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Abstract 
 

Site-specific data is spatially variable, precluding traditional econometric analysis.  Some 
field-scale experimental designs present logistical, operational and mathematical 
problems in estimating treatment differences, specifically when adjacent observations are 
of different treatments such as with strip-trial designs.  A modified spatial interaction 
structure is presented to analyze strip-trial designs with spatial econometrics.   
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Field-Scale Experimental Designs and Spatial Econometric Methods for Precision 
Farming:  Strip-Trial Designs for Rice Production Decision Making 
 

Introduction 

This provisional paper evaluates a common field-scale experimental design and 

presents a spatial econometric analysis technique to address associated on-farm trial 

design limitations.  Precision farming technologies have created a resurgence of interest 

in on-farm research because of the ease of collecting low-cost production data.  

Researchers conducting field-scale experiments have expressed interest in using precision 

technologies for measurement and modeling spatial effects.  Spatial effects can be 

measured and explicitly modeled rather than the conventional attempt to negate it, 

providing more reliable inference from on-farm trials.   

Farmers conducting field-scale experiments typically utilize some sort of 

rudimentary analysis such as simple treatment averages by predefined management zones 

or some arbitrary grid, whether the analysis was conducted at the farm-level or 

outsourced.  Precision farming technology has reduced the cost of intense data collection, 

but appropriate spatial analysis methods are not widely available or understood at the 

farmer, agricultural industry, or university outreach levels.  In addition, some field-scale 

on-farm trial designs present complication when analyzing precision agriculture data.  

To demonstrate how spatial analysis methods apply to field-scale strip-trial 

experimental designs, this paper reports on the use of spatial statistical methods to 

analyze on-farm rice {Oryza sativa, L.} trials. The most appropriate econometric analysis 

methods common to the precision agriculture literature are presented.     



Precision agriculture has sparked the interest of farmers and researchers to revisit 

field-scale research.  Instantaneous yield monitors have provided opportunities for this 

type of research to be implemented without interfering with other field operations.  

Farmers tend to conduct their own on-farm research using designs including strip-trials.  

Strip-trial designs are particularly inadequate for some inputs specific to rice, such as 

midseason applications of herbicides and fertilizers applied with aerial applicators.  A 

key problem with site-specific field-scale data is the occurrence of spatial effects 

(dependence and heterogeneity), which precludes the usage of straightforward classical 

statistical approaches. In addition, strip-trail designs disrupt the measurement of spatial 

variability due to overriding spatial edge effects at treatment borders.   

We present the idea of the “neighboring observation problem” which is a 

phenomenon in spatial analysis.  In spatial analysis, characteristics of neighboring 

observations are used in the statistical model.  When research questions are imposed upon 

geographic areas in which spatial variability is present such as field-scale agricultural 

research, some percentage of neighboring observations are of a different treatment due to 

treatment edges being adjacent to one another.  These spatial spillover effects influence 

the power in estimating treatment differences.  Spatial spillovers are an externality 

affecting the statistical model via the spatial interaction structure which defines which 

observations are neighbors.  One potential solution is to create a modified spatial 

interaction structure such that neighbors are defined both on location and treatment 

criteria in a “hybrid” spatial weights matrix.   

The overall objective of this paper is to demonstrate if strip-trial designs are 

appropriate for field-scale research data collected with yield monitors.  Specific 



objectives of this paper are 1) to evaluate the feasibility of field-scale split-planter 

experimental designs on rice production and 2) to determine the most appropriate 

analysis technique by conducting a series of spatial econometric diagnostics and analysis 

methods including a specialized spatial weights matrix that imposes a modified spatial 

interaction structure such that observations of a different treatments cannot be neighbors 

regardless of location, and referred to as the hybrid matrix Wh.   

 

Background and Literature Review 

Several publications have described on-farm comparison and field-scale research 

in mechanized agriculture (Anderson and Honeyman, 1999; Bramley et al., 1999; 

Knighton, 2001; Nafziger, 2003; Whelan et al., 2003; Wittig and Wicks, 2001) and the 

economic ramifications when replications, treatments, or site years are reduced (Young et 

al., 2004). These methodologies for on-farm trials were derived from small plot designs 

developed in the early twentieth century for the technology available at that time. 

Concurrent publications recommend designs such as strip or split planter trials to 

accommodate variability across the field. Some studies have taken on-farm trials a step 

further by integrating precision agriculture technologies to measure variability and record 

yield data (Adams and Cook, 2000; Anselin et al., 2004; Brouder and Nielsen, 2000; 

Doerge and Gardner, 2001; Griffin et al., 2004; Knight and Pettitt, 2003; Lark and 

Wheeler, 2003; Liu et al., 2005; Lowenberg-DeBoer, 2002a,b; Lowenberg-DeBoer et al., 

2003; Lyle et al., 2003; Nafziger, 2001; Nielsen, 2000; Whelan et al., 2003).  Anselin et 

al. (2004), Florax et al. (2002), Griffin et al. (2005a), Lambert et al. (2004), Lambert 

(2005), and Liu et al. (2005) used spatial econometric models to analyze precision 



agriculture data. This paper builds upon the earlier work of Florax et al. (2002), Griffin et 

al. (2005a), Lowenberg-DeBoer et al. (2003), Hurley et al. (2001), Lambert et al. (2004), 

Liu et al. (2005), and Anselin et al. (2004) by applying spatial statistical and spatial 

econometric techniques to rice. Griffin et al. (2005) used a Euclidean distance weights 

matrix and Liu et al. (2005) used an inverse distance weights matrix while the others used 

a first-order queen contiguity weights matrix. Although the first-order queen matrix was 

most likely the appropriate spatial interaction structure for those particular datasets, it is 

not universally the most appropriate.   

Benefits of strip trials 

Strip-trial designs have been popular on-farm trial designs and even promoted by 

the agricultural industry.  Strip-trial designs were derived from classical small-plot 

statistical experimental designs with the advantage of having no spatial variability in the 

width of the treatment block, or strip, which were replicated with every planter pass.  

With many replications and no spatial variability assumed in the width of the plot, these 

designs were readily accepted by farm mangers and field-scale researchers.   

Disadvantages of strip trails 

Field operations associated with planting and harvesting are the most critical to 

the success of the farm operation, causing the value of farmer’s management time and 

labor to be at a premium, thus discouraging implementation of classical complete block 

experimental designs. Familiar experimental designs are often costly and cumbersome, 

interfering with production logistics (Lowenberg-DeBoer, 2002). Even though designs 

such as strip-trials or split-planter trials that were derived from small plot statistics reduce 

time requirements compared to randomized complete block designs, the perceived 



benefits of research may still not overcome resource and time costs (Lowenberg-DeBoer 

et al., 2003).  For instance, there are logistical problems associated with strip-trials. For 

split-planter or “split-grain drill” trials, filling a section of the grain drill or every so many 

planter boxes with a different variety or other treatment potentially leads to human error. 

With larger farms, the person planning may not be the person planting, potentially 

leading to communication and coordination problems. From the viewpoint of the analyst, 

it is a complex and tedious task to keep treatments and harvester passes in line.  

Other problems with strip-trial designs arise from agronomic treatment 

interactions. If for instance the treatments are hybrid or varieties, taller varieties may 

dominate yields of shorter varieties due to competition such as shading and not the 

phenotypic response, possibly masking true yield differences. Other strip-trial 

phenomena include disease breaks from susceptible and resistant varieties. When one 

variety is susceptible to a pathogen, the resistant variety may act as a buffer zone. Strips 

of resistant varieties may not allow the pathogen to spread across the field as it normally 

would in a monoculture environment. Sometimes resistant varieties are adversely 

affected by intense exposure to the pathogen. Treatments such as herbicides or fertilizers 

may drift or otherwise move out of intended experimental plots and interfere with other 

treatments when strips are narrow. 

 

Data and Methods 

The dataset comes from a farmer-managed on-farm field-scale experiment in 

Northeast Arkansas under a flood irrigated monoculture zero-grade practice.  The farmer 

has five years experience using yield monitors on the combine harvester and collects the 



data for future farm management decision-making.  The farmer expected Hybrid 1 to 

dominate Hybrid 2 from industry claims and felt that rudimentary analysis with standard 

farm-level mapping software confirms the prior expectations.  The farmer is considered 

to be innovative from farmer-peers as well as university researchers, being credited for 

developing and perfecting continuous rice production on zero-grade.   

The farmer’s research question deals with which rice hybrid dominates for both 

agronomic yield and economics to make better farm-management decisions in future 

years.  The split-planter experimental design was implemented with a 20-foot grain drill 

with alleys in between, which allow labor to rogue noxious weeds and in particular red 

rice {Oryza sativa, L.} (Figure 1a).  Each side of the drill had a different hybrid such that 

the center portion of the field had 20 feet of each hybrid.  The combine header width is 

25 feet which is disparate from the 20 foot grain drill; however with the alleys between 

treatments, this was of no consequence.   

 

a. b. 

Figure 1.  Strip-trial experimental design and filtered yield monitor data  



Raw yield monitor data was exported by the farmer from AgLeader SMS software 

using the default filtering procedures of the software.  The exported data from SMS was 

imported into Yield Editor Software (Drummond, 2004) and subjected to a filtering 

procedure as described by Griffin et al. (2005b) with the parameters and number of 

deleted points in Table 1 and presented in Figure 1b.   

 
Table 1.  Parameters, criteria, and number of points deleted in yield data filtering 

Filtering parameter Parameter value Number of deleted pointsb 
Maximum velocity (mph) 4 8 
Minimum velocity (mph) 1 114 
Smooth velocity 0.2 88 
Maximum yield (bu ac-1) 310 25 
Minimum yield (bu ac-1) 55 55 
Standard deviation filter 3 224 
*Flow delay (s) 12 NAa 
*Start pass delay (s) 4 NA 
*End pass delay (s) 4 NA 

*Flow delay, start and end pass delays were conducted during importing raw data into SMS by the farmer. 
a Points deleted are not cumulative, i.e. the “same” point can be deleted by multiple criteria. 
b Not applicable. 

 
Combine passes not parallel to grain drill passes such as curved or diagonal 

harvester passes caused uncertainty regarding which hybrid was harvested and whether 

the yield monitor measurement was from a single hybrid or a combination of treatments. 

Due to the harvest pattern, only the north-south subset of passes parallel to the treatment 

blocks was eligible to be included in the final dataset (Figure 2a).  Any yield observation 

1) within 1 meter of the treatment edge or 2) was not on a north-south transect did not 

meet this analysis criteria and subsequently omitted from analysis.  The resulting yield 

data is presented in Figure 2b and summarized in Table 2.   

Selecting Appropriate Spatial Interaction Structure and Model 

The resulting final dataset was subjected to an exploratory spatial data analysis (ESDA) 

to ascertain 1) the level of spatial dependence within the data, 2) which spatial 



econometric model was most appropriate and 3) the most appropriate spatial interaction 

structure.    A series of spatial interaction structures, or so-called spatial weights matrices, 

were constructed by varying distance cutoff bands and type of weighting matrix.  The 

distance band ranged from 16 meters, the minimum distance such that each observation 

has at least one neighbor when the restriction that only observations of the same 

treatment can be neighbors, to 175 meters, a distance large enough so that observations 

were expected to not be correlated from a priori information in increments of 25 meters  

starting with the 25 meter distance band.  Additional matrices were created for 40 and 60 

meters to iterate around the approximate appropriate distance from previous diagnostics.  

All spatial weights matrices were inverse distance, where the non-zero elements of the 

weight matrix were 
ijd

1
 where d is distance between points i and j.  Each matrix was 

constructed such that neighbors were assigned by location as well as by treatment.  The 

first set of matrices allowed any observation to be a neighbor of any other observation 

based upon location criteria only and referred to as traditional matrices, W.  The second 

set of matrices imposed a treatment restriction in addition to the location criteria to 

address the “neighboring observation problem” and referred to as “hybrid” matrices, Wh 

(see Appendix A for operational suggestions for creating hybrid matrices). 

 

Table 2.  Descriptive statistics for variables. 

Wald test Randomization 
  Descriptive Statistics on normality Assumption 

  Mean S.D. Min Max Wald Prob Moran's I z-value S.D. 
YIELD  
bu ac-1 200.352 17.222 124.4 266.0 40.58 0.0000 0.1955 40.20 0.0049 
HYB 0.457 0.498 0.0 1.0 226.23 0.0000 1.0000 204.80 0.0049 
SOIL 0.532 0.499 0.0 1.0 226.19 0.0000 0.8231 168.61 0.0049 
BI 145.425 73.329 0.0 254.0 107.38 0.0000 0.0507 10.54 0.0049 



 a. b. 

Figure 2.  Yield data relative to strip-trial experimental design and resulting dataset  

 

The first ESDA measure we use is Moran’s I (Cliff and Ord, 1981) and can be 

utilized in the variable itself or in the OLS residuals.  The Moran’s I for a variable is 

given by: 

xx
Wxx
′

′
=

oS

n
I       eq. 1 

where x is a n x 1 vector of observations as deviations from the mean, W is an n x n 

spatial weights matrix, and So is the sum of elements of W (Cliff and Ord, 1981; Anselin, 

1988).  Moran’s I can be thought of as a spatial correlation coefficient.  Relatively high 

positive values of Moran’s I is interpreted as high (low) values having neighbors of high 

(low) values, whereas a negative Moran’s I signifies high and low value observations 

occur as neighbors. Site-specific yield data tends to be strongly positively spatially 

autocorrelated at the density in which yield monitor data is collected. A Moran’s I value 

of 0.196 indicates that spatial autocorrelation was present in the data (Table 2).  



The full econometric model is YIELD regressed on treatment, soil dummy, and a 

continuous covariate derived from aerial imagery:  

BIsoiltrty ii ++=     eq. 2 

where y is yield, trti is treatment dummy for HYBRID, soili is dummy variable for soil 

zone, and BI is a brightness index derived from bare soil aerial imagery.  The yield data 

was supplied by the farmer, the soils data available from USDA-NRCS, and the aerial 

imagery were black and white USGS images distributed via TerraServer.  The value of 

the image pixel closest to the yield data point was appended to the dataset. 

The Moran’s I test for regression residuals is asymptotically normally distributed 

under the null hypothesis of no spatial dependence, and given by: 

ee
Wee
′

′
=

0S

n
I     eq. 3 

where e is the (n × 1) vector of OLS residuals, W an (n × n) spatial weights matrix, and S0 

the sum of elements of W.  

The Moran’s I for residuals for hybrid matrices were higher than for traditional 

weight matrices, although both were highly significant (Figure 3).  Lagrange Multiplier 

(LM) and Robust LM (RLM) tests indicated that spatial autocorrelation was in both the 

dependent variable (LAG) and the error term (ERR) (Figures 4 and 5).  The LM values 

were largest for ERR across both matrices, indicating that the spatial error model is the 

most appropriate model for this data.   
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Figure 3.  Moran’s I tests for traditional and hybrid matrices 

The ranking of RLMERR relative to the other LM tests dramatically differs 

between traditional and hybrid matrices.  With tradition matrices LMLAG was higher 

than RLMERR and comparable to LMERR.  With hybrid matrices, RLMERR was much 

higher than LMLAG and similar to LMERR.  LM diagnostics of the hybrid matrices 

indicate that a 60-meter distance cutoff band was most appropriate for the data. Table 3 

presents connectivity characteristics for the 60-meter inverse distance matrix in both a 

traditional and hybrid guise. 

Table 3 Connectivity data for the 60-meter inverse distance spatial weights matrices. 
  60 m inverse-distance traditional W 60 m inverse-distance hybrid Wh 

Dimension 1,358 1,358 
Nonzero links 684,634 346,810 
Nonzero weights (%) 37.15 18.82 
Average weight 0.00198 0.00392 
Average number of links 504.149 255.383 
Largest root (eigenvalue) 1 1 
Smallest root (eigenvalue) -0.1888 -0.2068 
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Figure 4.  Lagrange Multiplier tests for spatial error and spatial lag in traditional matrices 
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Figure 5.  Lagrange Multiplier tests for spatial error and spatial lag in hybrid matrices 



The spatial error model has spatially autocorrelated errors and is similar to the 

traditional OLS model with the exception that the error term ε is spatially autocorrelated 

and given as: 

εβ += Xy  where µελε += W     eq. 4 

where y is a n x1 vector of dependent variable, X is a n x k matrix of explanatory 

variables, β a k x 1 vector of coefficients, ε a n x 1 vector of residuals,  λ is the spatial 

autoregressive parameter, and µ is the new vector of errors.  The spatial error model more 

concisely written is:  

µλβ 1)( −−+= WIXy     eq. 5 

 

Results 

 As previously stated, the full econometric model included yield as the dependent 

variable, a treatment dummy for hybrid, a soil dummy for soil zone, and a continuous 

covariate of the brightness index of an aerial image.  Table 4 presents the estimated 

coefficients and z-values for spatial error models estimated with maximum likelihood 

(ML) for 60-meter inverse distance weights matrices with both a traditional and hybrid 

spatial interaction structure.  The model using the traditional weights matrix indicates that 

HYBRID 1 significantly dominates HYBRID 2 by nearly four bushels while the 

alternative model using the hybrid matrix indicates there is no statistical difference in 

yield between treatments.  Goodness of fit statistics indicates that the model using the 

hybrid matrix dominates the model using the traditional matrix. 

 

 



Table 4.  Estimated results for 60-meter inverse distance traditional and hybrid matrices.. 
ML Spatial Error   
Variable Traditional  Hybrid 

CONSTANT 
193.73 
(6.54)a* 

195.43 
(7.89)* 

HYB 
3.63 

(3.72)* 
-8.65 

(-0.24) 

SOIL 
8.12 

(2.83)* 
7.47 

(2.62)* 

BI 
0.01 

(1.13) 
0.00 

(0.65) 

LAMBDA 
0.985 

(96.48)* 
0.978 

(91.85)* 
Log likelihood -5704.78 -5605.73 
AIC 11417.6 11219.5 

a
In parentheses z-values are reported for ML spatial models.  Significance is indicated with * for 1%  levels.   

 

Conclusions 

More information about local variations over the production surface is realized 

when spatial effects are explicitly modeled. Some experimental designs are more 

conducive for field-scale on-farm experimentation, but techniques for dealing with less 

desirable designs are being developed.  A few obstacles of analyzing site-specific data 

from strip-trial designs have been demonstrated.  It is our recommendation that larger 

treatment block designs such as split-fields are used for field-scale research for logistical 

reasons, as long as the appropriate spatial analysis is used.  Split-field designs often have 

four or more harvester passes per treatment.  If treatment block widths are sufficiently 

wide, then harvesting at any angle to the original experimental design would suffice, even 

at diagonals, perpendicular or in concentric circles.  These large block designs offer 

reliable statistical inference with spatial analysis.   

If a farmer wishes to use strip-trial designs, then we recommend harvesting with 

the treatment such that certainty exists about yield monitor measurements being of a 

single specific treatment.  In addition we recommend spatial analysis that addresses the 



“neighboring observation problem” by providing the appropriate spatial interaction 

structure.  Although spatial statistical analysis dominates classical analysis when the data 

are spatially autocorrelated; more reliable analysis is obtained by implementing 

appropriate experimental designs.  Without spatial econometric analysis, this dataset 

would be a total loss.  

 

Future Work 

 The level of confidence that the farm manager has in their on-farm trial results 

and associated decisions will be assessed to determine if spatial analysis has changed 

their discernment of results and decision-making process.  Initial results indicate that 

farmer confidence levels are actually lower now that they feel they had a false confidence 

in previous rudimentary analysis.   

 Field studies of different crops and treatments across several regions are being 

assembled to ascertain commonalities and differences in appropriate spatial data analysis.  

These similarities will be shared with the agricultural software industry to encourage the 

development of a spatial decision support system in the form of farm-level software.   
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Appendix A 
 

Creating “Hybrid” Weight Matrices 
In general, a weights matrix is constructed such that wii=0, wij > 0 for neighbors 

and wij=0 for non-neighbors where ij denotes location information or matrix position for 
rows and columns.  In the case of strip-trial designs, we impose the restriction that 
observations of differing treatments cannot be neighbors of one another, only 
observations from the same treatment.  Other experimental designs also suffer from 
similar issues although to a lesser degree.  In order for wij > 0 in the normal case, the 
observation must meet the location criterion such as the first order contiguity or within 
some predetermined distance band.  The hybrid matrix adds an additional criterion that 
the observation is of the same treatment, perhaps t=1 if the observation is of the same 
treatment and t=0 otherwise such that the criteria for a neighbor is now wiit=0, wijt > 0 for 
neighbors and t=1, and wijt=0 for non-neighbors and/or when t=0.  Even though the 
observation may fit the location criterion, it is not considered a neighbor if it does not 
meet all the criteria.   

Operationally, it is possible to create such a hybrid matrix, although it involves 
elaborate steps with multiple specialized software packages.  To create the hybrid 
weights matrix (Wh) such that observations of differing treatments are not neighbors, 
begin with the whole database in the SpaceStat (Anselin, 1992) format.  The dataset must 
have been previously sorted by each treatment and then the unique identifier (TWG_ID 
in my case) variable in sequential order.  My preferred method is to export the whole 
database from ArcView GIS by using the SpaceStat Extension (Anselin, 1999).  Once the 
database is in the SpaceStat format, create a distance matrix for the database (T-4-1).  
Create the inverse distance matrix from the distance matrix (T-4-6) for the appropriate 
distance cutoff band (it is my experience that a distance decay function makes the most 
intuitive sense when it comes to specifying a spatial interaction structure for precision 
agriculture data).  Convert the inverse distance matrix to a sparse matrix, i.e. from a 
*.FMT to a *.GWT file format) (T-3-6; choose the inverse distance matrix created in the 
previous step, then assign a name for the new *.GWT file).  Assign a unique identifier 
from the original treatment database file (the one exported from ArcView GIS using 
SpaceStat Extension) (T-3-8; choose matrix created in previous step, assign name for 
new sparse matrix, chose original dataset with unique identifier exported from ArcView 
GIS using SpaceStat Extension, choose/assign unique identifier variable).  Now the 
matrix must be separated into separate matrices for each treatment by selecting rows and 
columns that meet the treatment criteria.  This is accomplished by either 1) selecting a 
range of unique identifiers that correspond to the treatment or 2) selecting the treatment 
dummy variable (D-2-7).  Once the above procedure has been completed for each of the 
treatment datasets, the *.GWT files can be opened with a text editor such as MS Notepad 
(my datasets exceed the row limitations of MS Excel).  With the exception of the first 
row of each file, copy the data in the file with the highest unique identifier values and 
paste at the end of the text file with lower unique identifiers such that the first column of 
observations are in sequential order.  The first line of the new text file should contain a 
numbers which is the summation of the number in all the *.GWT files, which is the total 
number of observations.  Save the new text file.  Make sure the extension is *.GWT.  
This is the hybrid matrix Wh which addressed the “neighboring observation problem.” 


