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Abstract 
This paper analyzes the effects of building height restrictions, providing a concrete welfare-cost 
estimate for the city of Bangalore.  Relying on several theoretical results, the analysis shows that 
the welfare cost imposed on its residents by Bangalore's building height restriction ranges between 
3 and 6 percent of household consumption.  This burden represents a significant share of individual 
resources, and its presence may push many marginal households into poverty. 
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by 
 

Alain Bertaud and Jan K. Brueckner∗ 
 
 
 
 
1. Introduction 

Throughout the world, land-use decisions are affected by various forms of government 

intervention in real estate markets.  Such interventions include U.S.-style zoning regulations, which 

are meant to minimize externalities by separating different types of land uses, as well as greenbelt 

laws and urban growth boundaries, which limit the spatial expansion of cities (see Fischel, 1990 for 

an overview of such policies).  Sometimes, government intervention takes more drastic forms.  For 

example, apartheid policies in South Africa dictated residential location patterns by race, pushing 

black households to remote locations far from the urban centers (see Brueckner, 1996).  In the 

command economies of the old Soviet bloc, rigid government control sometimes generated 

perverse land-use patterns, exemplified by Moscow's inverted density contour, which put people far 

from their places of work (see Bertaud and Renaud, 1997). 

Governments in most market economies also exert explicit control over the density of 

development.  While minimum-lot-size rules and other regulations are designed to limit suburban 

development densities in the United States, a related regulatory tool is the building height 

restriction, which governs land-use in the central parts of many cities worldwide.  The most 

obvious examples are Washington, D.C., where no building can be taller than the U.S. Capitol, and 

Paris, where height restrictions attempt to preserve the character of the central city. 

Although the use of height restrictions in both of these cities is driven by aesthetic 

considerations, building height restrictions may also be imposed in an attempt to achieve other 
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goals.1  A case in point is India, where city governments impose height limitations through 

restrictions on the Floor Area Ratio (FAR) of buildings.  The FAR is computed by dividing a 

building's total floor area by the area of land parcel on which it sits, and an upper limit on this ratio 

effectively puts a limit on the building's height. 

In controlling FAR, the goal of the Indian planners has been to indirectly limit both job and 

population densities.  It is believed that excessive density results in a loss of environmental quality 

and increased traffic congestion.  In addition, higher densities would place greater demands on 

urban infrastructure, which Indian cities, plagued by weak technical capacities and inadequate tax 

revenue, feel ill-equipped to provide at appropriate levels. 

For example, while low water pressure and high leakage might be acceptable in a low-

density neighborhood, the same pressure and leakage performance might create unacceptable living 

conditions in higher density areas.  A similar point applies to waste disposal, where an Indian 

municipality may succeed at removing only 25 percent of the refuse generated by the city.  While 

this outcome might be unpleasant but survivable in a low-density neighborhood, it may entail grave 

health consequences at higher densities. 

Thus, accepting high densities in central areas would have required a commitment by Indian 

cities to improve the productivity and performance of municipal services, requiring substantial 

investments in infrastructure.  Faced with this trade-off and limited by their poor technical 

capacities, Indian municipalities chose to reduce densities via FAR restrictions in order to avoid 

central city infrastructure investments.  In the last few years, the technical performance of many 

major municipal governments has greatly improved, but the policy of FAR restrictions has not been 

revised. 
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Motivated by the widespread use of FAR restrictions in India, the present paper analyzes 

the effects of such restrictions and attempts to appraise their costs.  This task is carried out first on 

an abstract level, with the standard monocentric-city model used to show how FAR restrictions 

affect land use.  The analysis, presented in section 2, reaches the natural conclusion that, by 

limiting population densities near the center, an FAR restriction causes the city to expand spatially.  

This spatial enlargement affects consumers both by raising their average commuting distance and 

by pushing up the housing prices they must pay.  However, the analysis shows that the resulting per 

capita welfare loss can be measured simply by the increase in commuting cost for an individual 

living at the edge of the city, who is now more distant from the central workplace. 

It should be noted that this welfare-cost measure abstracts from the potential effects of the 

FAR restriction on infrastructure costs.  While the restriction may reduce costs in the center, as 

explained above, spatial expansion of the city also leads to higher costs by requiring a wider 

infrastructure network.  Because the net change in costs is difficult to estimate, the analysis focuses 

purely on consumer losses from the FAR restriction, abstracting from infrastructure issues. 

Armed with results of the theoretical analysis, the paper turns in section 3 to a case study of 

a particular Indian city, namely, Bangalore.  Using detailed land-use data for this city, the analysis 

carries out a counterfactual exercise, asking what Bangalore would look like today had it developed 

in the absence of the FAR restriction.  The theory shows how FAR values and dwelling sizes would 

change throughout the city following a hypothetical removal of the restriction, and these predicted 

changes can be used to spatially reallocate Bangalore's population, raising central densities and 

generating a shrinkage in the city's spatial size.  The final step is to compute the resulting 

commuting-cost saving for an individual living at Bangalore's now-closer edge.  This saving 
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captures the consumer welfare gain from removal of the FAR restriction, and hence the welfare 

cost of its presence. 

While such a counterfactual exercise is illuminating in its exposure of the costs of having 

followed the current regulatory policy, it does not provide Indian policy makers with some of the 

practical information they need.  In deciding whether to ease the current FAR restrictions, these 

policy makers need to know the future impacts of such a change, not its retrospective effect.  The 

conclusion of the paper discusses such future impacts, although the discussion is necessarily 

speculative. 

Before proceeding, it is important to acknowledge the earlier work of Arnott and 

MacKinnon (1977), who carried out the only previous analysis of the effects of building height 

restrictions, relying on a numerical version of the monocentric-city model.  Their work is similar in 

spirit to the analysis in section 2, although it is carried out using a much more detailed and realistic 

specification of the housing production technology.  Partly because of this greater realism, Arnott 

and MacKinnon are unable to present any general theoretical results regarding the impact of an 

FAR restriction, as is done below.  The connections between Arnott and MacKinnon's findings and 

those of the present analysis are noted as the discussion unfolds. 

 

2. Theory 

This section presents a theoretical analysis of the impact of building-height (FAR) 

restrictions.  After starting with a review of the standard monocentric-city model, the discussion 

shows how the urban equilibrium is affected by the presence of an FAR restriction.  A numerical 

simulation further illustrates the effects of the restriction, with the results summarized in a series of 
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graphs.  The analysis concludes by discussing measurement of the consumer welfare loss from the 

FAR restriction. 

2.1. The monocentric-city model 

 The monocentric-city model was initially developed by Alonso (1964), Mills (1967), and 

Muth (1969), and Wheaton (1974) provided a more general analysis of the model's properties.  The 

following discussion relies on Brueckner's (1987) extension of Wheaton's approach.  Since the 

model has been explained many times in the literature, the present treatment is compressed.  A 

more expansive review can be found in Brueckner (1987) and elsewhere. 

 The city is inhabited by N identical residents, all of whom work in the central business 

district (CBD), earning income y per period.  The inhabitants commute from their residences to the 

CBD on a dense radial road network, paying t per round-trip mile per period.  Letting x denote 

radial distance, the disposable income of a consumer living x miles from the CBD is then .txy −  

 Individuals have the common, well-behaved utility function ),,( qcv which depends on 

consumption of a numeraire nonhousing good, denoted c, and housing square footage, denoted q.  

Everyone is a renter, and p denotes the rental price per square foot of floor space.  The consumer 

budget constraint is then .txypqc −=+   Eliminating c via the budget constraint, utility can be 

written ).,( qpqtxyv −−  

 Consumers maximize this utility expression by choice of q taking p as given.  To insure 

locational equilibrium, this maximization must lead to a realized utility level that is uniform across 

space.  In other words, it must be true that maxq ,),( uqpqtxyv =−− where u is the uniform utility 

level.  This requirement yields two conditions, a first-order condition for choice of q and the 

condition that utility equals u.  Together, these conditions determine q and p as functions of the 

parameters of interest, which in the present case are x and u.  These solutions are given by 
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 ).,(),,( uxpuxq  (1) 

Spatial variation in p, as seen in (1), ensures locational indifference for consumers.  To 

achieve this outcome, p must decline with x to offset the higher commuting costs incurred at 

greater distances.  Thus, px < 0 holds, where the subscript denotes partial derivative.  In response to 

this price decline, dwelling size increases with x, so that qx > 0. 

The utility level is ultimately endogenous, being determined by the equilibrium conditions 

discussed below.  However, a parametric increase in u affects both p and q.  The housing price falls 

as u rises, with pu < 0.  The lower price allows the consumer to reach the higher indifference curve 

with disposable income held constant.  As long as housing is a normal good, this movement must 

involve an increase in q, with qu > 0. 

Housing floor space is produced by combining land and capital (building materials) under a 

constant-returns technology.  Because of constant returns, housing output per unit of land can be 

written h(S), where h is the intensive form of the production function and S is the capital-to-land 

ratio, referred to as “structural density.”  Since h(S) gives housing floor space per unit of land, it 

effectively represents the floor area ratio (FAR), as discussed in the introduction. 

With the price of capital normalized to unity, profit per acre for the housing developer 

equals ,)( rSSph −−  where r is rent per unit of land.  Given p, the developer chooses S to 

maximize profit, satisfying the first-order condition .1)(' =Sph   Land rent is then determined by 

the zero-profit condition, which can be written .)( SSphr −=   Since S depends on p via the first-

order condition, it ultimately depends on the determinants of p, x and u.  Moreover, since r depends 

on p and S, it too depends on these same parameters.  Thus, the solutions can be written 

 ).,(),,( uxruxS  (2) 
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 Since px < 0 holds and since the lower p depresses the incentive to develop the land,  

Sx < 0 also holds, indicating that structural density declines with x.  Similarly, land rent also 

declines with x, so that rx < 0.  Finally, with a higher u depressing p, both S and r fall as utility 

rises, yielding Su, ru < 0.  For future reference, the effects of x and u on all the variables are 

summarized as follows: 

 qx > 0,     px, Sx, rx < 0;          qu > 0,     pu, Su, ru < 0. (3) 

The two urban equilibrium conditions determine the utility level u as well as the distance x  

to the edge of the city.  These equilibrium conditions require (i) that the urban land rent at x  equals 

the agricultural rent ra, and (ii) that the city population N fits inside .x   Letting the equilibrium 

values of u and x  be denoted u0 and 0x , the conditions determining these values can be written 

 aruxr =),( 00  (4) 

 ,
),(
)),((

0

0
0

0 Ndx
uxq
uxSh

xx =∫ θ  (5) 

where πθ 2≤ is the constant number of radians of land available for housing.  To interpret (5), 

observe that ),(/)),(( 00 uxquxSh  equals housing floor space per unit of land divided by floor space 

per dwelling.  This ratio thus gives dwellings per unit of land, which in turn equals population 

density if each dwelling contains one person.2  Multiplying this density by the area of the ring at 

distance x, equal to ,xdxθ  and integrating across rings out to x  then gives the population fitting in 

the city, which must equal N.  In conjunction with (4), the resulting condition helps determines the 

equilibrium values of u0  and .0x  

It should be noted that the rent earned by the land, both urban and agricultural, disappears 

from the model.  This outcome reflects the standard assumption that absentee landowners, who live 
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outside the city in question, receive the rental income.  Models with resident landowners do exist, 

but they are more cumbersome to analyze (see Pines and Sadka, 1986). 

2.2. Introducing an FAR restriction 

Under an FAR restriction, the government imposes an upper limit on the square footage of 

housing that can be produced per unit of land.  In the model, such a restriction can be written 

 hSh ˆ)( ≤  (6) 

where ĥ  is the FAR limit.  Since S declines with x in an unrestricted city, as seen above, it follows 

that housing output per unit of land, h(S), declines with x as well.  As a result, the FAR restriction 

will bind in the central part of the city, where h(S) would normally be high, being nonbinding 

farther from the center. 

Let x̂  denote the value of x where the FAR restriction becomes binding.  Then, letting u1 

and 1x  denote the u and x  values for the FAR-restricted city, the equilibrium conditions are given 

by 

 aruxr =),( 11  (7) 

 huxSh ˆ)),ˆ(( 1 =  (8) 

 ( )
( )( )
( ) N

uxq
uxShxdx

uxq
hx x

x
x =+ ∫∫

1

1
ˆ

1

ˆ
0 ,

,
,

ˆ
1θθ  (9) 

To understand (8), note that the left-hand side gives the FAR value that would be freely chosen by 

developers at ,x̂x = which is based on the chosen structural density .),ˆ( 1uxS   Thus, (8) says that 

the freely-chosen FAR at x̂  equals the restricted value ,ĥ  indicating that this location is where the 

FAR restriction becomes binding.  To interpret (9), note that the second integral has the same form 

as (6) but a lower limit of x̂  instead of zero, and that the first integral embodies the fact that h must 
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equal ĥ  inside of .x̂   By forcing h to remain constant instead of rising as x falls over this range, 

the FAR restriction tends to reduce population density in the central part of the city. 

Note finally that, since land rent follows the ),( 1uxr  function outside ,x̂  (7) is the 

appropriate boundary condition involving ra.  However, this land rent function is not relevant inside 

x̂ since S is not freely chosen over this range.  Instead, using the zero-profit condition from above, 

r is given by Shuxp ˆˆ),( 1 −  inside ,x̂  where Ŝ  is the structural density corresponding to 

ĥ (satisfying ).ˆ)ˆ( hSh =   This alternate land-rent formula does not, however, enter the equilibrium 

conditions (7) − (9). 

These three equations determine the equilibrium values 11 , xu  and x̂ for the FAR-restricted 

city.  The key question concerns the comparison between these values and those for the unrestricted 

city, focusing on the differences in u and .x   Using the properties of the model established above, it 

can be shown that the FAR restriction hurts the urban residents and causes the city to spread out.  

In particular, 

Proposition 1.  The restricted city takes up more space and has lower consumer welfare 
than the unrestricted city, with 1x  > 0x  and u1 < u0 holding. 
 

To establish this conclusion, suppose first that u and x  were the same in both cities, with u1 

= u0 ≡  u* and 0x  = 1x  ≡  .*x   Then, note that equality of u1 and u0 means that population density 

(h/q) is the same between x̂  and *x  in the restricted and unrestricted cities.  However, since ĥ  < 

)),( *uSh holds for ,x̂x <  it follows that the restricted city has lower density inside x̂ than does the 

unrestricted city over this same range of distance.  With the lower densities in the center and the 

same density outside ,x̂  it follows that the restricted city fits fewer people than the unrestricted 



 10

city, which implies that it cannot accommodate the population N.  A similar argument rules out the 

other cases where the inequality in the Proposition is violated, establishing the result (see the 

appendix). 

2.3. A numerical simulation 

To further illustrate differences between the restricted and unrestricted cities, it is helpful to 

rely on a numerical simulation.  The numerical example is based on U.S. parameter values, which 

can be chosen with some degree of confidence.  However, the results apply qualitatively to any 

city, including the Bangalore case considered below.  

The simulation is based on Cobb-Douglas forms for the utility and production functions.  

The number of households N for the city is set at 800,000, implying an effective population of over 

2 million in the case where a household realistically contains 2.6 persons.  Income per household is 

set at the 2000 U.S. census value of $42,151.  About two-thirds of the circular area of the city is 

available for housing, with θ  in (6) and (9) set equal to 4 (as opposed to )2π  radians.  Other 

parameter values are discussed in the appendix. 

The unrestricted city has an 0x  value of 21.4 miles.  In the city, h(S) ranges from a value of 

around 17.5 at the CBD to 0.4 at .0x   To interpret these values, note that FAR, as represented by 

h(S), is roughly equal to the number of floors in a building, in the case when the parcel contains no 

open space around the structure.  On the other hand, if a building covers only half of a parcel's land 

area, then FAR is equal to roughly half of the number of floors.  In the latter case, the above 

numbers suggest that buildings in the unrestricted city have more than 30 floors at the center and 

are single-storied at the edge of the city.  This FAR pattern is shown in Figure 1. 
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For the restricted city, the upper bound on FAR is set at 3.75.  Under this restriction, the 

city radius expands by 2.1 miles, reaching an 1x  value of 23.5 miles.  The value of ,x̂  where the 

FAR restriction becomes binding, is 11.7 miles, about halfway to the edge of the city. 

The resulting FAR pattern can be seen in Figure 1.  While FAR is flat at 3.75 inside ,x̂  

note that FAR values are higher outside x̂  than in the unrestricted city.  Formally, the reason for 

this outcome is that lower utility in the restricted city means that )),(( 1uxSh < )),(( 0uxSh holds 

over the x range where S is freely chosen (recall Su < 0).3 

To understand this increase in FAR intuitively, note that by effectively tightening housing 

supply, the FAR restriction raises the price per square foot of housing at each location, as seen in 

Figure 2.  Formally, this rise is a consequence of the decline in u combined with pu < 0, which yield 

p(x, u1) > p(x, u0).  With p higher everywhere in the restricted city, the incentive for development 

grows, leading to an increase in FAR wherever the restriction is not binding. 

The increase in p also leads to smaller dwellings in the restricted city, as seen in Figure 3.  

Once again, in response to the tightening of housing supply caused by the FAR restriction, 

consumers cut back on their consumption of floor space.  It should be noted that, because the units 

of measurement of housing consumption are arbitrary in the simulation, the values of q and p can 

be rescaled appropriately.  The scaling is chosen to give plausible values at the CBD in the 

unrestricted city, with dwellings of about 500 square feet, renting at about $8 per square foot per 

year. 

Figure 4 shows the effect of the FAR restriction on land rent, with rent given as a value per 

square mile.  Near the center, rent is higher in the unrestricted city, but this relationship is reversed 

beyond a distance of x = 4.  To understand this pattern, note that the decline in utility raises rent in 
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the restricted city outside ,x  with r(x, u1) > r(x, u0) holding given ru < 0.  But once x falls below ,x  

rent rises more slowly than in the unrestricted city, a consequence of the fixity of housing output 

and structural density (see the above rent formula).  This phenomenon can be seen in Figure 4, 

where the restricted land rent function becomes more nearly linear around ,12=x  mirroring the 

shape of the housing price curve in Figure 2.  Because it increases less rapidly as x falls, restricted 

rent is eventually overtaken by rent in the unrestricted city, which rises above it. 

It should be noted that, if the price per square foot of housing were fixed exogenously, then 

the FAR restriction, by depressing the intensity of land use, would unambiguously reduce land rent.  

Casual reasoning, by focusing on the restriction's interference with the “highest and best use” of the 

land, might predict such an outcome.  The fact that land rent instead rises at some locations where 

the FAR restriction binds is due to the increase in p, which reverses the negative direct effect of the 

restriction itself.  This outcome shows how general-equilibrium impacts can sometimes invalidate 

seemingly persuasive conclusions based on informal reasoning. 

Finally, Figure 5 shows the effect of the FAR restriction on population density (measured 

per square mile).  Strictly speaking, this Figure gives dwelling density (dwellings per square mile), 

which equals population density only when household size is unity.  Outside ,x̂  the lower u in the 

restricted city implies higher density (recall Su < 0 and qu > 0).  But, as in the case of land rent, the 

FAR restriction slows the increase in density once x falls below .x̂   Over this range, the only force 

raising density is the decline in dwelling size q, with the effect of a higher FAR ceasing to operate 

(this fact also accounts for the kink at ).x̂   As a result, density in the unrestricted city eventually 

overtakes the restricted density as x falls, rising above it inside .8=x   Density at the CBD in the 

unrestricted city is about 15,000 dwellings per square mile, while central density is only 4,300 in 

the restricted city. 
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With the exception of the crossing pattern of the land rent curves in Figure 4, all of the 

patterns in the figures are completely general, being guaranteed to hold under any parameterization 

of the model.  In the case of land rent, the pattern shown in Figure 4, where central rent is higher in 

the unrestricted city, is not assured. 

 

2.4. The welfare cost of the FAR restriction 

As seen above, imposition of the FAR restriction reduces the utility level of urban residents.  

It is helpful to compute a dollar measure of this welfare loss, and the subsequent analysis is 

directed toward this end. 

The analysis focuses on the individual living at the edge of the city, who resides farther 

from the CBD after the FAR restriction is imposed.  In comparing the circumstances of this 

individual with and without the restriction, a crucial fact is useful: the edge resident pays the same 

price per unit of housing p regardless of the location of .x 4  Intuitively, the housing price at the 

edge of the city depends on the prices of land and capital at this location, which determine 

production cost.  But these prices are independent of the actual value of x , being equal to ra and 1, 

respectively. 

Since the housing price paid by the edge resident stays the same as the FAR restriction 

pushes x  outward, it follows that the only effect felt by this individual is an increase in commuting 

cost, which rises by ).( 01 xxt −   Thus, a compensatory payment of this amount would be sufficient 

to offset the harmful effect of the FAR restriction.  In other words, if the edge resident received a 

compensation of t( 1x − 0x ), then his utility would remain at the original level of u0 instead of falling 

to .1u   Thus, )( 01 xxt −  represents the welfare cost of the FAR restriction for the edge resident. 
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The impact of the FAR restriction for the city's interior residents is more complex than for 

the edge resident, suggesting that the above welfare-cost measure may not be relevant.  As seen in 

Figures 2 and 3, housing prices rise following imposition of the FAR restriction, and dwelling sizes 

fall in response.  Consumption of the nonhousing good c also changes, and households relocate, 

moving on average farther from the center.  However, since everyone in the city must be equally 

well-off in equilibrium, these complexities can be ignored.  In particular, it can be shown that the 

welfare cost computed for the edge resident applies exactly to the city's interior residents, even 

though their circumstances change in a more complex fashion.  The following result is relevant: 

Proposition 2.  For each urban resident, the welfare cost of the FAR restriction equals 
),( 01 xxt −  the increase in commuting cost for the edge resident. 

 
A formal argument establishing this result is given in the appendix. 

 It should be noted that, while harming consumers, the FAR restriction also affects the 

welfare of absentee landowners by altering total land rent.  Arnott and MacKinnon's (1977) 

simulations show that the FAR restriction raises total differential land rent (urban rent minus ra), 

and the same outcome occurs in the simulation of section 2.3.  However, since the direction of the 

impact on absentee landlords cannot be established in general, the reverse outcome is possible in 

principle. 

 

3. Applying the Analysis to Bangalore 

As explained in the introduction, Bangalore has developed under a long-standing FAR 

restriction, which has limited building heights in the city center.  This section attempts to measure 

the consumer welfare cost of Bangalore's FAR restriction using the theoretical results from section 

2. 
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This exercise has two components.  The first step is to predict what Bangalore would look 

like today had it developed in the absence of the FAR restriction.  In this counterfactual exercise, 

particular interest lies in the reduction of Bangalore's spatial size, and the consequent reduction 

in .x   The second step is to use the implied x  reduction along with a measure of commuting cost 

per mile to find the commuting-cost savings for the edge resident.  These savings measure the 

welfare gain from the absence of the FAR restriction, and hence the welfare cost of its presence.  

These two components are discussed sequentially in the next two sections. 

3.1. Computing the change in Bangalore's spatial size 

Reversing the numerical exercise discussed in section 2, removal of the FAR restriction 

generates three important impacts on land-use: FAR values rise at central locations, they fall at 

locations where the restriction is not binding, and dwelling sizes rise throughout the city.  In order 

to predict the change in Bangalore's spatial size, the magnitudes of these three effects must be 

quantified.  Unfortunately, this task involves an element of guesswork, although the numerical 

results from section 2.3 provide some guidance. 

Before delving into the details of this task, it is useful to discuss the available land-use data 

for Bangalore, which pertain to 1990 (the appendix explains the origins of the data).  The city is 

divided into rings, with each comprising a kilometer's worth of radius.  Data for each ring include 

its total residential population, the average FAR value for its structures, the permitted FAR value, 

and the ring's built-up land area.  In 1990, Bangalore's population extended out to the twelfth ring, 

whose outer radius is 12 km.  The city's total 1990 population was nearly 3.4 million. 

Figure 6 shows FAR values for the 12 rings, with the horizontal scale starting at ring 1.  The 

dotted curve shows the permitted FAR value, which is roughly constant across rings, and the solid 

dark curve shows the prevailing value in each ring, which is estimated using a method explained in 
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the appendix.  The rough correspondence of the two curves over their initial ranges suggests that 

the FAR restriction is binding in rings 1 through 4, and perhaps in ring 5 as well.  The simulation 

results in Figure 1 predict that FAR will rise over most of the binding range when the restriction is 

removed, falling at the edge of this range (as happens near x = 12 in Figure 1). 

While FAR values are thus predicted to increase in rings 1−4, the counterfactual 

equilibrium values are, of course, unknown.  These values are chosen so that the unrestricted FAR 

curve has a plausible appearance, roughly matching the pattern in Figure 1.  FAR values in rings 1-

4 are set at 4.2, 3.1, 2.3, and 1.6, yielding the smooth unrestricted curve in Figure 6 (the lighter 

solid curve).  Consistent with the pattern in Figure 1, the FAR curve is shifted downward over the 

range where the restriction is not binding, as seen in Figure 6.  The downward shift is set at 7 

percent. 

Dwelling sizes rise when the FAR restriction is removed, as seen in Figure 3, and the 

magnitude of change is theoretically linked to the FAR decline shown in Figure 6.5  In the 

simulation of section 2.3, parameter choices led to percentage changes that are almost exactly equal 

in magnitude, with FAR falling by about 35 percent over the nonbinding range and q rising by 

about 35 percent throughout the city.  For simplicity, this equality in percentage changes is 

preserved in the calculations for Bangalore.  Thus, dwelling sizes are assumed to increase by 7 

percent in each ring, matching the 7 percent decline in FAR values over the nonbinding range.  

These are changes considerably smaller than those in the simulation, and the origin of this 

difference is explained below. 

Recalling that population density is equal to ,/)( qSh  with h represented by FAR, the 

proportional change in density is given by the proportional change in the FAR/q ratio.  This change 

can be used to compute the change in ring populations following removal of the FAR restriction.  
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Assuming that the residential land area in a ring stays constant, the new ring population is found by 

multiplying the original population by the proportional change in the FAR/q ratio, which represents 

the change in density.  This proportional change is computed using the FAR values in Figure 6 

along with the assumed 7 percent city-wide increase in q.  Note that the original level of q is not 

required for this calculation. 

This exercise is carried out using data on the existing ring populations for Bangalore, which 

are shown by the dark columns in Figure 7.  Applying the proportional adjustment from above 

yields the new ring populations, which are shown by the lighter columns in the figure.  Populations 

in the last few rings in the city involve a further adjustment, which is explained momentarily. 

Ring populations rise near the center of the city, falling farther from the center, and this 

pattern is easily understood.  The substantial rise in the FAR values in rings 1−4 dominates the 

slight rise in q, leading to an increase in FAR/q and thus in density.  These density changes, which 

mirror the simulation results shown in Figure 5, lead to higher populations in rings 1−4.  In the 

city's outer rings, the decline in FAR and the rise in q reduce densities, again mirroring Figure 5, 

and ring populations fall.  However, the population gain near the center dominates the declines 

farther out, so that the city's land area shrinks.  While the edge resident lives in ring 12 in the 

existing city, the edge resident in the restricted city lives in ring 9.  Thus, the edge resident is 3 km 

closer to the center following removal of the FAR restriction.  This predicted reduction in x  

provides the key to computing the welfare cost of the FAR restriction, a task that is carried out in 

the next section. 

A population adjustment is needed in the outer rings, as mentioned above, because the 

growth pattern of real-world cities differs from the idealized model.  Instead of filling in a uniform 

circle as population grows, development at the outer edges of cities is “ragged,” with growth 
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proceeding outward along major road arteries but lagging in other areas.  The resulting city looks 

more like a star than a circle, with the points of the star lying on key transportation corridors. 

This pattern can be seen in Figure 8, which shows the square kilometers of built-up area 

contained within each ring.  Built-up area increases proportionally with distance through ring 7, 

reflecting development of all but a pie slice of the available area.  Beyond this distance, however, 

built-up area falls even though the total available ring area continues to increase.  In effect, over 

this range of distance, development moves outward along the points of the urban star, which 

become increasingly narrow as the city's outer limit is approached. 

Given this pattern, it would be illegitimate to compress Bangalore's population into the 

inner portion of the existing built-up area as the city centralizes.  In doing so, the points of the 

urban star would effectively be truncated, with the population compressed into a circle that lacks 

the ragged, star-shaped periphery of real cities. 

To preserve the ragged development pattern, the following approach is taken.  Once the 

new ring populations are computed using the method described above, the city extends out to ring 

8.  Since the resulting population is unrealistically compressed, inconsistent with ragged 

development at the city's edge, the pattern is adjusted by arbitrarily moving a portion of the 

population in the two outer rings (7 and 8) into the vacant ring 9 lying just outside.  This 

reallocation is carried out so that population smoothly declines across rings 7−9. 

As part of this adjustment, built-up areas are appropriately reduced in rings 7 and 8, which 

lose population, and built-up area is allocated in the new outer ring 9.  As can be seen in the lighter 

curve from Figure 8, this adjustment preserves the city's hump-shaped pattern of built-up areas.  

Without the adjustment, built-up areas would follow the dark curve, which would be truncated near 
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its peak, thus lacking the realistic downward-sloping range indicative of ragged development at the 

city's edge. 

While affected by this adjustment, the population pattern in the unrestricted city is 

obviously also sensitive to the assumed changes in FAR and dwelling sizes, as described above.  

The magnitudes of these changes were chosen to produce an unrestricted city that broadly matches 

the predictions of the simulation exercise of section 2.3.   

To understand the choice process, observe that in the simulated city, the FAR restriction is 

binding over 24 percent of its land area.6  Based on the data shown in Figure 8, Bangalore's 

restriction is binding over nearly the same fraction of its built-up area, 23 percent (the share of 

rings 1−4).  As a result, the impact of removing the FAR restriction, as measured by the reduction 

in the city's built-up area, should be similar between Bangalore and the simulated city.  For the 

simulated city, this percentage reduction equals 17 percent,7 and under the maintained assumptions, 

Bangalore's built-up area falls by exactly the same percentage (the area falls from 191 to 159 

square kilometers). 

Thus, the maintained assumptions, which include the specified FAR increases in rings 1-4, 

the 7 percent decline over the nonbinding range, and the 7 percent increase in dwelling size, 

generate an outcome that matches key aspects of the simulation.  These percentage changes are 

much smaller than the 35 percent values from the simulation (see above), but using a similarly 

large percentage produces an implausible result, with the city growing spatially rather than 

shrinking when the FAR restriction is removed. 

3.2. Computing the welfare cost of the FAR restriction 

Figure 7 shows that, as a result of the city's spatial shrinkage following removal of the FAR 

restriction, the edge resident moves 3 km closer to the CBD.  However, with Figure 7 also showing 
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only a handful of residents in ring 12, it may instead be proper to view the distance decline for the 

edge resident as only 2 km.  Welfare cost, which equals the resulting saving in the edge resident's 

commuting cost, is computed for both distance values. 

While the 3 km distance reduction applies to the 1990 city, it is easier to estimate the 

resulting reduction in commuting cost using data from nearer the year 2000, which are more readily 

available.  The magnitude of the commuting-cost saving is ultimately judged, however, by 

expressing it as a percentage of income.  Under the assumption that incomes and commuting costs 

in Bangalore have grown in step with one another since 1990, this percentage value can be then 

used to measure the welfare cost for the 1990 city. 

The key requirement for the welfare-cost calculations is an estimate of the commuting-cost 

parameter t based on Indian data.  Commuting cost has two components, money cost and time cost, 

and as explained by Calfee and Winston (1998), traditional studies have assumed that commuters 

value the time spent in commuting at approximately 60 percent of the wage rate.  Using a 1999 

Indian wage estimate of 12.7 Rs. per hour, the implied time cost of commuting is then 7.6 Rs. per 

hour.8  Converting this figure into a cost per kilometer requires an estimate of traffic speed.  Urban 

roadways in India are highly congested, and a common speed estimate is 20 to 30 km per hour.  

Using the lower value, the time cost of commuting is then 7.6/20 = .38 Rs. per km. 

The money cost of commuting depends on the transport mode chosen.  Because estimates 

of operating costs for private vehicles are not readily available for India, a money cost estimate for 

bus commuters is used instead.  Since money cost for this mode is presumably cheaper than for any 

type of private vehicle, the estimate serves as lower bound on the average money cost of 

commuting, thus biasing the welfare-cost computation in a conservative direction. 
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The estimate makes use of information provided by Zhi Liu of the World Bank, based on 

personal contacts with officials at the Bangalore Metropolitan Transit Corporation.  The 

information shows that Bangalore bus fares are distance-based, and that the average cost per km 

traveled is 0.40 Rs.  Adding this figure to the above time cost estimate yields an overall commuting 

cost of 0.78 Rs. per km. 

This number must be multiplied by 2 to put it on a round-trip basis and multiplied again by 

300 work days per year to convert it to an annual basis.9  These calculations yield a commuting 

cost of 468 Rs. per km per year, using late-1990 prices.  

If commuting distance for the edge resident falls by 3 km, as suggested by Figure 7, then 

the reduction in commuting cost equals 1,404 Rs. per year.  If the smaller decline of 2 km is 

relevant, then the commuting-cost reduction is 936 Rs. per year.  The magnitude of these savings 

can be judged by comparing them to per capita income for Bangalore in 1999, which equaled 

approximately 28,300 Rs.10  The commuting-cost savings range from 3.3 to 5.0 percent of per 

capita income, representing a significant share of individual resources. 

While per capita income provides a convenient benchmark, its use may overstate the 

importance of the commuting-cost savings on a household basis given that not all members are 

wage earners.  Recognizing this possibility, an alternative way of gauging the magnitude of these 

savings is to compare them to total household consumption expenditure, which is measured via 

survey methods.  The NSS Consumer Expenditure Survey for 1999-2000 documents an average 

household consumption for urban India of 3867 Rs. per month, or 46,400 Rs. per year.  If a 

household contains two wage earners, with each experiencing the above savings in commuting 

cost, then the combined savings range between 1,872 and 2,802 Rs., representing between 4.0 and 

6.0 percent of household consumption.  If the average number of wage earners is instead 1.5, then 
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savings range between 1,404 and 2,106 Rs., representing between 3.0 and 4.5 percent of household 

consumption. 

These percentage values have roughly the same order of magnitude as those based on the 

per capita approach, contrary to expectations.  The reason is that household consumption figure of 

46,400 Rs. is only 64 percent larger than the per capita income value of 28,300 Rs. even though the 

average Indian household contains approximately 5 people.11  This discrepancy partly reflects a 

growing divergence between measures of Indian household purchasing power based, alternatively, 

on survey data and the national income accounts.12  However, since the survey data may provide a 

more realistic picture of household circumstances, the above savings percentages, which lie in the 

3-6 percent range of household consumption, may be credible. 

As noted above, this percentage range is derived using an estimate of t based on late-1990's 

data, not on data for the 1990 city.  However, if commuting costs and incomes grew by the roughly 

the same proportion over the period since 1990, then use of 1990 data would have yielded similar 

percentage values.  As a result, the 3-6 percent range for welfare cost as a share of housing 

consumption expenditure is relevant for 1990.  Finally, note that since these percentages represent 

the gains from removal of the FAR restriction, they capture the welfare cost of its presence. 

A welfare cost of 3-6 of household consumption is substantial in size, being larger in 

magnitude than the measured welfare cost of some key distortions in Western economies.13  

Moreover, in a country like India, where vast numbers of people live on the edge of 

impoverishment, this welfare loss may represent the difference between poverty and non-poverty 

status for many households. 
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4. Conclusion 

This paper has analyzed the effects of building height restrictions, providing a concrete 

welfare cost estimate for the city of Bangalore.  Relying on several theoretical results, the analysis 

shows that the welfare cost imposed on its residents by Bangalore's FAR restriction ranges between 

3 and 6 percent of household consumption.  This burden represents a significant share of individual 

resources, and its presence may push many marginal households into poverty. 

As noted in the introduction, this welfare cost ignores any potential benefits of Bangalore's 

FAR restriction.  If such benefits exist, they could soften or reverse the paper's negative welfare 

verdict.  While Indian FAR restrictions seem to be motivated in part by a subjective dislike of high 

densities on the part of city planners, the restrictions do generate savings in central-city 

infrastructure costs, as noted previously.  If such savings at the intensive margin outweigh the 

additional costs at the extensive margin, due to infrastructure provision over a wider spatial area, 

then a benefit arises that tends to offset the welfare cost analyzed in the paper.  However, 

depending on the technology of infrastructure provision, the FAR restriction could cause total 

infrastructure costs to rise rather than fall, with central-city savings dominated by the additional 

costs of a wider network.  In this case, the present welfare cost understates the true cost of the FAR 

restriction.  Nevertheless, the possibility that potential benefits from the restriction might alter the 

present welfare verdict must be borne in mind, recognizing, however, that quantification (and even 

identification) of these benefits may be problematic. 

It should be noted that the paper has carried out a counterfactual exercise, asking what 

Bangalore would look like today had it developed in the absence of an FAR restriction.  

Policymakers, however, may be concerned with a more practical question: conditional on 

Bangalore's history, how would the city's future development be affected if the FAR restriction 
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were removed today?  Recognizing that Bangalore's population will continue to grow as land-use 

adjusts to a removal of the restriction, an answer might be provided as follows.  First, instead of 

growing at the boundary, the city would accommodate new population growth over an initial 

period through redevelopment of its central area at higher densities.  Once this central 

redevelopment process was completed, further population growth would then occur at the city's 

edge.  Because of its higher central densities, Bangalore at each future point in time would be more 

spatially compact, and housing prices would be lower, than if the FAR restriction had remained in 

place.  As a result, consumer welfare would be higher at each point in time than in the presence of 

the restriction. 

As for infrastructure investment, removal of the FAR restriction would require increased 

spending in the city's central areas, as noted above.  However, with the city more compact at each 

point in time, the need for spatial expansion of its infrastructure network would be reduced, 

producing an offsetting reduction in costs. 

Overall, the future gains from removal of the FAR restriction thus mirror in a qualitative 

sense the benefits documented in the counterfactual exercise carried out in the paper.  Quantifying 

these gains, however, would be difficult given uncertainty about the city's future population path 

and other aspects of the future economic environment. 

Finally, several extensions of the theoretical analysis in Section 2 might prove illuminating.  

The first would eliminate absentee land ownership, assuming instead that urban residents own 

equal shares of the region's land area.  In this case, changes in per capita rental income would enter 

the welfare-cost calculation along with the factors identified above.  A second extension would 

introduce traffic congestion, allowing commuting costs to rise with traffic flows.  By leading to 

inefficient spatial expansion of a city, unpriced traffic congestion amplifies the tendency already 
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generated by an FAR restriction (see, for example, Wheaton, 1998).  As a result, one might expect 

the restriction to generate a higher welfare cost in a congested city.  A final extension would 

analyze the effect of an FAR restriction in a city where the location of employment is endogenous, 

allowing the emergence of subcenters.  If an FAR restriction were added to Lucas and Rossi-

Hansberg's (2002) variant of the Fujita-Ogawa (1982) model, which allows variable densities, then 

the equilibria with dispersed rather than concentrated employment would presumably be more 

likely.  Because of their complexity, the latter two extensions would probably require the use of 

numerical methods. 
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Appendix 

 

A.1. Proofs of the Propositions 

Proof of Proposition 1.  Suppose that the inequalities in the Proposition are not both 

satisfied.  The alternate case where 1x  > 0x  and u1 ≥ u0 both hold can be ruled out because, given 

rx, ru < 0, ),( 00 uxr  and ),( 11 uxr  then cannot both be equal to ra, as required by (4) and (7).  The 

case where 01 xx ≤  and u1 < u0 hold can be ruled out by the same argument.  These exclusions 

leave the remaining alternate case where 01 ûu ≥  and 01 xx ≤  hold.  In this case, note that 

01 uu ≥ implies that population density between x̂  and 1x  in the restricted city is less than or equal 

to density over the same distance range in the unrestricted city.  In other words, u1 ≥ u0 along with 

Su < 0 and qu > 0 imply ),(/)),((),(/)),(( 0011 uxquxShuxquxSh ≤  for x between x̂  and .1x   In 

addition, density is strictly smaller in the restricted city than in the unrestricted city inside of .x̂   

This conclusion follows because 01 uu ≥  implies that ),ˆ(/)),ˆ((ˆ
11 uxquxShh =  

),ˆ(/)),ˆ(( 00 uxquxSh≤ holds.  Since ),(/)),(( 00 uxquxSh exceeds ),ˆ(/)),ˆ(( 00 uxquxSh  for x < x̂  

in the unrestricted city, ĥ  < ),(/)),(( 00 uxquxSh  must then hold over this range.  With density 

never larger and sometimes strictly smaller in the restricted city than in the unrestricted city, and 

with the restricted city having a spatial area no larger than the unrestricted city by assumption, it 

follows that the restricted city fits a smaller population than the unrestricted city, in violation of (5) 

and (9).  This contradiction establishes the proposition. 

Proof of Proposition 2.  To establish Proposition 2, let the indirect utility function 

corresponding to ),( qcv be given by ).,(~ ptxyv −   Then, for the edge residents with and without the 
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FAR restriction, 11 ),(~ upxtyv =− and 00 ),(~ upxtyv =−  hold.  Moreover, the compensation Z 

required to offset the effect of the FAR restriction for the edge resident, which must satisfy 

,),(~
01 upZxtyv =+−  is given by ).( 01 xxtZ −=   To show that the same Z is appropriate for 

interior residents, replace 1x  with x in the last utility condition, and totally differentiate it with 

respect to x.  This computation yields ,0~)(~ =++− xpxy pvZtv or .)~/~( tvvpZ ypxx +−=   However, 

since qvv yp −=~/~ holds given the properties of the indirect utility function, this last expression 

reduces to )./( qtpq x +   But using the well-known formula for slope of the housing price function, 

which is written ,/ qtp x −=  this last expression equals zero.  Therefore, 0=xZ  holds, implying 

that the compensation required to offset the effect of the FAR restriction is spatially invariant and 

thus equal to )( 01 xxt − for all residents. 

A.2. Simulation assumptions 

The Cobb-Douglas utility function is written αα qcqcv −= 1),(  and α  is set equal to 0.1, 

yielding a relatively small weight on housing consumption.  Maximizing v subject to the budget 

constraint and substituting the resulting c and q demand functions into the condition uqcv =),(  

yields a solution for p, which is written ,)(),( /1/1 αα −−= utxyAuxp  where A is a constant involving 

.α   Substituting ),( uxp  into the demand function for q yields ,)(),( /1/)1( ααα utxyBuxq −−=  where 

B is a constant involving .α  

The housing production function is also Cobb-Douglas, yielding an intensive form given by 

,)( βgSSh = with 6.0=β  and .0005.0=g   The latter coefficient is adjusted to generate realistic 

FAR values and population densities, although it has no effect on the values of x  and u.  Solving 

the first order condition 1)(' =Sph  for S and substituting ),( uxp  yields 
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,)(),( )1(/1)1(/1 βαβα −−−−= utxyCuxS  where C is a constant involving βα , and g.  Substituting this 

solution along with ),( uxp  into the zero-profit condition then yields 

,)(),( )1(/1)1(/1 βαβα −−−−= utxyDuxr  where D is a constant that depends on α, β, and g.  These 

functions are then substituted into the equilibrium conditions (4) − (5) and (7) − (9), which are 

solved numerically using Mathematica. 

As mentioned in the text, the parameter assumptions underlying the solutions include N = 

800,000, y = $42,151, and .4=θ   The estimate of ra is based on the average U.S. agricultural land 

value for the year 2000, which equals $1,210 per acre.  Assuming a 5 percent discount rate, this 

value yields a rent per acre of $60.50.  This figure in turn implies a rent per square mile of $38,720, 

which is the ra value used in the simulations.  To derive the time cost of commuting, the $42,151 

household income is used to compute an hourly wage of $16.86, assuming 2000 work hours per 

year per worker and 1.25 workers per household.  Then, assuming that commute time is valued at 

60 percent of the wage, and that rush hour traffic moves at 30 miles per hour, the implied value of 

commuting time is $0.34 per mile per worker.  Adding an operating cost of $0.36 per mile (the 

current Federal allowance), total commuting cost per mile is then $0.70.  Multiplying by 1.25 

workers per household, by 250 work days per year, and again by 2 to convert to a round-trip basis, 

commuting cost per mile for a household on a yearly basis is $437.50 per year, which is rounded up 

to yield a t value of $450. 

A.3. Data description 

The existing land use for Bangalore was disaggregated into successive rings centered on the 

CBD at 1 km intervals. The data were extracted from a GIS database containing census populations 

by subdistrict, a land use map showing the built-up area, and a regulatory map showing the 
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permitted FAR values in different parts of the city.  An estimate of housing floor space per person 

was used to compute actual FAR values, as follows.  First, the estimate was generated by assuming 

that floor space follows an increasing exponential function, with values of 7 square meters at the 

CBD and 13.4 square meters at the edge of the city.  Multiplying floor space per person by the ring 

population then yields total ring floor space.  Finally, dividing this quantity by net residential land 

in the ring yields the ring's FAR value.  Net residential land is computed by taking an appropriate 

share of the ring's total built up area. 

Figure 1: Simulated FAR patterns 
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Figure 2: Simulated housing price patterns 
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Figure 3: Simulated dwelling size patterns 
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Figure 4: Simulated land rent patterns 
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Figure 5: Simulated population density patterns 
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Figure 6: Bangalore FAR values 
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Figure 7: Bangalore population patterns
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Figure 8: Built-up area 
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Footnotes 

                     
∗ This paper was commissioned by the World Bank, but its contents reflect the opinions of the 
authors.  We thank Richard Arnott and Robert Buckley for helpful comments.  Any shortcomings 
in the paper, however, are our responsibility. 
 
1 While most cities impose FAR limits, these limits usually do not constrain building heights but 
instead simply ratify market-determined land-use intensities.  Urban planners prefer to have such 
nonbinding restrictions in place because they prevent sudden, unanticipated changes in the intensity 
of land-use as a result of replacement of old structures with new, taller buildings, which may strain 
infrastructure capacities.  In most cities, however, FAR limits are gradually modified, and 
appropriate infrastructure improvements made, if market pressure dictates construction of taller 
buildings. 
 
2 Otherwise, h/q must be multiplied by persons per dwelling to generate population density.  If this 
value is constant throughout the city, then the only effect of this change is to introduce a 
multiplicative factor into (5). 
 
3 Arnott and MacKinnon (1977) present a diagram similar to Figure 1. 
 
4 To establish this fact, let the values of p and structural density S at x  be denoted p  and S .  
Then note that these values are determined by two conditions: the first-order condition p h'( S ) = 1 
and the zero-profit condition .0)(' =−− arSShp   Since x  itself does not explicitly enter these 
equations, p  does not depend on its magnitude. 
 
5 Using the solutions from the appendix, FAR falls by the proportion )1(/

10 )/( βαβ −uu and q rises by 
the proportion .)/( /1

10
αuu  

 
6 This percentage is given by .24.5.23/7.11/ˆ 222

1
2 ==xx  

 
7 This percent is given by .83.5.23/4.21/ 222

1
2
0 ==xx  

 
8 This estimate makes use of a wage-estimation methodology developed by the U.S. Government 
Import Administration and documented at <http://ia.ita.doc.gov/wages>.  The methodology uses 
wage and per capita GNP data for a cross section of 56 countries to compute the following 
regression: Wage = 0.462 + .000432*per capita GNP).  Using the per capita income estimate of 
28,300 Rs. for Bangalore (see footnote 10), this regression predicts a wage of approximately 12.7 
Rs. 
 
9 The assumption of 300 work days per year can be justified by assuming 50 work weeks per year 
and 6 work days per week. 
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10 The Bangalore Directorate of Economics and Statistics provides per capita income figures for 
the city, with the 1998-1999 value equal to approximately 28,300 Rs. (as quoted on the website 
<http://www/bangaloreit.com/html/aboutbng/bangprofile.htm> operated by the Karnataka state 
government). 
 
11 Asian Demographics Ltd. <http://www.asiandemographics.com/DI231102.htm> provides a 
household-size estimate of 5.07 persons. 
 
12 This fact was explained to the authors by Salman Zaidi of the World Bank. 
 
13 For Example, Boadway and Wildasin (1984, p. 391) cite empirical estimates showing that the 
deadweight loss from capital income taxation in the U.S. ranges between 2 and 12 percent of tax 
revenue.  Expressed as a share of the economy’s overall income, the relevant percentages would be 
much smaller. 


