497 83 .512 -. 072 .490
(.175) (.166) (.245) (.124) (.127) (.164) (.097) (.087) (.135)

3213 44 .815 .563 1.378 61 .650 .425 1.074 78 .804 .347 1.151
(.309) (.257) (.299) (.149) (.120) (.172) (.136) (.101) (.128)

3311 79 .694 .053 .747 115 .377 .200 .577 133 0.458 0.224 0.683
(.317) (.263) (.500) (.109) (.168) (.210) (.098) (.146) (.181)

3522 28 -.041 -.530 -.571 35 .147 -. 378 -. 232 36 .124 -.326 -.201
(.160) (.229) (.281) (.055) (.115) (.130) (.028) (.075) (.087)

3813 25 .699 .940 1.640 39 .792 .835 .626 46 .445 1.236 1.681
(.137) (.087) (.132) (.097) (.070) (.107) (.076) (.067) (.087)

3819 28 .662 .297 .959 47 .695 .497 1.193 55 .754 .295 1.049
(.663) (.204) (.543) (.232) (.126) (.220) (.134) (.089) (.144)

3843 23 1.288 -. 287 1.001 26 .297 .634 .931 35 -. 085 .912 .826
(.217) (.316) (.229) (.062) (.092) (.073) (.067) (.084) (.059)
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Table 10: 3-dIgit and 4-diglt Industry Rankings by RTS and p

Iterative GMM * Seventh Difference Equations

Industries RankSd byX Etimated RT-S Industries RAnked by-Esimaied 

3.diiit Idustr ..Jj... SAsnect? 3-diait lndmstry ...,t... 8OJ

313 (hevcrages) 1.294 yes 332 (furniture) .774
3184 (transport equip) 1.217 313 (beverages) .575 yes
332 (furniture) 1.172 355 (rubber) .544
381 (metal products) 1.166 383 (electric mach.) .544
.109 (non-metallic min) 1.066 381 (metal products) .470
383 (electric machinery) 1.057 382 (non-electric mach.) .462
322 (clothes) 1.034 369 (non-metallic min.) .417
324 (shoes) 1.033 312 (food) .407
356 (plastics) 1.008 324 (shoes) .396
312 (food) .909 384 (transport equip.) .347
331 (wood products) .890 yes 321 (textiles) .304
355 (rubber) .887 352 (misc. chemicals) .254 yes
321 (textiles) .815 322 (clothes) .219
342 (printing) .762 yes 342 (printing) .196 yes
352 (misc. chemicals) .409 yes 331 (wood products) .119 yew
382 (non-electric mach.) .376 356 (plastics) .018

4-digit Industry .....IL.. 112DSL2 A-Ani"tistry .. L} sM

3813 (structural metal) 1.640 3813 (structural metal) .9404
3213 (knitting) 1.378 3111 (meatpacking) .580
3111 (mcatpacking) 1.375 3116 (grain mills) .569
3117 (bakeries) 1.110 3213 (knitting) .563
3843 (autos) 1.001 3117 (bakeries) .335
3132 (wineries) .991 3819 (misc. metal prod.) .297
3819 (misc. metal prod.) .959 3211 (spinning/weaving) .263
3116 (grain mills) .750 3132 (wineries) .131
3311 (sawmills) .747 yes 3311 (sawmills) .053 yes
3211 (spin/weaving) .722 3843 (autos) -.287
3113 (fruit/veg. can.) .232 3522 (pharmaceuticals) -.279 yes
3522 (pharmaceuticals) -.571 yes 3113 (fruit/veg. canning) -.674

Industries which shrank more than forty percent in real terms over the sample period 1979-1986 are
considered suspect7.
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