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Abstract 

Index insurance, which indemnifies agricultural producers based on an objectively observable variable 
that is highly correlated with production losses but which cannot be influenced by the producer, can 
provide adequate protection against catastrophic droughts without suffering from the moral hazard and 
adverse selection problems that typically cause conventional agricultural insurance programs to fail. 
Using historical maize and cotton yield data from nine districts in Zimbabwe, we find that catastrophic 
drought insurance contracts based on the Normalized Difference Vegetation Index (NDVI) can be 
constructed whose indemnities exhibit higher correlations with yield losses compared to the conventional 
rainfall index. In addition the NDVI contracts can be offered within the 5–10 per cent premium range 
considered reasonably affordable to many poor smallholder farmers in Zimbabwe. 
                                                 
1 Earlier drafts of this paper were presented at the University of Botswana, Department of Environmental Science, and the Conference on 
Economic Development in Africa at Oxford University, 2008. In addition we acknowledge support provided by the Centre for Environmental 
Economics and Policy in Africa at the University of Pretoria, in partnership with the Swedish International Development Authority. 
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1. BACKGROUND AND MOTIVATION 

More than 60 per cent of Zimbabwe’s population consists of smallholder farmers who 

practice rain-fed subsistence and semi-subsistence agriculture that is vulnerable to severe, 

often life-threatening droughts.  Like most countries in Southern Africa, Zimbabwe 

historically has responded to severe droughts by implementing ad hoc emergency food 

aid programs.  These government-administered programs, however, historically have 

been riddled with a variety of problems. First, the costs of these programs have often 

been exorbitant, sometimes reaching 10 per cent of the annual GDP after an extreme 

drought (Heal & Lin, 1998).  Second, these programs have been vulnerable to political 

abuse, often leading to inequitable distribution of benefits. And third, due to 

mismanagement and the absence of an adequate distribution infrastructure, these 

programs have often suffered large-scale logistical failures. 

 

Perhaps the most severe criticism that may be leveled at ad hoc emergency food aid 

programs in developing countries, however, is that they nurture a culture of dependency 

that discourages recipients from implementing effective household-level risk mitigation 

and risk management strategies. While food aid partly addresses the problem of transitory 

household food insecurity, it does not provide a permanent solution to household food 

insecurity and chronic poverty. In Drebe and Sen’s words (1982:67), food aid “conjures 

up the picture of a battle already half lost and focuses the attention on emergency 

operations narrowly aimed at containing large-scale mortality”.  
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Access to affordable private or government agricultural insurance could substantially 

reduce the vulnerability of smallholder farmers to drought risk and promote efficient uses 

of scarce resources, while diminishing smallholder dependence on expensive and often 

ineffective food aid measures. The benefits of agricultural insurance are well known.  

Agricultural insurance can stabilize farmers’ incomes and protect them from the impacts 

of catastrophic crop failures; it can encourage farmers to adopt technologies that increase 

production; and it can reduce loan default risk, allowing farmers to secure more favorable 

credit terms (Binswanger, 1986).  

 

Agricultural insurance, however, is unavailable in Zimbabwe and, more generally, in 

Southern Africa. The absence of agricultural insurance may be attributable to the 

widespread belief that poor smallholders lack the sophistication to properly use insurance 

to manage risk (Zeller & Sharma, 2000; Zeller, 2003).  However, agricultural insurance, 

particularly traditional multi-peril crop insurance (MPCI), suffers from more fundamental 

problems that have caused it to fail in many developing countries (Hazell et al., 1986; 

Miranda, 1991; Roberts & Dick, 1991; Gudger, 1991; Hazell 2006). Traditional MPCI is 

vulnerable to asymmetric information problems, such as moral hazard and adverse 

selection, which undermine the actuarial soundness of the insurance product. Moral 

hazard arises when the insured, after obtaining insurance, alters production practices so as 

to increase the likelihood of receiving an indemnity; adverse selection arises when the 

insured is better informed of his chances for losses than the insurer, resulting in a self-

selected pool of insured farmers who, on average, receive indemnities that exceed 

premiums paid.  Traditional MPCI is also expensive to administer because it requires 
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individual farm-level rate-setting, monitoring, and loss adjustment.  As concluded by 

Binswanger (1986), the cost of traditional crop insurance, not the lack of demand or 

managerial sophistication among farmers, has been the greatest obstacle to the 

development of agricultural insurance markets. 

 

In response to the inherent limitations of traditional MPCI, agricultural economists and 

policy makers have developed a growing interest in alternative agricultural insurance 

designs. These alternative designs take the form of “index” insurance contracts, which 

indemnify farmers based on an objectively observable variable, or index, that is highly 

correlated with farm-level losses, but which cannot be influenced by the actions of the 

insured. A variety of indices have been used or suggested in recent years in agricultural 

insurance designs, including area yields, rainfall, heat-stress indices, and El Niño – 

Southern Oscillation indices (Vedenov & Miranda, 2001; Khalil et al 2007; Skees, 2008;).   

 

Index insurance possesses a number of attractive features. First, since farmers cannot 

influence the value of the index, index insurance is effectively free of moral hazard.  

Second, because indemnities are based on generally observed variables, it is relatively 

free of adverse selection problems. Third, since index insurance does not require on-farm 

inspections and field loss assessments, it is relatively inexpensive to administer. However, 

index insurance has some potential limitations. Most notably, it only covers losses 

directly associated with the index, say, widespread drought, while leaving the farmer 

exposed to other idiosyncratic losses such as fire. Ultimately, the viability of any index 
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insurance contract depends on correlation between the indemnities provided by the 

contract and the farmer’s production losses. 

 

In this paper, we explore the feasibility of offering index insurance contracts to 

Zimbabwe smallholders that are based on two distinct indices: rainfall measurements 

taken at established meteorological stations, and remotely-sensed Normalized Difference 

Vegetation Index (NDVI) measurements provided by orbiting National Oceanic and 

Atmospheric Administration (NOAA) satellites. 2  Both indices meet, prima facie, the 

most important necessary conditions for use as an insurance index: they are objectively 

and reliably measureable and are not subject to manipulation by either the insurer or the 

insured. To be determined is whether a specific contract design can be found that meets 

all the other conditions for economic viability as an insurance contract (Skees et al., 

1999). These conditions include the following: (i) the contract must be affordable and 

accessible to the majority of the farmers, including poor smallholders in Zimbabwe; (ii) 

the contract should compensate for catastrophic income losses and protect subsistence 

consumption; (iii) the contract ought to be provided either by the private sector or public 

sector with few or no government subsidies; and (iv) there should be sufficient data to 

allow the contract to be actuarially rated with few opportunities for adverse selection 

problems to arise.  

 

                                                 
2 Drought insurance was first proposed in India in 1920 by Chakravarti, who observed that “no insurance authority … 
would be able to watch and enforce that every insured field receives the required amount of care and attention at the 
hands of its cultivator. Unless some method can be devised by which this great difficulty is eliminated, a system of crop 
insurance would indeed be impossible.”  He added that given the dependence of Indian agriculture on rainfall, drought 
insurance “is not only possible but also practicable” (Mishra 1996: 309). 
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2. INNOVATIONS IN REMOTE SENSING TECHNOLOGY 

Recent advances in satellite remote sensing technology now permit accurate 

measurements at particular spatial scales and spectral bandwidths that allow dynamic 

monitoring of environmental conditions such as vegetation cover. Remote sensing has 

proven a powerful tool for evaluating crop growing conditions and drought (Johnson et 

al., 1993; Peters et al., 2002). In recent years, many organizations and national 

governments have shown growing interest in using satellite data for drought early 

warning and crop yield assessment (Johnson et al., 1993).  

 

Remotely sensed data produced by the Advanced Very High Resolution Radiometer 

(AVHRR) sensor aboard the NOAA series of polar-orbiting satellites of the USA are 

extensively used for drought early warning and food security purposes (Johnson et al., 

1993; Kogan, 1998). NOAA-AVHRR satellites provide twice-daily coverage of the 

planet’s surface, making them ideal for early warning systems, drought monitoring, crop 

assessment and yield estimation. Another advantage with NOAA-AVHRR satellites is 

that, given their daily coverage, they are likely to provide more cloud-free images 

compared to other satellites, such as LANDSAT. Further, data produced by NOAA-

AVHRR satellites are accessible at many receiving stations around the world in near-real 

time. However, the disadvantages of NOAA-AVHRR data pertain to their low spatial 

resolution and their vulnerability to geometric and radiometric distortions. 

 

Today, several remotely sensed indices based on satellite measurements, including the 

NDVI developed by Kogan (1998), are used widely to measure vegetation stress and 
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assess crop yields. The NDVI is a plausible choice of index for an agricultural insurance 

contract because it is highly correlated with crop yields, easy to measure on a regular 

basis, and not subject to manipulation by agricultural producers or insurers. NDVI 

sequential crop profiles show the progression of canopy emergence, maturation and 

senescence during the growing season, allowing crop yields to be assessed and/or 

predicted with considerable accuracy. The NDVI is an indicator of the vigor of vegetation, 

which is a consistent index across different types of land cover (Vogt et al., 2000). The 

NDVI, furthermore, is designed to separate short-term from long-term weather signals as 

reflected by typical vegetation cover, making it a good indicator of water stress 

conditions (Kogan & Sullivan, 1993; McVicar & Jupp, 1998). 

 

3. DATA 

In our analysis, we examine the economic viability of drought index insurance contracts 

based on each of two indices, rainfall and the NDVI, for nine districts in Zimbabwe – 

Chiweshe, Gutu, Sanyati, Chivi, Mt Darwin, Wedza, Hurungwe, Shamva and Beitbridge.  

These districts are located in different agro-ecological natural regions classified as II–V3 

with markedly different soil fertility, rainfall patterns, crop practices and management. 

For both indices and all nine regions, we seek to find an index insurance design that 

provides adequate coverage against losses experienced by maize and cotton producers. 

To perform our analysis, rainfall, NDVI and maize and cotton yield data were obtained 

from various sources. 

 

                                                 
3 Zimbabwe’s agricultural land is sub-divided into five agro-ecological natural regions numbered I to V. Agricultural 
potential declines from region I to region V.   
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Historical annual maize and cotton production data for nine districts in Zimbabwe were 

obtained from the department of Agricultural Research and Extension Services 

(AGRITEX) for the period 1980 to 2001.4 Maize, the main staple in these nine districts 

(Table 1), is grown by over 80 per cent of smallholders and accounts for more than 60 per 

cent of cultivated land. Cotton, the main cash crop, accounts for about 18 per cent of 

cultivated land. Complete time series of maize yields were available for all nine districts 

of interest; however, complete time series of cotton yields were available only for the 

Chiweshe, Sanyati, Hurungwe and Shamva districts. Both crops are grown largely under 

rain-fed conditions in these regions.  

Table 1: Average maize and cotton yield by nine selected districts, Zimbabwe, 1980- 
    2001 

 

 
 

 

 

 

 

 

 

 

 

 
                                                                                                                                                 
 
4 The period 2002–2008 was deliberately avoided, since it coincided with Zimbabwe’s land reform program which was 
often marked by violence and chaos. 

 
District 

Natural 
region Maize Cotton 

  Production 
(MT) 

Yield 
(MT/acre) 

Production 
(MT) 

Yield 
(MT/acre) 

Chiweshe 
Gutu 
Sanyati 
Chivi 
Mt Darwin 
Wedza 
Hurungwe 
Shamva 
Beitbridge 

II 
III 
IV 
V 
IV 
III 
II 
II 
V 

27,336 
11,192 
6,189 

15,996 
4,729 

15,059 
104,686 
25,190 
1,221 

2.285 
0.564 
1.067 
0.555 
0.920 
1.064 
1.859 
1.439 
0.135 

1,035 
817 

5,432 
578 
917 
275 

14,701 
611 

– 

0.808 
0.411 
0.798 
0.548 
0.659 
0.544 
0.815 
0.683 

– 
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NOAA-AVHRR NDVI data for the period 1980–2000 were obtained from the Southern 

African Development Community (SADC) Regional Remote Sensing Unit based in 

Gaborone, Botswana. The data are received at decadal (10-day) intervals and geo- 

referenced to the nine selected districts. Monthly rainfall data were obtained for the 

period 1980–2000 from the Zimbabwe Department of Meteorology. The data are 

aggregated by the number of weather stations within each of the nine selected districts. A 

drawback with this approach is that the data are obtained from a sparsely distributed 

network of weather stations and often fail to capture the spatial distribution of crop losses. 

In contrast, satellite-derived variables like NDVI come with the relatively high spatial 

and temporal resolution essential for continuous monitoring of crops during the growing 

season and for crop loss assessment. These satellite variables, however, have their own 

downside as they may be difficult to interpret over heterogeneous terrain.  Further, the 

use of any index by virtue of being surrogate for insurance losses involves basis risk.5 

 

Table 2 provides a summary of descriptive statistics pertaining to NDVI and rainfall data 

for the nine selected districts during the growing season that runs from January to April. 

For districts located in the driest regions (NR V) such as Beitbridge and Chivi, NDVI 

values range from 0.33 to 0.60, while for the wettest districts such as Hurungwe and 

Chiweshe (NR II), recorded NDVI values are slightly higher (0.45–0.64). Within semi-

arid regions (NR III and IV), NDVI values vary from 0.38 to 0.58 and 0.38 to 0.66 

respectively. Further, NDVI values are generally low during the early part of the season 
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since most crops are still at early stages of growth. But as the season progresses and crops 

attain full maturation the NDVI peaks, reaching its maximum (0.66) by the month of 

February. Using standard deviation as a measure, we tend to observe higher variability in 

NDVI values during the January–March period affecting the driest districts as opposed to 

the wettest districts. This marked variation in NDVI values is a crucial factor in 

accounting for observed yield variation across regions.  

 

Rainfall, on the other hand, is received mostly during the month of January, with the 

wettest districts receiving on average 250 mm, compared to 95 mm in drier districts. Thus 

for both indices the period January–February is the most crucial yield-determining phase 

for most crops. However, as the season nears its end (around March/April), rainfall 

decreases, crop senescence sets in and NDVI values decline correspondingly.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                                                                 
5 Basis risk refers to the risk of not paying indemnities when the insured suffers compensatory losses and vice versa. 
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Table 2: Descriptive statistics for NDVI and rainfall data by district, 1980–2000 
 

 
 
 

 Natural  NDVI Rainfall (mm) 
 District region Statistic Jan Feb Mar Apr Jan Feb Mar Apr 
Chiweshe  II Min 0.48 0.48 0.52 0.45 63 32 10 0 

Max 0.60 0.63 0.62 0.58 479 351 255 91 
Mean 0.56 0.60 0.59 0.53 228 220 120 25 
Stdev 0.03 0.04 0.03 0.03 106 106 78 26 

Gutu  III Min 0.41 0.42 0.45 0.41 23 0 4 0 
Max 0.55 0.55 0.53 0.52 320 341 120 94 
Mean 0.47 0.50 0.49 0.47 132 110 57 18 
Stdev 0.03 0.03 0.03 0.03 93 94 42 24 

Sanyati IV Min 0.49 0.50 0.53 0.46 50 4 10 0 
Max 0.66 0.66 0.65 0.62 387 365 204 96 
Mean 0.60 0.62 0.61 0.56 199 134 85 22 
Stdev 0.04 0.04 0.04 0.04 101 102 63 28 

Chivi V Min 0.42 0.43 0.44 0.41 23 0 4 0 
Max 0.60 0.58 0.61 0.56 320 341 120 94 
Mean 0.51 0.53 0.53 0.50 132 110 57 18 
Stdev 0.04 0.05 0.05 0.04 93 94 42 24 

Mt Darwin IV Min 0.50 0.49 0.48 0.45 37 13 1 0 
Max 0.59 0.62 0.61 0.59 453 395 287 99 
Mean 0.54 0.58 0.58 0.53 213 203 91 20 
Stdev 0.03 0.03 0.03 0.03 101 114 86 34 

Wedza III Min 0.45 0.47 0.49 0.42 27 7 13 0 
Max 0.58 0.58 0.56 0.54 416 375 205 155 
Mean 0.51 0.54 0.53 0.50 203 153 86 33 
Stdev 0.03 0.03 0.02 0.03 108 102 57 40 

Hurungwe II Min 0.47 0.50 0.52 0.48 68 61 29 0 
Max 0.64 0.65 0.64 0.63 366 428 229 168 
Mean 0.59 0.62 0.60 0.55 194 195 109 33 
Stdev 0.04 0.04 0.03 0.04 85 91 58 42 

Shamva II Min 0.49 0.51 0.49 0.49 79 0 22 0 
Max 0.59 0.62 0.62 0.60 433 296 237 119 
Mean 0.55 0.58 0.58 0.54 231 180 104 31 
Stdev 0.03 0.03 0.03 0.03 95 91 68 35 

Beitbridge  V Min 0.37 0.38 0.38 0.37 0 2 4 0 
Max 0.62 0.58 0.60 0.55 294 394 120 119 
Mean 0.48 0.49 0.48 0.46 69 68 32 12 
Stdev 0.07 0.06 0.06 0.05 69 93 29 27 
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Table 3 shows the correlation of maize and cotton yields with monthly total rainfall and 

monthly average NDVI values during the critical crop growth period of January to April.  

As seen in Table 3, the correlation between maize yields and the NDVI is lower during 

the early part of the season but improves dramatically as the season progresses and attains 

a maximum predominantly during the month of March; for cotton the highest correlation 

with the NDVI is attained during the month of April. The highest correlations between 

rainfall and maize yields are attained predominantly during the month of February, 

whereas the highest correlations between rainfall and cotton yields alternate between 

January and February across districts. The temporal patterns of correlations are sensible, 

as they tend to show low correlation at the beginning and end of the season. Given that 

both crops are still in the early stages of growth around January, one would generally 

expect weak correlations. However as the season progresses, the correlations between 

both indices and yields improve dramatically, especially for the period February–March 

which generally corresponds to flowering and grain-filling stages for most crops. 

Towards the end of the season (April), most crops would have attained full maturation, 

with senescence setting in, generally marked by diminishing greenness and vigor, 

resulting in a decline in correlation.  
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Table 3: Correlation between yields and NDVI and rainfall, by crop, region and 

month  

 
 NDVI  Rainfall 
 Jan  Feb Mar Apr  Jan Feb Mar Apr 

Maize     

Chiweshe 0.10 0.12 0.26 0.21  0.14 0.60 0.51 -0.22 
Gutu 0.52 0.49 0.40 0.28  0.19 0.57 0.06 0.00 
Sanyati -0.11 0.12 0.29 0.14  0.32 0.64 -0.12 0.25 
Chivi 0.49 0.65 0.71 0.63  0.40 0.46 0.21 -0.14 
Mt Darwin -0.32 -0.11 0.36 0.48  -0.10 0.21 0.50 -0.18 
Wedza 0.29 0.36 0.39 0.14  0.51 0.35 -0.14 0.09 
Hurungwe 0.21 0.37 0.44 0.31  0.34 0.35 -0.05 0.19 
Shamva 0.11 0.11 0.29 0.19  0.41 0.51 0.31 0.18 
Beitbridge 0.28 0.33 0.39 0.41  0.31 0.40 0.02 -0.07 
Cotton    
Chiweshe -0.30 -0.43 -0.21 -0.16  0.41 0.61 0.19 -0.09 
Sanyati -0.01 0.19 0.48 0.55  0.36 0.33 0.30 0.11 
Hurungwe 0.00 0.17 0.47 0.61  0.47 0.25 0.26 0.02 
Shamva 0.18 0.02 0.20 0.17  0.44 0.49 0.48 0.14 

 

 

 

4. Insurance contract design and specification 

We envisage a simple proportional insurance contract with a stop-loss provision. The 

indemnity schedule associated with such a contract, which is illustrated in Figure 1, takes 

the form 

 




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
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



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x
x

x

xf

~ if                      0

~ if             
)(

)~(

~ if                       1

),;~(     

 
Here ),;~( xf  denotes the indemnity paid per dollar of liability, or “loss cost”, 

conditional on realization of the prescribed index x~ , for specified values of a “trigger” 

 and “stop-loss” . As seen in Figure 1, the contract pays nothing if the index x~ exceeds 

the trigger , pays full indemnity if the index x~ falls below the stop-loss , and pays a 
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proportional indemnity whenever the index x~ lies between the trigger and the stop-

loss .   

 

Figure 1: Indemnity schedule for a Standard Unit Index insurance contract 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Our method of selecting and pricing an index insurance contract is based on the approach 

taken by Vedenov & Miranda (2001).  In particular, we search among the critical 

growing season months of January, February, March and April for values of the 

trigger and stop-loss   that maximize the correlation between losses of interest and 

indemnities, while requiring the expected loss cost, also known as the “fair premium 

rate”, to equal an affordable level, in this case either 5 per cent or 10 per cent. We define 

a loss to be any deficit in production below 85 per cent of historically average production. 

 

Loss 
Cost 

Trigger   Stop Loss   

  0 

1 

Index x~  
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More formally, for each of the nine districts, two crops, two indices, and four growing 

season months, we solved 










),;~(..

))0,~(),,;~((
,

xfEts

yyMaxxfCorrMax
  

for the optimal trigger and stop-loss . Here, Corr is the correlation operator, E is the 

expectation operator, x~ are the historically observed index values, y~ are the historically 

observed district-level yields, y is the historical mean of the district-level yields, = 0.85 

is the percentage of the historical mean at which losses begin to be measured, and  , 

which equals 0.05 or 0.10, is the target fair premium rate. The optimum was computed by 

performing a refined grid search on the trigger , with the corresponding stop-loss   

computed numerically from the target fair premium rate constraint using the secant 

method (Miranda & Fackler, 2002). 

 

4.2 Results 

Of practical importance is the optimal period to offer or write contract insurance based on 

either NDVI or rainfall index. For each crop and region, we searched across the growing 

season months of January, February, March and April to find which months would 

provide the maximum loss-indemnity correlation. The results are presented in Tables 4(a) 

and 4(b).  

 

As shown in Table 4(a), across most districts the optimal period for offering maize NDVI 

contracts tended to be the months of February and March. The optimal months were 

robust to the specification of the target premium rate. In addition, across most districts the 
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NDVI exhibits appreciably high correlations with maize yield losses in the range 0.40–

0.90. The optimal months to offer NDVI cotton contracts ranged from February to April, 

with loss-indemnity correlations in the range 0.40–0.52.   

 

As seen in Table 4(b), the month of February is optimal for offering maize rainfall 

insurance contracts across most districts. For two districts (Hurungwe and Shamva) 

however, the month of January is the optimal month. The results are robust at 5–10 per 

cent premium rates. With respect to cotton, the reverse is true; for a 5 per cent premium 

rate, the month of January was predominantly optimal; whereas for a 10 per cent 

premium rate the months January and February were optimal.   

 
Table 4(a): NDVI insurance: optimal month, stop point, trigger point, and loss-
indemnity correlation by crop, region, and premium rate 
 
  --- Premium rate = 5% ---   --- Premium rate = 10% ---  
  Month Stop Trigger Correl.   Month Stop Trigger Correl.  
Maize 
Beitbridge Feb 0.21 0.44 0.50   Feb 0.33 0.44 0.50  
Chivi Mar 0.33 0.49 0.87   Mar 0.41 0.49 0.87  
Chiweshe Mar 0.49 0.55 0.45   Feb 0.54 0.55 0.45  
Gutu Feb 0.37 0.47 0.84   Feb 0.45 0.45 0.88  
Hurungwe Mar 0.20 0.62 0.40   Mar 0.41 0.62 0.40  
Mt Darwin Mar 0.08 0.60 0.86   Mar 0.34 0.60 0.86  
Sanyati Mar 0.23 0.61 0.54   Mar 0.42 0.61 0.54  
Shamva Feb 0.51 0.51 0.52   Feb 0.52 0.53 0.52  
Wedza Mar 0.16 0.55 0.56   Mar 0.35 0.55 0.56  
Cotton 
Chiweshe Mar 0.51 0.53 0.39   Feb 0.54 0.55 0.39  
Hurungwe Apr 0.01 0.57 0.45   Apr 0.12 0.60 0.47  
Sanyati Apr 0.10 0.58 0.52   Apr 0.34 0.58 0.52  
Shamva Feb 0.50 0.52 0.42   Feb 0.52 0.53 0.42  
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Table 4(b): Rainfall insurance: optimal month, stop point, trigger point, and loss-
indemnity correlation by crop, region, and premium rate   
 
  --- Premium rate = 5% ---   --- Premium rate = 10% ---  
  Month Stop Trigger Correl.   Month Stop Trigger Correl.  
Maize 
Beitbridge  Feb 0 9 0.22   Feb 1 15 0.43  
Chivi Feb 0 2 0.56   Feb 5 9 0.45  
Chiweshe Feb 47 47 0.73   Feb 75 77 0.73  
Gutu Feb 0 2 0.52   Feb 3 11 0.38  
Hurungwe Jan 57 72 0.48   Jan 67 91 0.44  
Mt Darwin Feb 1 34 0.50   Feb 1 84 0.66  
Sanyati Feb 1 11 0.61   Feb 14 17 0.70  
Shamva Jan 2 137 0.50   Jan 28 168 0.57  
Wedza Feb 12 13 0.62   Feb 23 32 0.67  
Cotton 
Chiweshe Mar 13 14 0.73   Feb 14 127 0.83  
Hurungwe Jan 60 70 0.85   Jan 67 91 0.68  
Sanyati Jan 0 99 0.25   Feb 14 17 0.64  
Shamva  Jan 2 137 0.37   Jan 14 176 0.45  

 
 
We further extend our analysis by invoking the concept of the mid-season dry spell risk 

factor. During any growing season, the mid-season dry spell coincides with the critical 

crop growth period (which encompasses the tassel and grain-filling stages) that 

influences the resultant yield across all growing regions. Hence, the mid-season dry spell 

is a crucial yield-determining risk factor. Because the spell occurs mid-season (from the 

end of January to mid March) it is termed the mid-season dry spell. Although it varies 

during any growing season, it may persist for four to six weeks.  

 

In Table 5 we use the notion of mid-season dry spell and/or critical growth period to 

illustrate three cases: under-match, exact-match and over-match. In the case of an under-

match, the optimal index month coincides with the month(s) of the growing season and 

may miss the critical growth period and mid-season dry spell. This could entail selection 
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of such months as January in a manner that enhances the basis risk, where indemnities are 

paid when in actual fact they are not supposed to be, and vice versa. In the case of an 

exact-match, the optimal index months (e.g. the month of February) coincide with the 

critical growth period. An exact-match is perhaps most desirable since it reduces basis 

risk. Finally, in the case of an over-match, the optimal index month coincides with 

periods well beyond the critical growth period range (e.g. the month of April). In this 

situation the seasonal outlook is known with near certainty. 

 

Which index is better? As shown in Table 5, the rainfall index exhibits exact-matches for 

maize across most regions, but under-matches for cotton. The NDVI does not exhibit 

exact-matches, but nonetheless succeeds in matching the critical growth period across 

most maize-growing regions. Unlike the rainfall index, the NDVI exhibits over-matches 

across all cotton growing regions. This rather simple assessment helps to provide 

important insights: (a) an under-match could potentially entail huge costs due to its 

propensity to mismatch, and in this regard the rainfall index suffers a disadvantage; (b) 

both exact-match and match are equally desirable and hence both indices performed 

equally well; (c) in the case of an over-match, our results show that the NDVI mostly 

overshoots but, unlike the under-match case, the consequences are less severe, making 

the NDVI the preferred index; and (d), the NDVI exhibits comparatively higher loss-

indemnity correlations across most maize-growing regions than rainfall, though the latter 

showed slightly better correlations for cotton. 

 

 
 
 



 

 

 

19

 
 
Table 5: Mid-season risk-spell assessment: NDVI vs. rainfall index 

 
 

5. SUMMARY AND CONCLUSION  

Using historical maize and cotton yield data from nine districts in Zimbabwe, we find 

that catastrophic drought insurance contracts based on the NDVI can be constructed 

whose indemnities exhibit higher correlations with yield losses and whose fair premium 

rates lie in the affordable 5–10 per cent range. Except for a few districts, across both 

crops and most growing regions, the NDVI afforded appreciably higher-yield loss-

indemnity correlations (0.40–0.90) than the rainfall index (0.25-0.70), implying that the 

former would embody lower basis risk.  

 

With regard to assessing the sensitivity of the indices to detecting the mid-season dry 

spell, the NDVI predominantly selects the months of February–March for the maize crop 

and thus tends to match the critical growth period associated with the mid-season dry 

spell. For cotton, the NDVI predominantly picks the month of April and hence tends to 

over-match the critical growth period. With respect to the rainfall index, except in a few 

Index Crop NR  Average loss-indemnity 
correlation 

 

Dominantly selected optimal 
month 

Mid-season risk spell 
assessment 

   5% 10% 5% 10%  
 NDVI Maize II 

III 
IV 
V 

0.46 
0.70 
0.70 
0.69 

0.46 
0.70 
0.70 
0.69 

 Mar 
 Mar 
 Mar 
 Mar 

Feb 
Feb 
 Mar 
Feb 

Match 
Match 
Over-match 
Match 

Cotton II 
IV 

0.42 
0.52 

0.42 
0.52 

Feb 
Apr 

Apr 
Apr 

Over-match 
Over-match 

Rainfall  Maize II 
III 
IV 
V 

0.57 
0.57 
0.56 
0.39 

0.58 
0.53 
0.68 
0.44 

Jan 
Feb 
Feb 
Feb 

Jan 
Feb 
Feb 
Feb 

Under-match 
Exact-match 
Exact-match 
Exact-match 

 Cotton II 
IV 

0.65 
0.25 

0.65 
0.64 

Jan 
Jan 

Jan 
Jan 

Under-match 
Under-match 
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instances, the correlations reflect exact-match with maize losses but tend to under-match 

cotton losses.  

 

NDVI offers the additional advantage that they are measured using data provided by an 

internationally recognized agency, the NOAA, thus providing an element of security 

necessary for international reinsurers to offer index contracts. The rainfall index suffers a 

disadvantage in that it is drawn mostly from a sparsely distributed network of weather 

stations that often fail to capture the wide spatial crop losses. By contrast, this makes the 

satellite-derived NDVI a more desirable index as it comes with high spatial and temporal 

resolution, both essential for continuous monitoring and evaluation of crops during the 

growing season. We conclude that insofar as hedging against catastrophic drought events 

is concerned, the NDVI could be superior to the conventional rainfall index. Effective 

hedging against catastrophic drought risk using index insurance is one possible policy 

strategy that Zimbabwe could explore to address smallholder farmers’ vulnerability to 

catastrophic droughts and food insecurity threats.   
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