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Abstract:  
We propose a model where both R&D and ICT investment feed into a system of three 
innovation output equations (product, process and organizational innovation), which 
ultimately feeds into a productivity equation. We find that ICT investment and usage are 
important drivers of innovation in both manufacturing and services. Doing more R&D has a 
positive effect on product innovation in manufacturing. The strongest productivity effects 
are derived from organizational innovation. We find positive effects of product and process 
innovation when combined with an organizational innovation. There is evidence that 
organizational innovation is complementary to process innovation. 
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1. Introduction 
Innovation is considered to be a key driver of productivity growth. The introduction of 

new goods and services, as well as novelties in methods of production and non-

technological aspects as management practices and marketing, allow firms to im-

prove efficiency. There is much empirical research on the contribution of various in-

stances of innovation on productivity and, moreover, on what in turn are the drivers 

of innovation. Despite sharing a clear common ground, it seems that there are 

roughly two separate strands of literature to be distinguished: one strand dealing with 

R&D driven technological innovation, and another strand that seeks to explain pro-

ductivity differences from organizational changes propagated by the use of informa-

tion technology. In this paper we aim to provide a more encompassing empirical de-

scription of the innovation process in firms, by combining elements from both strands 

of literature. 

In the pioneering work by Griliches (1979), the production function is augmented with 

R&D to account for the fact that knowledge, and the generation thereof, contributes 

to the output of a firm. Crépon, Duguet, and Mairesse (CDM, 1998) extended this 

insight to a distinction between innovation input (e.g. R&D) and innovation output 

(i.e. knowledge). The idea is that innovation input (research effort, and sources of 

knowledge) leads to the generation of knowledge, which may manifest itself in new 

products and improved production methods, and is put to use in the production proc-

ess. Since the seminal contribution by CDM, many studies have confirmed the posi-

tive impact of innovation on productivity at the firm level. Examples of such studies 

include Lööf and Heshmati (2002) and Van Leeuwen and Klomp (2006). As in CDM, 

the focus in most of these studies is on product innovation, the main reason being 

that this type of innovation is the only one for which a quantitative output measure is 

readily available (e.g. the share of innovative products in total sales or patent data). 

However, as mentioned above and recognized in current innovation surveys, there 

are various other types of innovation, such as process innovation, organizational in-

novation and marketing innovation.  

Changes in organization and in particular its combination with investment in informa-

tion technology is the topic of empirical work by e.g. Brynjolfsson and Hitt (2000), 

Black and Lynch (2001) and Brynjolfsson et al. (2006). In their work, information 

technology enables organizational investments (business processes and work prac-

tices), which in turn lead to cost reductions and improved output and, hence, produc-
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tivity gains. Investment in information and communication technology (ICT)1 can 

therefore be considered as a separate input into the innovation process, which can 

lead to new services (e.g. internet banking), new ways of doing business (e.g. B2B), 

new ways of producing goods and services (e.g. integrated management) or new 

ways of marketing (e.g. electronic cataloguing).2 Besides the emphasis on the com-

plementarity between ICT and changes in the organization of the firm, there is evi-

dence that the use of ICT also has a positive effect on product innovation and pro-

ductivity (Van Leeuwen, 2008). 

In this paper, we bring together the insights from both the work on R&D and techno-

logical innovation, as well as from that on organizational innovation and ICT. We ex-

tend the CDM framework to include three types of innovation (product, process, and 

organizational innovation),3 and ICT as an additional innovation input besides R&D. 

This is one of the first studies to include three types of innovation as well as model-

ing ICT as an enabler of innovation. The plan is as follows. In section 2, we briefly 

review some related literature on the effects of various types of innovation on pro-

ductivity and the role of ICT. In section 3 we outline our model and estimation strat-

egy. In section 4 we describe the data and the main variables, whereas in section 5 

we present the estimation results and various robustness checks. Section 6 con-

cludes and gives directions for further research. 

 

2. Related literature 
The CDM model has been estimated on firm data originating from innovation surveys 

in OECD and non-OECD countries (see e.g. Chudnovsky et al. 2006 for an over-

                                                      
1 In this paper we will look at ICT rather than IT, as communication technology is also likely 

to be of importance for improving both innovative capabilities and productivity. Bloom et al. 

(2009) show that information technology and communication technology are associated with 

different types of organizational change.  
2 Murphy (2002) provides an overview of examples of organizational change, documenting 

its relation with ICT and evidence of its effect on firm performance. 
3 Besides organizational innovation, innovation surveys generally regard marketing innova-

tion as another type of non-technological innovation. Due to the short time dimension for this 

variable in our dataset, we shall not consider it in our analysis. 
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view). The models differ by the types of innovation that are considered, the modeling 

of their interactions, the use of quantitative or qualitative innovation indicators, and 

the econometric methods used to account for simultaneity and selectivity. In this brief 

survey, we shall focus on two generalizations of the original CDM model, namely the 

introduction as separate innovation outputs of process and organizational innova-

tions, and the introduction of ICT as a separate innovation input. The former are 

readily available in the innovation surveys, the latter requires merging the innovation 

survey data with data from ICT surveys. Moreover, we discuss some related litera-

ture on the importance of ICT and the role of organizational innovation. 

Given that productivity gains are related to production efficiency and factor saving, it 

can be argued that an analysis of the productivity effects of innovation that focuses 

exclusively on product innovation is too restrictive. However, due to the lack of con-

tinuous output measures it is not straightforward to extend the model to other types 

of innovation. For product innovations most of the time it is the share of total sales 

that are due to innovative products that is used to measure the intensity of innova-

tion, or alternatively the number of patents. For other types of innovation (process, 

organizational), it is usually only observed whether a firm has performed the innova-

tion or not. 

Griffith et al. (2006, henceforth GHMP) use the binary indicators for product and 

process innovation in the augmented production function as measures of innovation 

output in a study for four countries: France, Germany, Spain, and the UK. They esti-

mate by two separate probits the propensities of their occurrence, and use those to 

replace the product and process dummies in the augmented production function to 

control for their possible endogeneity. Robin and Mairesse (2008) for France adjust 

the GHMP model slightly by estimating the knowledge production function as a 

bivariate probit, which allows to calculate the propensity of performing both a product 

and a process innovation together in addition to the probabilities of performing them 

separately. This term can be used to assess the possible complementarity between 

the two types of innovation. For manufacturing, GHMP only find a positive significant 

effect for process innovation in France; in the other countries it is insignificant. Prod-

uct innovation, on the other hand, has a positive significant effect in all countries but 

Germany. For France, Robin and Mairesse find positive effects for product and proc-

ess innovation separately, and also for their combined occurrence. Their findings 

hold for both the manufacturing and the services sector.  
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Roper et al. (2008) use binary indicators for product and process innovation, as well 

as a mix of a continuous measure for product innovation and a binary decision vari-

able for process innovation. Based on the Irish Innovation Panel (IIP), they find no 

significant effect of both types on productivity when using the binary specification. 

They find a significant negative effect for product innovation when using the continu-

ous measure of innovation success.4 This is interpreted as a possible disruption ef-

fect. The authors do not control for potential endogeneity, because they argue that 

‘the recursive nature of the innovation value chain suggests that innovation output 

measures are necessarily predetermined’ (op. cit. p. 964). Mairesse et al. (2006) 

compare the effects on TFP of various (quantitative and qualitative) product and 

process innovation indicators, introducing them individually and controlling for their 

endogeneity by estimating the respective models by Asymptotic Least Squares. Con-

trary to Roper et al. (2008), they find a higher impact for process than for product 

innovation. Strikingly, however, they find no significant impact only when the en-

dogeneity innovation output is not controlled for.  

For Italy, Parisi et al. (2006) find a positive effect for process innovation and not for 

product innovation using instrumental variable estimation. Schmidt and Rammer 

(2007) find a positive impact of combined technological (product and/or process) and 

non-technological (organizational and/or marketing) on the profit margin of firms, 

mainly due to the combination of organizational and product innovation. However, 

according to their study, technological innovation has a bigger effect on the profit 

margin without non-technological innovation. From this overview, it appears that 

there is at least some degree of heterogeneity in the findings about the importance 

and direction of product, process and organizational innovation, and their combina-

tion. 

With respect to the role of ICT, our work is closely related to that of the Eurostat ICT 

impacts project (see Eurostat, 2008). Because data on ICT investment are not avail-

able in the survey on ICT use, this international micro-data study proposes to use 

other metrics such as the share of PC enabled personnel, the adoption of broadband 

and e-commerce variables as indicators for firm-level ICT-intensity. The study re-

                                                      
4 Since their productivity measure is value added per employee, and capital intensity is con-

trolled for, their result may be viewed as a total factor productivity (TFP) effect. 

4 



veals that – on average – ICT usage is positively related to firm performance. The 

strength of these results varies over countries, however, and it also appears that the 

benefits of different types of ICT usage are industry specific. Broadband use seems 

to be associated with a capital deepening effect (that is, the use of broadband is in-

dicative of a larger stock of ICT capital), whereas electronic sales shows a true effi-

ciency effect. Van Leeuwen (2008, Chapter 12 of the Eurostat report) incorporates 

the broadband and e-commerce variables into the standard CDM model (with inno-

vation output represented by innovative sales per employee). It is shown that e-sales 

and broadband use affect productivity significantly through their effect on innovation 

output. Broadband use only has a direct effect on productivity if R&D is not consid-

ered in the model as an input to innovation. As regards ICT, the model used in this 

paper can be seen as a modification and extension of the model in Van Leeuwen 

(2008). 

Another line of literature motivates the importance of ICT for organizational innova-

tion in particular, see e.g. Brynjolfsson and Hitt (2000), Black and Lynch (2001), and 

Bresnahan et al. (2002). Case studies reveal that the introduction of information 

technology is combined with a transformation of the firm, investment in intangible 

assets, and a change in the relation with suppliers and customers. Electronic pro-

curement, for instance, increases the control of inventories and decreases the costs 

of coordinating with suppliers. In addition, ICT offers the possibility for flexible pro-

duction: just-in-time inventory management, integration of sales with production 

planning, et cetera. A lack of proper control for intangible assets seems to be the 

answer to the famous remark by Solow that one can find ICT everywhere but in the 

productivity statistics. In addition, a lack of investment in intangible assets is seen as 

a possible candidate for explaining the differences in productivity growth that are ob-

served between Europe and the US. The available econometric evidence at the firm 

level shows that a combination of investment in ICT and changes in organizations 

and work practices facilitated by these technologies contributes to firms’ productivity 

growth. More evidence on this relation is provided by Crespi et al. (2007). Using CIS 

data for the UK, they find a positive effect on firm performance of the interaction be-

tween IT and organizational innovation, but not for the individual variables. They also 

find a significant effect of competition on organizational innovation. 
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3. Model 
The modeling approach follows GHMP and RM, who use an augmented CDM model 

to incorporate product as well as process innovation. We extend their model to in-

clude an equation for ICT as an enabler of innovation and organizational innovation 

as an indicator of innovation output. Quantitative as well as qualitative data are used 

to model innovation inputs, whereas only qualitative information is used for innova-

tion outputs. We measure productivity as value added over employment. Controlling 

for the capital/labor ratio in the productivity equation, the remaining terms can be 

interpreted as explaining total factor productivity. 

 

3.1. Innovation inputs: R&D and ICT 
We distinguish two types of innovation inputs: R&D expenditures and ICT invest-

ment. We measure R&D investments by the total of intramural and extramural R&D 

expenditures. This variable is subject to selectivity, however. The question is only 

asked to firms with a completed/ongoing/abandoned product and/or process innova-

tion, whereas non-innovating firms can also invest in R&D (e.g. when investing in 

physical capital for R&D purposes in the period covered by the survey, while the ac-

tual innovation project did not commence in this period). In addition, the variable may 

be censored because innovators may not always report or may underestimate R&D 

(e.g. when it is performed by workers in an informal way). Furthermore, only continu-

ous R&D performers that stated to have positive R&D expenditures are used in the 

estimation. 

In analogy to R&D, we use the investment in ICT as a measure for ICT input. There 

are many periods in which firms do not report investment in ICT, so in fact ICT in-

vestment is also a censored variable. Again, this variable is subject to censoring, as 

firms that do not report investment may in fact still have positive ICT input, e.g. 

through own-account development which is not recorded as investment.5  

For both indicators, we therefore have a certain number of zero values and missing 

observations. To model this pattern of zero/missing and positive observations, we 

                                                      
5 In addition to ICT investment we use broadband access and the use of e-commerce as addi-

tional ICT input variables in the innovation output equation. These variables are not censored 

or subject to selectivity, and we treat them as exogenous. 

6 



use a type II tobit model, see Amemiya (1984). For R&D we have a dichotomous 

variable   that takes value 1 when R&D is observed and 0 otherwise. We associ-

ate to  a latent variable such that  

Rd

Rd *
Rd

(1)  when  and  1=Rd 0111
* >+′= ttR wd ηα

  otherwise.  0=Rd

Likewise for ICT we have a dichotomous variable to which we associate a latent 

variable  such that  

ICTd

*
ICTd

(2)  when and  1=ICTd 0222
* >+′= ttICT wd ηα

  otherwise. 0=ICTd

The amount of R&D, measured by (the log of) R&D expenditures per employee, and 

denoted by is related to another latent variable  such that  tr
*

tr

(3)  when tttt xrr 11
'

1
* εβ +== 1=Rd  and zero otherwise.                                        

Likewise, the amount of ICT, measured by (the log of) ICT investment per employee, 

and denoted by is related to a latent variable such that  tICT *
tICT

(4)  when tttt xICTICT 22
'
2

* εβ +== 1=ICTd  and zero otherwise.   

We drop the firm subscript to avoid notational clutter. For year t, wjt and xjt (j = {1,2}) 

are vectors of exogenous explanatory variables some of which may be common to 

both vectors. Each pair of random disturbances t1η  and t1ε , and t2η  and t2ε , is as-

sumed to be jointly iid normally distributed.  

For reasons of symmetry we use the same explanatory variables in the selection 

equation for ICT as for R&D (i.e. w1t = w2t). Besides dummy variables for industry 

and size, we used the following common variables in the two selection equations: a 

dummy variable for being part of an enterprise group, and a dummy variable refer-

ring to the dependence on foreign markets. To model the amount of R&D and ICT 

(thus, x1t = x2t), we use the variables used in the selection equation and add a 

dummy for cooperation in innovative activities and dummies for various types of fi-

nancial support. 

Equations (1) and (3) and (2) and (4) are estimated by maximum likelihood. From the 

(selectivity corrected) estimations of the intensity equations, we calculate predictions 

for the latent R&D and ICT investments, which feed into the innovation output equa-

tions. As in GHMP, the predictions are also calculated for the firms with zero invest-
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ments.6 Thus, it is assumed that all firms have a certain amount of (possibly unob-

served) research effort and/or ICT investment. 

 

3.2. Innovation outputs: product, process and organization 
Innovation input leads to innovation output, also known as ‘knowledge production’. In 

this study, we consider three types of innovation, namely product, process and or-

ganizational innovations. The three innovation equations are given by 

(5a) pdtt* = β3′x3t + ε3t

(5b) pcst
* = β4′x4t + ε4t

(5c) orgt
* = β5′x5t + ε5t

where x3 to x5 include the predictions of the innovation input variables from the equa-

tions (3) and (4). As with innovation inputs, the levels of generated knowledge are 

latent. In this case, we only observe whether a firm had a certain type of innovation 

or not.7 Let I(⋅) denote the indicator function, which equals 1 if the condition is true 

and 0 if not, and  

 pdtt   = I(pdtt* > 0) = I(ε3t < β3′x3t ), 

 pcst   = I(ε4t < β4′x4t), orgt  = I(ε5t < β5′x5t ), εt = (ε3t,ε4t,ε5t)′ ~ N(0,∑), 

where pdt, pcs and org are the dummy variables corresponding to the event that a 

firm has respectively a product, process, or organization innovation. 

Then the three-equation system is a trivariate probit model. It can be estimated by 

simulated maximum likelihood using the GHK simulator (see Train, 2003). Besides 

reflecting the assumption that also firms that do not report investment have a certain 

amount of research effort or ICT investment, the advantage of using predictions for 

innovation input is that we are able to use the whole sample. This means that the 

number of observations is increased and selectivity bias is circumvented. In addition, 

at least if all explanatory variables in the R&D and ICT equations are exogenous, 

endogeneity of the innovation inputs is controlled for. Following GHMP and RM, we 

                                                      
6 When predicting R&D and ICT we assume that there is no cooperation and no sources of 

funding for non-innovators, i.e. we set these variables to zero for these firms. 
7 For product innovation, we also observe the percentage of total sales due to innovative 

products. To treat the three types of innovation in the same manner, however, we also restrict 

the measurement of product innovation to a binary variable. 
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construct propensities for each possible combination of innovation type, and include 

these as proxies for knowledge in the augmented production function. Standard er-

rors of the estimates are computed by bootstrapping. Following van Leeuwen (2008), 

we include broadband intensity and e-commerce variables as instances of ICT input 

in the knowledge equation, to capture the application and degree of sophistication of 

ICT.8

 

3.3. Production function 
Finally, we estimate an augmented production function to determine the semi-

elasticities of productivity with respect to dichotomous innovation output measures. 

The estimating equation is 

(6) VAt/Lt = [∑ijk βijk I(pdt = i, pcs = j, org = k)] + β6′x6t + ε6t ,   (i,j,k ∈ 

{0,1}) 

where VAt/Lt is the log of value added over firm size in fte, and x6 are additional ex-

planatory variables including capital intensity and firm size. We use I(0,0,0) as a ref-

erence category. Thus, there are seven dummies reflecting the different combina-

tions of innovation types: (0,0,1), (0,1,0), (0,1,1), …, (1,1,1). Since these innovation 

output measures are latent and endogenous, they are replaced by predictions from 

the trivariate probit in section 3.2.9 We control for the endogeneity of capital and la-

bour using the estimation algorithm by Olley and Pakes (1996). 

 

4. Data 
The data used in this exercise are sourced from different surveys at Statistics Neth-

erlands, which are linked at the firm level. The sample includes firms in the manufac-

turing sector (NACE 15 to 37) as well as the services sector (NACE 50 to 93).10 The 

                                                      
8 We treat the ICT usage variables as exogenous to innovation output. In section 5.4 we check 

the robustness of our results to this assumption by including year t-1 instead of year t values. 
9 The predictions correspond to the propensities for the respective combinations. Since these 

add up to one, it is necessary to use one combination as a reference category to avoid perfect 

collinearity. Note that replacing the actual (latent) innovation output variables with predic-

tions is in line with the original CDM approach. 
10 We exclude NACE 73, the commercial R&D sector. 
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innovation variables are sourced from the Community Innovation Survey (CIS). We 

pool the 2002, 2004, and 2006 editions (also referred to as respectively CIS 3.5, CIS 

4 and CIS 4.5). Information on ICT usage comes from the Business ICT (E-

commerce) survey. Investment in ICT is taken from the Investment Statistics (IS). 

Finally, production data (production value, factor costs, and employment) are taken 

from the Production Statistics (PS). We use price information at the lowest available 

level from the Supply and Use tables (AGT); this results in deflators at a mixed 4-

digit and 3-digit NACE levels.  

Our definitions of the different innovation types follow those in the innovation survey. 

Thus, product innovation is defined as a new or (significantly) improved good or ser-

vice. Process innovation is defined as a significantly improved method of production 

or logistics, or supporting activities such as maintenance and operations for purchas-

ing, accounting, or computing. Finally, organizational innovations include the intro-

duction of new business practices, knowledge management systems, methods of 

workplace organization (i.e. system of decision making), and management of exter-

nal relations. In all cases, the innovation needs to be new to at least the firm, and 

may be developed by the firm itself or by another enterprise (or in collaboration). For 

each of these innovation types, the CIS provides information on whether a firm 

stated to have performed such an innovation or not in the three-year period ending in 

the year preceding the survey (for example, the CIS 2006 is carried out in 2007 and 

concerns the period 2004 to 2006). 

Table 1 gives the summary statistics by sector for the key variables used in the 

analysis, for the different samples used in different equations in the main analysis. 

The R&D equation only uses CIS data; the ICT equation uses IS and CIS; the 

knowledge production function uses CIS and ICT data; finally, the TFP equation 

uses PS, CIS and ICT (the latter two only via the predicted propensities).11 The 

overall impression is that the means of the variables are pretty much in line in the 

various samples. Based on the employment variables, however, it seems that cross-

                                                      
11 In the robustness analyses of our results we also use different (sub)samples, for example 

the R&D survey for information on t−1 R&D expenditures and information on investment in 

fixed capital goods from the Investment Statistics in the estimation of the production function 

following the method by Olley and Pakes (1996). 
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ing the CIS with the E-commerce survey leads to a bias towards larger firms. This is 

not surprising since the sampling frame of the latter survey is relatively small, and 

smaller firms are less likely to be sampled in all surveys, so that in crossing data sets 

these firms have a higher probability to drop out. There are, however, some differ-

ences between manufacturing and services. Firms in the services sector are much 

less likely to have their main market abroad. They also cooperate less in innovative 

activities, and less firms receive funding. On the other hand, services firms have a 

higher intensity of broadband use. While R&D expenditures per worker are substan-

tially lower than in manufacturing, they also invest more in ICT. Thus, compared to 

firms in manufacturing, services firms appear to be more domestically oriented, rely-

ing relatively more on ICT and private funding for innovation. 

Table 2 shows the distribution of possible combinations of innovation types by sec-

tor, both from the CIS and for the production function sample. For the latter sample, 

also averages for R&D and ICT investment, and value added are reported. Overall, 

the manufacturing sector seems more innovative: here 43% of the firms report not to 

have been innovative, against 64% in the services (this category does include firms 

with an ongoing or abandoned innovation project, however). Most of the innovators 

in services only have an organizational innovation, however, and this combination 

has even a higher share than in manufacturing. For the other combinations the ser-

vices sector has a lower score, especially for the one where all types of innovation 

are involved, which accounts for 13% of the observations in manufacturing (CIS 

sample), but only 4% for services.12 From the averages by combination of innovation 

                                                      
12 One could be concerned with the ability of firms to dissociate process and organizational 

innovations. Crespi et al. (2007), for example, worry that (what firms mark as) process inno-

vation in fact incorporates ‘disembodied’ reorganization such as contracting out, new work-

ing methods etc. Greenhalgh and Rogers (2010, ch. 1) include organizational innovation in 

their definition of process innovation. In this case one would expect that firms would tick the 

boxes for both process and organizational innovation. The distribution of innovation mode 

combinations suggests that this is not a big problem in our data. A quick calculation shows 

that for the observations involving process or organizational innovation in manufacturing 

(services), they only occur together in one third (one sixth) of the observations. This suggests 

that firms do not view these types of innovation as the same thing. In addition, the correlation 
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types, we see that a clear relation between productivity and a specific type of innova-

tion or the number of innovations cannot be deduced. Nor do these figures reveal a 

correlation between R&D or ICT with firm performance. 

 

5. Results 
In this section, the estimation results of the augmented CDM model are presented. 

Since one may expect that the importance of innovation modes can differ between 

industries, we present the estimation results separately for manufacturing and ser-

vices.13

 

5.1. Innovation input 
Table 3a presents the estimation results for the R&D – (1) and (3) – and ICT – (2) 

and (4) – equations. Marginal effects are reported. For example, the marginal effect 

of belonging to a group on R&D intensity in manufacturing is 0.166, so (the log of 

the) R&D intensity is 16.6% higher when a firm is part of a group than if not..All vari-

ables are significant without many differences in the results by sector, the only ex-

ception being the dummy for being part of a group and some of the dummies for fi-

nancial support. EU funding is insignificant in the ICT equations, and national funding 

only marginally significant. Local funding does not seem to play a role for both the 

R&D and ICT decisions. The finding that financial support for innovation is less im-

portant for ICT, suggests that firms invest in ICT for more than reasons of innovation 

alone. This can be understood by the fact that ICT is an instance of a ‘general pur-

pose technology’, and innovation support is not needed to motivate ICT investment. 

                                                                                                                                                                     

in the CIS sample between process and organizational innovation is 0.27, which is in fact 

lower than the correlations between product and process and between product and organiza-

tional innovation. Finally, some care has been taken in the survey to caution the respondents 

not to include organizational changes in the question on process innovation (the closing sen-

tence of the question reads “Exclude purely organizational innovations”).  
13 Industry differences may also be present within manufacturing and services. As far as this 

concerns industry specific averages, those are controlled for by industry dummies. Due to the 

smaller number of observations it is not possible to allow for varying effects of the variables 

of interest for the different sub-industries. 
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Moreover, ICT can be bought easily, and is less plagued by uncertainty and less 

than R&D subject to a market failure for financing because of asymmetric informa-

tion.  

The positive sign of the indicator for being part of a group in manufacturing could 

reflect that those firms may benefit from better internal access to finance, knowledge, 

or other synergies that facilitate the possibility to perform R&D or to invest in ICT. 

However, in services being part of a group has no effect on R&D. Firms that cooper-

ate on innovation do more R&D. We also find that firms are likely to spend more on 

ICT when cooperating on innovation activities, which can be understood by the fact 

that communication possibilities are vital in this case. In addition, we find a positive 

sign of the indicator for foreign activities, which reflects that competing in a foreign 

market requires firms to be innovative and, because trading partners are located at a 

greater distance, communication possibilities become more important.14 Finally, we 

find that overall a higher size is associated with lower R&D and ICT intensities. 

 

                                                      
14 Vice versa, innovative firms may be more likely to enter into foreign markets, receive 

funding, et cetera, so that one should be careful with drawing conclusions about causality. 

This also raises the issue of whether the indicators could be endogenous to R&D and/or ICT. 

We do not pursue this possibility here however, so by assumption, the variables are consid-

ered to be exogenous. 
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5.2. Innovation output 
Results for the knowledge production function are reported in table 3b. The indica-

tors for knowledge are the binary variables indicating whether a firm had a particular 

type of innovation in a certain year. The three-equation system is estimated as a tri-

variate probit, accounting for the mutual dependence of the error terms.15 R&D and 

ICT investment are replaced by their predictions based on equation (2) and (4), also 

for firms having missing or zero values for these variables, reflecting that those firms 

may well have innovation input (i.e. R&D and ICT input are considered to be latent). 

The use of predicted variables makes the usual standard errors invalid. Therefore, 

we also report bootstrapped standard errors and use them to judge the significance 

of the estimated coefficients.16 We find that for the predicted variables in the knowl-

edge production equation the bootstrapped standard errors are substantially larger 

than the usual standard errors. For the other control variables this is not the case. 

The results reported in table 3b are the marginal effects on the probability of per-

forming the pertinent innovation. For example, if in services (log) ICT investment in-

creases by 1%, the probability of a process innovation increases by 0.41%. The cor-

responding standard errors are calculated by bootstrapping. The technical details of 

these calculations are described in Appendix A.17  

In line with most of the CDM literature, we find that R&D contributes positively to 

product innovation in manufacturing. By contrast, it is unimportant for product inno-

                                                      
15 The estimation routine is adopted from the Stata program by Antoine Terracol. We set the 

number of draws for the maximum likelihood simulator (‘GHK’, Geweke-Hajivassiliou-

Keane) to 50. Experimentation with setting the number of draws to 25 and 100 gives ap-

proximately the same results.  
16 In the bootstrap procedures (both for the innovation output equation as for the production 

function below) we use 100 replications. Since each replication of the bootstrap uses a differ-

ent sample, and therefore each replication requires the construction of new predictions for 

innovation inputs, the estimation of the innovation input equations is included in the boot-

strap procedure.  
17 Another set of potentially interesting results are the effects on the latent innovation output 

variables in the equations (5a)-(5c). These can be found in an earlier discussion paper (Polder 

et al. 2009). 
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vation in services, and for process and organizational innovation in both sectors. 

Thus, R&D appears to be mainly devoted to developing new and improving existing 

products in manufacturing, but we find no evidence that these efforts spill over to 

other innovation types in this sector. 

On the other hand, ICT investment is important for all types of innovation in services, 

while it plays a limited role in manufacturing, being only significant at 10% for organ-

izational innovation.18 The broadband intensity of a firm seems to make a significant 

difference in both sectors. Broadband access allows firms to quickly share and ob-

tain information from other agents in the firm’s network; following Eurostat (2008) it is 

seen as an indicator of how advanced the ICT infrastructure of a firm is. In our re-

sults it positively affects product as well as organizational innovation in manufactur-

ing, and all types of innovation in services.  

As in Eurostat (2008), the e-commerce variables are seen as indicators of how a firm 

actually uses its ICT infrastructure for selling goods and services in the case of e-

sales, and for purchasing inputs in the case of e-purchases. In manufacturing, both 

electronic sales and purchases seem to matter only for process innovation, which 

could point at the integration of sales and purchases activities into the logistics 

and/or supporting activities of firms. In services, all types of innovation are positively 

affected by more e-purchasing, although only marginally in the case of process and 

organizational innovation, while product innovation is the only one that also benefits 

from a higher intensity of e-sales.19 The fact that access to broadband is significant 

                                                      
18 One could also argue that ICT investment and R&D interact in the innovation process. That 

is, the combined application of R&D and ICT helps innovation. We tested this by adding an 

interaction term of (predicted) R&D and ICT investment to the innovation output equation. 

The results (not reported, but available upon request) showed no evidence of the significance 

of such an interaction, both for manufacturing and services. Moreover, it was reassuring that 

the results for the separate R&D and ICT variables remained close to the ones obtained 

above. 
19 Van Leeuwen and Farooqui (2008) find a positive effect of e-sales on product innovation, 

making no distinction between manufacturing and services. Our results suggest that this over-

all positive effect of e-sales is due to the higher proportion of the service firms in their sam-

ple. 
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in most cases, even in the presence of the e-commerce variables, indicates that the 

importance of broadband goes beyond its use in e-commerce. 

The results with respect to the ICT variables confirm recent findings that ICT is an 

important enabler of capturing and processing knowledge in the innovation through-

put stage. In addition, the industry differences demonstrate that ICT in general, and 

relatively new ICT applications such as broadband connectivity and e-commerce in 

particular, are more important in services than in manufacturing. 

 

5.3. Productivity 
Finally, we present the estimates for the production function. We use value added 

over employment as the dependent variable. Controlling for capital intensity and firm 

size using data from the PS, the estimated effects can be interpreted as TFP effects. 

Firstly, the OLS estimation results are given for the model as discussed above where 

the knowledge production function consists of a trivariate probit. Subsequently, to be 

able to focus on the contribution of organizational innovation, we also present the 

results of a model with only product and process innovation. For all sets of results we 

report the normal standard errors as well as standard errors based on bootstrapping, 

where the latter account for the fact that predicted values are used for the propensi-

ties.20 It turns out that the differences between both sets of standard errors for the 

production function are small for this equation. 

Table 3c presents the OLS estimation results for the model with three innovation 

types. The most striking aspect is that in both sectors the combinations of innova-

tions that contribute significantly to a higher productivity all involve organizational 

innovation: organizational innovation only, process combined with organizational in-

novation, and the combination of all types of innovation. By contrast, the combination 

of product and process innovation in services is associated with a lower productivity. 

It can be argued that this combination initially has a disruptive effect but may lead to 

productivity gains in subsequent periods, but can also be indicative of a negative 

effect of technological innovation that is not adequately supported by a change in the 

                                                      
20 To be able to construct new predictions for innovation input and output, the entire model is 

re-estimated in each bootstrap replication (see also footnote 16). 
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organization of a firm.21 Overall, we see that combinations with product and process 

innovation do not have a positive effect on productivity when performed in isolation 

or jointly, but do have a positive effect when combined with an organizational innova-

tion. This finding is consistent with the idea of possible complementarities between 

technological and organizational innovation. We test this hypothesis formally in the 

next subsection. 

Capital intensity (proxied by depreciation per fte) is positive and significant for both 

sectors. The coefficient on labor, which measures the deviation from constant re-

turns to scale in this specification,22 is insignificant for manufacturing but significantly 

negative for services. This indicates substantial decreasing returns to scale in this 

sector. This can be explained by a typical feature of services. This industry consists 

of many small firms operating on suboptimal scales. Kox et al. (2007) show that 

scale economies in services are very local and that productivity in services across 

size classes is hump-shaped with increasing economies of scale for small firms and 

decreasing economies of scale for large firms. Although we control in our model for 

size related selectivity, it cannot be circumvented that the linking of various data 

sources leads to the under-representation of small firms, especially in services. 

Thus, having relatively more large firms in the matched samples may explain the 

negative estimate for the returns to scale parameter in services.23

                                                      
21 Testing for a lagged positive effect of technological innovation on productivity requires the 

introduction of dynamics in our model, which is beyond the scope of our current investiga-

tion. 
22 Starting with the Cobb-Douglas function for value added we have, VA = A⋅KαLβ, and our 

specification is a rewritten version of this, i.e. VA/L = A(K/L)αLα+β−1. Thus, constant returns 

to scale (α + β = 1) would imply the coefficient on labor to be zero in our specification. 
23 In this paper we argue that R&D and ICT are inputs in the innovation process of a firm, 

and not in the production process. Accordingly, R&D and ICT investment are absent from the 

production function, and their effect on productivity is only indirect via the innovation output 

variables. With respect to R&D, the model structure where innovation input leads to innova-

tion output which ultimately leads to productivity gains (without a direct effect of R&D) is 

well established, see e.g. Crépon et al. (1998). To test whether the input variables have a di-

rect effect on productivity, besides their indirect effect via innovation output, we also esti-

17 



The effects of innovation are much larger in services. For example, interpreting the 

coefficients as semielasticities, an increase of 1 percentage point (+0.01) in the pro-

pensity of introducing a process together with an organizational innovation 

(TP(0,1,1)), increases productivity by about 17% in services. However, this interpre-

tation does not take into the account the differences in the means of the propensities 

and their standard deviations. These are presented in table 3d. Notice that the 

smaller groups get a lower propensity. From the standard deviations reported we see 

that a 0.01 percentage point change is relatively big for, say, TP(0,1,1) compared to 

for example TP(0,0,1). An increase of a single standard deviation would thus lead to 

an increase of respectively 4.345×0.061 = 26.3% for TP(0,0,1) and 17.114×0.013 = 

22.1% for TP(0,1,1) in services. 

In addition, it is in this context illustrative to look at the contribution of innovation to 

productivity. In table 3d we decompose (average) productivity into the contributions 

of each of the explanatory variables in the productivity equation. There are two major 

components, namely the contribution of the factors of production (capital and labor) 

and TFP. TFP can be broken down into a reference part (containing the constant 

plus industry and time dummies), and innovation (containing the propensities). The 

contribution of each of the variables to productivity is its estimated coefficient times 

its average. The biggest contributions from innovation in manufacturing come from 

TP(0,0,1) and TP(1,1,1). In total, the share of innovation in TFP is about 10% in this 

sector. With almost 21%, this share is much higher in services. The strongest contri-

butions from innovation come again from TP(0,0,1) and TP(1,1,1), extended with 

TP(0,1,1). Although the latter category has the largest coefficient, its contribution to 

TFP ranks second, due to the lower average propensities.  

Relating our results to the existing literature on the effects of product and process 

innovation (see section 2), we find that the latter types of innovation increase produc-

tivity significantly only when accompanied by an organizational innovation. The 

                                                                                                                                                                     

mated the production function including (predicted) R&D and ICT intensity as explanatory 

variables. In both the manufacturing and services sector the direct effects of both input vari-

ables turn out insignificant, while the pattern of significance in the innovation modes combi-

nation dummies is largely maintained. Thus, there is no evidence for an effect on productivity 

of R&D and ICT, besides the indirect effect via innovation. 
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omission of non-technological innovation in existing studies is therefore a possible 

explanation for the varying results with respect to the effect of different types of inno-

vation on productivity. To reinforce this point, we re-estimated the model excluding 

organizational innovation, specifying the knowledge production equation as a bivari-

ate probit. The results for both sectors are reported in table 3e. They show that the 

combination of product and process innovation increases TFP significantly in manu-

facturing but not in services. However, when we confront these results with those of 

table 3c, we realize that in manufacturing the positive effect of the combination of 

product and process innovation only occurs in the presence of organizational innova-

tion (the effect of TP(1,1,0) being non-significant), whereas in services the insignifi-

cant effect of the combination of product and process innovation could be due to the 

mixture of the significant positive effect in the presence of organizational innovation 

and the significant negative effect in the absence of organizational innovation. These 

contrasting results show that leaving out organizational innovation from the analysis 

can lead to different (possibly misleading) conclusions about the contribution of 

product and process innovation to productivity.24

 

5.4. Robustness checks 
5.4.1. Endogeneity and selectivity bias in the production function 

To investigate the robustness of our results with respect to potential bias due to se-

lection effects and the endogeneity of the capital variable, we estimated the produc-

tivity equation with the Olley and Pakes (1996) estimation algorithm.25 The results 

are presented in table 4. The main findings on the effects of innovation modes on 

                                                      
24 Note that it is difficult to compare the results of the two models directly since the coeffi-

cients of the innovation combination dummies are with respect to different reference catego-

ries (BP(0,0) includes both the reference category in the three innovation type model 

TP(0,0,0), as well as TP(0,0,1)). Moreover, the predictions for the innovation output variables 

are based on a different knowledge production function. 
25 We use the Olley-Pakes estimation package for Stata, see Yasar et al. (2008). We use val-

ue-added instead of gross output. We do not include the age of a firm, but we have the inno-

vation combination dummies as additional variables. As a proxy for the unobserved produc-

tivity we use a second-order polynomial in investment and the capital-labor ratio. 
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productivity are maintained when the Olley-Pakes method is used for estimation of 

the production function. The only differences in significance with respect to the OLS 

estimation results reported in table 3c are the insignificance at the 10% level of the 

combination of process and organizational innovation in manufacturing, and the sig-

nificance of the positive effect of product and organizational innovation in this sector. 

The combinations that have a positive effect on productivity all involve organizational 

innovation as in table 3c. Overall, the estimated effects are larger in magnitude than 

in the case of the OLS results. Although the effects in manufacturing have increased 

more with respect to table 3c, the strongest effects are still in services.  The capital 

coefficient is somewhat lower than before in both sectors, which contrasts with the 

findings by Olley and Pakes. This could be due to the smaller samples compared to 

the OLS estimation, due to the need to link with the investment survey. Finally, while 

we still find decreasing returns to scale in services, it is much less pronounced com-

pared to the results in table 3c. 

 

5.4.2. Degree of product innovation 

A product innovation is in general defined as a good or service that is new for the 

firm that produces it. There is therefore no distinction in the degree of novelty of an 

innovation. For product innovation we can make this distinction by using the informa-

tion on whether an innovation is new to the market or not. It can be argued that firms 

that develop a highly innovative product generate a higher competitive advantage 

than firms adapting new products that already exist, resulting in a higher level of pro-

ductivity. Such a distinction could possibly have an impact on the allocation of the 

contribution of each of the innovation types to productivity, because firms with new-

to-firm innovations move to different combinations. We therefore re-estimate the 

model narrowing the definition of product innovation by requiring that it is new to the 

market. The results for the productivity equation are reported in table 5.26 The only 

two significant coefficients are those related to organizational innovation by itself or 

                                                      
26 The change in the definition of product innovation does not affect the innovation input eq-

uations. The innovation output equation is altered because the dummy for product innovation 

is adjusted. The estimation results for the latter do not change in a qualitative way; they are 

available upon request. 

20 



in combination with product and process innovation, in both manufacturing and ser-

vices. All other innovation mode combinations are insignificant at the 10% level. The 

coefficients of the significant combinations are in line with table 3c, but the combina-

tion with the highest coefficient in services in that table - TP(0,1,1) - is now insignifi-

cant and the negative effect of TP(1,1,0) becomes insignificant. Both combinations 

contain relatively few observations, which could explain their sensitivity to a change 

in the definition of product innovation. 

 

5.4.3. Robustness to the lagging of innovation input variables 

The structure of the data implies that we are relating innovation output over a three-

year period (t−2 to t) to R&D and ICT investment from one year (year t). An implicit 

assumption in our analysis is that the R&D and ICT investment in year t is indicative 

for these investments over the entire period. The main advantage of this approach is 

that we maximize the number of firms in the analysis. Due to the loss of data, it is not 

possible to construct aggregate investment over t−2 to t and relate these total in-

vestments over the whole period to innovation output. However, to see whether the 

results are sensitive to our timing assumptions we re-estimate the model using ‘mid-

period’ (i.e. t−1) values for the innovation inputs. For information on the mid-period 

R&D investments we make use of the biannual R&D survey that is carried out in be-

tween two editions of the CIS (i.e. each odd year). This survey only contains R&D 

performers, detected in the previous CIS (year t-2), although zeroes may occur for 

R&D. The Heckman equations (1) and (3) are estimated with t-1 values for R&D. The 

selection variable applies to whether a firm reported R&D in the R&D survey or not. 

The explanatory variables are the same as before. Next, we construct predictions for 

year t-1 R&D in the same way as before, and in the same fashion, we also predict 

mid-period ICT investment.27 Mid-period broadband intensity and e-commerce vari-

ables can be taken from the year t-1 ICT survey. 

The results for the innovation output equation and the production function are re-

ported in the tables 6a and 6b. In the innovation output equation, we find stronger 

effects of R&D in manufacturing than before, whereas ICT investment is now insig-

nificant or has a negative impact. These findings could relate to the fact that the pre-

                                                      
27 The estimation results for the adjusted R&D and ICT equations are available upon request. 
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dictions for R&D are now based solely on R&D performers (i.e. firms in the R&D sur-

vey). This could lead to an overstatement of the relevance of R&D. By consequence, 

the negative coefficient on ICT investment could be the result of a compensation for 

this overstatement. Nevertheless, the pattern of significance for the broadband in-

tensity and e-commerce does not vary much from table 3b, with broadband positively 

affecting the probabilities for a product and organizational innovation and e-

purchases increasing the probability of a process innovation. 

The results for the knowledge production function in the services sector are similar 

as before, although the role of broadband and e-commerce is slightly lower, which 

could be due to the lower number of observations.  

The results for the productivity equation, once more, remain largely the same, espe-

cially in services, although there are some changes in the magnitudes of the esti-

mated effects. In table 6b, we see that in manufacturing the main change is that a 

process innovation by itself and a process innovation combined with a product inno-

vation have a significantly negative effect in this specification. As before, however, in 

both sectors, only combinations with organizational innovation have a positive effect 

on productivity. 

 

5.5. Testing for complementarity and substitutability of innovation modes 
It is possible to test formally the complementarity and substitutability between the 

different innovation modes. Following the approach taken by Mohnen and Röller 

(2005) we apply a test for super- and submodularity of the production function. If the 

production function is supermodular with respect to a combination of innovation 

modes, this is evidence of the complementarity of these modes. In the case of sub-

modularity, the modes are substitutes.  

Let Ij denote a possible combination of innovation modes, where j = 1,…,8 since 

there are three innovation modes. Note that if Ij = 1 ⇒ Ik ≠ j = 0. We will use the short-

hand f(Ij) to denote the value of the production function when Ij = 1.28 Supermodular-

ity is then defined as 

 )()()()( kjkjkj IIfIIfIfIf ∧+∨≤+  ∀j, k, 

                                                      
28 Note that the contribution of additional variables in the production function cancels out in 

the inequalities, so that they can be excluded from the exposition. 
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and likewise, submodularity is defined as 

 )()()()( kjkjkj IIfIIfIfIf ∧+∨≥+  ∀j, k, 

where ∨ is the componentwise maximum of Ij and Ik, and ∧ the componentwise 

minimum. We do not need all these inequalities. To test the complementarity be-

tween two innovation modes, we only need to make pairwise comparisons keeping 

the third mode constant. In addition, some inequalities are trivial. For example, for Ij 

= (0,0,0) and Ik = (1,1,0)  we have 

 f(0,0,0) + f(1,1,0) < f(1,1,0) + f(0,0,0). 

Only the combinations where the minimum and maximum operators lead to different 

combinations than the left-hand side are non-trivial. Thus, combination Ij should have 

at least one element that is smaller than the corresponding element in Ik, and at least 

one element should be bigger (i.e. at least one innovation mode should occur in Ij but 

not in Ik and vice versa). For testing the complementarity between, for example, 

product and process innovation we therefore have Ij = (0,1,X) and Ik = (1,0,X), with X 

= {0,1}, and the inequality restrictions are: 

 f(0,1,0) + f(1,0,0) < f(1,1,0) + f(0,0,0) ⇔ β010 + β100 − β110 − β000 < 0 

 f(0,1,1) + f(1,0,1) < f(1,1,1) + f(0,0,1) ⇔ β011 + β101 − β111 − β001 < 0 

Similarly, for the other two pairwise comparisons we have: 

 product-organizational innovation  

 f(0,0,1) + f(1,0,0) < f(1,0,1) + f(0,0,0) 

 f(0,1,1) + f(1,1,0) < f(1,1,1) + f(0,1,0) 

 process-organizational innovation 

 f(0,0,1) + f(0,1,0) < f(0,1,1) + f(0,0,0) 

 f(1,0,1) + f(1,1,0) < f(1,1,1) + f(1,0,0) 

with similarly straightforward translations into the estimated regression coefficients. 

The inequalities for submodularity are easily obtained by replacing ‘≤’ with ‘≥’. 

Kodde and Palm (1986) derive a Wald test-statistic for testing these inequalities for 

regression coefficients. Let γ = (β000, β001, β010, β011, β100, β101, β110, β111)′, the coeffi-
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cients on the dummies for innovation mode combinations in the augmented produc-

tion function. The test statistic is given by29

 )ˆ~())ˆcov(()ˆ~( 1 γγγγγ SSSSSSD −′′−= −  

where 

 )ˆ(])ˆcov([)ˆ(minarg~ 1 γγγγγγ SSSSSS −′′−= −  s.t. Sγ < 0 

where γ̂  the OLS estimate of γ, cov( γ̂ ) is the estimated covariance matrix of γ, and S 

is a matrix that maps the coefficients into the constraints derived above.30 For exam-

ple, if one wants to test jointly the constraints associated with complementarity for 

product and process innovation,31
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The covariance matrix can be estimated from the OLS results. The interpretation of 

γ~  is that it is the coefficient, which is as close as possible to the OLS estimates un-

der the restrictions reflected in S. We use quadratic minimization under inequality 

constraints in MATLAB to calculate γ~ . Critical values for the test statistic D can be 

found in Kodde and Palm.32  

Table 7 gives the results for the super- and submodularity tests for the baseline 

model as well as for the specifications used for the robustness analyses. Comple-

mentarity is accepted for product and process innovation in both sectors in all vari-

ants; substitutability of these types is rejected in most cases, although in some cases 

                                                      
29 Cf. (2.16) op. cit. Note that since we do not have equality constraints, there is no need to 

subscript the parameter vector and covariance matrix, and the equation reduces to the given 

expression. 
30 Equivalently, let h(β) denote the vector of restrictions, such that H0: h(β) < 0 and H1: h(β) 

> 0 (i.e. in the restrictions above, bring all terms to the left-hand side). As in the notation of 

Kodde and Palm, S = ∂h/∂β, a derivative matrix which consists only of elements -1, 0, and 1. 
31 Note that for testing submodularity the matrix is −S. 
32 For the lower bound of the test statistic, the number of degrees of freedom (dfLB) equals the 

number of equality constraints plus 1, and the number of degrees of freedom for the upper 

bound (dfUB) equals the total number of constraints. Since we have two inequality constraints, 

and no equality constraints, dfLB = 1 and dfUB = 2. 
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the test is inconclusive at 5 or 10% and H0 is accepted at 1%. Product and organiza-

tional innovation appear to be substitutes in both sectors, as substitutability is ac-

cepted in all cases. Complementarity is rejected in nearly all cases, although in the 

case where product innovation is new to the market in manufacturing it is still ac-

cepted at 1%, while the test result turns to inconclusive at lower significance levels. 

Process and organizational innovation are found to be complements, with comple-

mentarity being accepted in all variants for both sectors. However, the strength of 

this result is slightly qualified by the fact that substitutability is also accepted in some 

of the alternative specifications (Olley-Pakes and product innovation new-to-market).  

In summary, we find evidence for the substitutability of organizational innovation and 

product innovation, and complementarity of product and process innovation. Process 

and organizational innovation are complements in the baseline model, but in some 

alternative specifications substitutability cannot be rejected. Note that the test gives a 

statistical verdict on the loss or gain in productivity derived from performing two types 

of innovation jointly. The test does not provide a statement on which type is ‘better’. 

When we find that two types are substitutable, it does not mean that they are inter-

changeable. For example, we find that product and organizational innovation are 

substitutes, but from table 3c we see that the highest productivity gains are derived 

from the latter. The outcome of the test means that, on average, the combinations 

where product and organizational do not occur together have a higher productivity 

than the combinations where they do occur together. Looking at table 3c, this can be 

understood from the fact that organizational innovation without product innovation 

(i.e. the combinations TP(0,0,1) and TP(0,1,1)) has strong positive effects.  

 

6. Conclusions and further research 
In this paper, we investigate the relation between innovation and productivity, com-

bining insights from the literature on R&D driven technological innovation and that on 

non-technological innovation complemented by ICT. The standard CDM framework 

is extended to include investment in ICT as an endogenous input into innovation next 

to R&D, and process and organizational innovation as innovation output next to 

product innovation. Including ICT investment reflects the idea that it is an enabler of 

innovation success, and thus a determinant of innovation output. Extending the 

model with process and organizational innovation reflects that productivity gains are 

not solely achieved by product innovation. Lacking continuous measures for the out-
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put of process and organizational innovation, innovation output is measured by di-

chotomous variables reflecting whether a firm performed a particular type of innova-

tion or not.  

We reach a number of interesting conclusions. R&D drives the output of product in-

novation in the manufacturing sector. There is also evidence for a positive effect on 

process and organizational innovation in this sector when using mid-period values. 

By contrast, in the services sector there is no evidence for an effect of R&D on any 

of the innovation types considered. Using R&D as a measure of innovation, as en-

countered frequently in the literature, is probably most appropriate in manufacturing 

where it has the strongest effects on product innovation. 

ICT is most important for innovation success in the services sector. ICT investment, 

the use of broadband, and doing e-commerce, positively affect all three types of in-

novation in this sector. For manufacturing, ICT seems less important, although ICT 

investment and broadband use are still important drivers of organizational innovation 

in this sector. Broadband use also positively affects product innovation in manufac-

turing, and e-commerce is positively related to process innovation. 

Organizational innovation is the only innovation type that leads to higher contempo-

raneous TFP levels. Product and process innovation only lead to higher TFP when 

performed in combination with an organizational innovation. This is true for both sec-

tors, though we find stronger effects in services. 

Testing for complementarity and substitutability shows that organizational and prod-

uct innovations are substitutes. While their combination without organizational inno-

vation does not lead to significantly higher productivity, product and process innova-

tion are complements. Organizational innovation and process innovation are found to 

be complements, although in some non-baseline variants both complementarity and 

substitutability are accepted. 

All in all, our results say that product and process innovations do not have a positive 

effect without organizational innovation. Moreover, in both sectors ICT investment 

and application are found to be important drivers of organizational innovation. The 

pattern of significance of each of the combinations does not vary much between the 

sectors. The magnitude of the estimated effects does differ, however, with stronger 

effects found in services. These results stress the importance of ICT for the innova-

tion process, and the complementarity of ICT-enabled non-technological innovation 

to pure technological innovation. Our findings put into perspective existing work on 
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productivity effects of innovation not taking into account non-technological innovation 

and/or focusing on R&D inputs only, without considering ICT. 

Our results can also be related to findings at a higher aggregation level. Within the 

macroeconomic literature there is a longstanding debate on the causes of higher 

economic growth and the growth of productivity in the United States over the last two 

decades compared to the rest of the world, in particular the European Union (see 

e.g. van Ark et al. 2008, and Jorgenson et al. 2008). The most common explanation 

of this phenomenon is that the US have been more successful in investing and im-

plementing new information and communication related technologies. Macroeco-

nomic figures show that the European Union is behind in terms of the contribution to 

economic growth of ICT producing and using sectors (mainly market services) and of 

components related to the knowledge economy (quality of labor, ICT capital, and 

technological change). Our results connect and reinforce these observations since 

they provide evidence that ICT inputs indeed lead to productivity differences at the 

micro-level via its impact on innovation, in particular changes in organization. This 

also corroborates findings of Bloom and Van Reenen (2007) who present evidence 

that US firms are on average better managed than European firms.33  

There are a number of issues that deserve further research. Firstly, since we have 

available various waves of the CIS, it is possible to introduce firm-specific effects. 

Among other things, this may make the results more robust to omitted variables and 

various other sources of bias (provided they are approximately time-invariant). This 

would severely complicate the estimation of the discrete trivariate knowledge equa-

tion. In addition, it is possible to investigate dynamics. For example, current R&D 

expenditures may lead to innovation only after a period of time. Likewise, innovation 

may not immediately materialize into productivity gains. However, the introduction of 

feedback and/or autoregressive effects, especially in combination with fixed effects, 

is an econometrically challenging extension (e.g. Raymond et al. 2010). Finally, we 

did not have the availability over data about worker skills. The availability of such a 

                                                      
33 Since Bloom and Van Reenen relate their findings to product market competition and fam-

ily ownership of the firm, it would be an interesting extension of our model to include these 

variables into the ICT input equation.  
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variable would certainly be interesting, especially in the light of the complementarity 

of worker skills and ICT as in, for example, Bresnahan et al. (2002). 
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Appendix A. Calculation of the marginal effects and their standard errors in the 
Tripobit model 
This appendix describes the calculation of the marginal effects and their standard 

errors presented in tables 3b and 6a. The estimation of the trivariate probit is done 

by maximum simulated likelihood taking the correlation between the error terms in 

the three equations into account. However, when computing the marginal effects of 

the explanatory variables on the three innovations individually we need not account 

for these correlation coefficients and proceed as if we had three separate probits. 

Restricting the discussion to the marginal effects (ME) of the five continuous regres-

sors (R&D per fte, ICT per fte, broadband intensity, e-purchases and e-sales), the 

marginal effect of the variable xi (i = 1,…,5) on innovation type k ∈ {pdt,pcs,org} is 

given by 

(A1) k
i

k

i

k

i

k
i x

x
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x
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where MEi
k is evaluated in the mean value of the regressors x .34 The standard er-

rors can be obtained by bootstrapping simultaneously over the sample averages for 

the regressors and the parameters in (A1). In this case, (A1) is evaluated in each of 

the B iterations. The standard deviation of the B outcomes for (A1) can then be used 

as the standard error of the pertinent marginal effect. As the bootstrapping of the 

standard errors in this approach is incorporated in the bootstrapping of the full inno-

vation model, the algorithm for calculating marginal effects and their standard errors 

can be summarized as follows: 

[1] Set iteration counter b = 1; 

[2] Bootstrap the data; 

[3] Use the bootstrapped data to maximize the log-likelihood function for the 

Heckman model for R&D per fte (in logs) and compute predicted values for 

R&D per fte (in logs); 

                                                      
34 Alternatively, the marginal effects could be calculated in each data point and then averaged 

afterwards. 

32 



[4] Use the same bootstrapped data to maximize the log-likelihood function for the 

Heckman model for ICT investment per fte (in logs) and compute predicted val-

ues for ICT per fte (in logs); 

[5] Use the same bootstrapped data to maximize the log-likelihood function for the 

trivariate probit model with endogenous R&D and ICT inputs (per fte) replaced 

by the predictions of steps [3] and [4];  

[6] Calculate (for the same bootstrapped data) the mean value for all regressors 

used in the trivariate probit model. These regressors are the same for each in-

novation mode (equation); 

[7] Capture the parameters of the trivariate probit model estimated in [5];  

[8] For each continuous regressor i, evaluate (A1) for each k, using the results of 

steps [6] and [7] and store the results as ; k
ibME

[9] Increment b by one; 

[10] Repeat steps [2] – [9] B times.  

 

After completion of the bootstrap procedure, the bootstrapped standard errors of the 

marginal effects can be constructed as follows from the stored B bootstrap results: 
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In our implementation we have set B = 100. 
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Table 1. Summary statistics (2002-2006) 

sample: CIS CIS∩IS CIS∩ICT 
CIS∩ICT∩P

S 

Manufacturing 
mea

n
N

mea

n
N

mea

n 
N 

mea

n
N

Belonging to a group (%) 0.612 8537 0.638 7474 0.699 2845 0.746 2217

Main market: international (%) 0.573 8537 0.591 7474 0.608 2845 0.639 2217

Cooperation for innovation (%) 0.248 8537 0.258 7474 0.318 2845 0.352 2217

Local funding for innovation (%) 0.035 8537 0.035 7474 0.037 2845 0.039 2217

National funding for innovation (%) 0.195 8537 0.202 7474 0.243 2845 0.267 2217

EU funding for innovation (%) 0.035 8537 0.033 7474 0.045 2845 0.049 2217

Broadband enabled workers (%) 0.370 2725 0.374 2569 0.370 2725 0.388 2115

E-purchases (%) 0.030 2575 0.029 2432 0.030 2575 0.030 1993

E-sales (%) 0.059 2845 0.060 2677 0.059 2845 0.063 2217

R&D expenditures per fte (1000s €) 5.242 4411 4.395 3982 5.727 1672 5.538 1412

ICT investment per fte (1000s €) 0.419 7471 0.419 7471 0.448 2677 0.485 2145

Employment (CIS, fte) 172.51 8537 170.32 7474 244.46 2845 236.52 2217

Employment (PS, fte) 153.91 5734 159.73 5376 220.37 2217 220.37 2217

Value added per fte (1000s €) 67.683 5734 64.862 5376 68.882 2217 68.882 2217

Services mean N mean N mean N mean N

Belonging to a group (%) 0.527 18466 0.558 14320 0.570 5537 0.613 3602

Main market: international (%) 0.272 18466 0.290 14320 0.245 5537 0.284 3602

Cooperation for innovation (%) 0.103 18466 0.106 14320 0.135 5537 0.139 3602

Local funding for innovation (%) 0.010 18466 0.009 14320 0.014 5537 0.012 3602

National funding for innovation (%) 0.038 18466 0.039 14320 0.044 5537 0.047 3602

EU funding for innovation (%) 0.010 18466 0.010 14320 0.014 5537 0.015 3602

Broadband enabled workers (%) 0.517 5378 0.498 4476 0.517 5378 0.506 3483

E-purchases (%) 0.061 5143 0.065 4275 0.061 5143 0.069 3319

E-sales (%) 0.049 5302 0.050 4616 0.049 5302 0.053 3602

R&D expenditures per fte (1000s €) 3.335 4784 2.980 3764 3.355 1722 3.367 1151

ICT investment per fte (1000s €) 0.890 14294 0.890 14294 0.792 4615 0.789 3389

Employment (CIS, fte) 166.51 18260 175.42 14201 257.58 5425 293.37 3588

Employment (PS, fte) 152.87 11024 160.84 9983 226.19 3602 226.19 3602
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Value added per fte (1000s €) 74.924 11024 76.019 9983 78.005 3602 78.005 3602

CIS: Innovation Survey, ICT: ICT Survey, IS: Investment Statistics, PS: Production 

Statistics. 
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Table 2. Summary statistics by combination of innovation types, 2002-2006. 

 manufacturing services 

 Na Nb R&Dc  ICTc VAc  Na Nb R&Dc  ICTc VAc  

000d 0.43 0.35 2.173 0.481 67.79 0.64 0.58 1.987 0.469 78.78

001d 0.11 0.09 9.570 0.503 66.11 0.16 0.16 0.490 0.695 86.12

010 0.04 0.03 4.497 0.423 81.46 0.02 0.02 0.762 0.910 71.64

011 0.03 0.03 0.555 0.491 69.50 0.01 0.01 0.570 0.408 55.38

100 0.10 0.11 4.675 0.521 64.46 0.05 0.07 4.021 1.165 73.75

101 0.07 0.08 5.391 0.512 75.10 0.06 0.07 3.129 0.839 68.75

110 0.09 0.12 5.979 0.474 67.54 0.02 0.03 5.989 2.045 64.87

111 0.13 0.19 7.435 0.399 70.30 0.04 0.06 6.148 3.271 77.66

Triplets of innovation types organized according to (Product, Process, Organiza-

tional), with 1 = yes and 0 = no. 
a Percentage of CIS sample; number of observations is 8,537 for manufacturing and 

18,461 for services. 
b Percentage of production function sample (CIS ∩ ICT ∩ PS, number of observa-

tions is 1,987 for manufacturing and 3,298 for services). 
c Production function sample. In 1000s of euro per (full-time) employee. R&D refers 

to R&D performers only. 
d Note: R&D expenditures are only observed for the firms with ongoing/abandoned 

product or process innovation projects in these groups. 

 



Table 3a. Estimation results by industry for the R&D and ICT equations (marginal effects). 

 manufacturing services 

dep. variable  

(observations (cen-

sored/total)) 

R&D  

(5958/8536) 

ICT  

(2814/7474) 

R&D  

(16699/18375) 

ICT  

(5468/14299) 

 coeff se coeff se coeff se coeff se

Belonging to a group 
0.166

***

0.059 0.151
*** 0.03

9 0.041
 

0.076 0.136
***

0.032

Active on foreign market 

0.253
***

0.068 0.166
*** 0.04

3 0.341
***

0.081 0.318
***

0.034

Innovation cooperation 

0.432*** 0.051 0.228*** 0.04

4
0.247*** 0.073 0.479*** 0.046

Innovation funding local 
0.049 0.094 -0.038 0.08

8
0.132 0.158 0.030 0.128

 na-

tional 
0.424*** 0.056 0.090* 0.04

7
0.685*** 0.084 0.139* 0.074

 EU 
0.597*** 0.105 0.103 0.10

4
0.533*** 0.170 0.162 0.156

firm size (50-99 fte) 

-0.411*** 0.072 -0.172***

0.04

6 -0.426*** 0.095 -0.287*** 0.037

firm size (100-249 fte) -0.455*** 0.070 -0.310*** 0.05 -0.815*** 0.099 -0.406*** 0.041
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0

firm size (250-999 fte) 
-0.600*** 0.087 -0.453***

0.06

5 -1.178*** 0.118 -0.585*** 0.057

firm size (>1000 fte) 
-0.433** 0.180 -0.988***

0.14

5 -2.086*** 0.209 -1.148*** 0.119

regression error variance (σ) 1.436  1.237 1.981  1.430

ρ 0.639*** 0.316 0.748*** 0.241***

Dependent variables: log of R&D expenditures per full-time employee (R&D) and log of ICT investment per full-time 

employee (ICT). Estimation method is ML (type-II tobit). Marginal effects are reported (effect on dependent variable 

conditional on selection). All equations also include a constant, and industry and time dummies not reported. Firms with 

less than 50 employees are the reference for the size dummies. Standard errors are robust. Significance levels: *** = 

1%, ** = 5%, * = 10%. 
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Table 3b. Marginal effects continuous variables for the knowledge production function. 

 product innovation process innovation organizational innovation 

Manufacturing  (N = 

2574) ME se (bs) ME se (bs) ME se (bs)

R&Da 0.411**  0.172   0.215  0.141  -0.014  0.109

ICTa 0.409  0.497   0.491  0.416  0.577*  0.326

broadband intensityb 0.109**  0.049  -0.012   0.029  0.145***  0.027

e-purchasesc 0.042  0.140   0.159*  0.093   0.096  0.115

e-salesc 0.055  0.079   0.154***  0.046  -0.020  0.061

Services  (N = 4913)    

R&Da -0.209  0.254  -0.104  0.133  -0.166  0.175

ICTa 0.830***  0.240   0.411***  0.127  0.612***  0.168

broadband intensity 0.111***  0.017   0.030**  0.012  0.109***  0.026

e-purchases 0.100***  0.020   0.025*  0.015  0.090*    0.050

e-sales  0.082**  0.032   0.025   0.016  0.064  0.053
a Predicted investment in 1000 of euros per fte (logs). 
b Percentage of broadband enabled workers. 
c Percentage in total purchases/sales. 

Dependent variables: dummies for product, process and organizational innovation. All equations also include size, industry and 

year dummies that are not reported. Significance levels: *** = 1%, ** = 5%, * = 10%, based on bootstrapped standard errors. 

 

 



Table 3c. Estimation results by industry for the augmented production function. 

 
manufacturing (N = 

1992) 
services (N = 3319) 

 coeff se (bs) coeff se (bs)

Capital inten-

sity 
0.207*** 0.013 0.250*** 0.011

Employment -0.013 0.018 -0.233*** 0.014

TP(0,0,1) 1.654*** 0.491 4.345*** 0.571

TP(0,1,0) -0.905 1.100 -2.703 1.943

TP(0,1,1) 0.984* 0.537 17.114*** 2.213

TP(1,0,0) 0.468 0.300 0.808 1.275

TP(1,0,1) -0.015 0.455 -0.804 0.705

TP(1,1,0) -0.130 0.400 -8.327*** 1.262

TP(1,1,1) 0.891*** 0.193 3.932*** 0.459

R2 0.31 0.36 

All specifications include industry and time dummies. Dependent variable is log value 

added per fte. Capital intensity (depreciation per fte) and employment (fte) are in 

logs. Significance levels: *** = 1%, ** = 5%, * = 10%. TP refers to the combinations of 

innovation types: the combinations (0/1, 0/1, 0/1) reflect whether a firm has a prod-

uct, process and/or organizational innovation. The dummies for combinations of in-

novation types are replaced by predicted propensities from the trivariate probit 

knowledge production function. 
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Table 3d. Contributions to productivity. 
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Manufacturing     mean   

1 productivity    (2)+(3)+(4) 4.028   

  (A) (B)   (A)x(B)   

  coefficient mean std. dev. contribution std.dev.

2 

capital inten-

sity 0.207 1.691 1.044  0.349 0.216  

3 employment -0.013 4.569 1.232  -0.059 0.016  

4 TFP    (5) + (13) 3.738 0.191 % of (4)

5 innovation   

 sum (6) to 

(12) 0.369 0.127 0.099

6 TP(0,0,1) 1.654 0.105 0.058  0.173 0.095 0.046

7 TP(0,1,0) -0.905 0.039 0.023  -0.035 0.021 -0.009

8 TP(0,1,1) 0.984 0.031 0.024  0.030 0.023 0.008

9 TP(1,0,0) 0.468 0.113 0.055  0.053 0.026 0.014

10 TP(1,0,1) -0.015 0.077 0.051  -0.001 0.001 0.000

11 TP(1,1,0) -0.130 0.109 0.073  -0.014 0.009 -0.004

12 TP(1,1,1) 0.891 0.183 0.174  0.163 0.155 0.044

13 

reference (average of constant, industry, time and size dum-

mies) 3.369 0.136 0.901

Services     mean   

1 productivity    (2)+(3)+(4) 3.895   

  (A) (B)   (A)x(B)   

  coefficient mean std. dev. contribution std.dev.

2 

capital inten-

sity 0.250 1.086 1.233  0.272 0.308  

3 employment -0.233 4.274 1.464  -0.995 0.341  

4 TFP    (5) + (13) 4.618 0.405 % of (4)

5 innovation    

sum (6) to 

(12) 0.952 0.367 0.206

6 TP(0,0,1) 4.345 0.169 0.061  0.734 0.263 0.159

7 TP(0,1,0) -2.703 0.024 0.016  -0.064 0.044 -0.014

8 TP(0,1,1) 17.114 0.017 0.013  0.299 0.221 0.065

9 TP(1,0,0) 0.808 0.071 0.040  0.057 0.032 0.012

10 TP(1,0,1) -0.804 0.064 0.067  -0.051 0.054 -0.011

11 TP(1,1,0) -8.327 0.027 0.031  -0.221 0.259 -0.048

12 TP(1,1,1) 3.932 0.051 0.091  0.199 0.360 0.043

13 

reference (average of constant, industry, time and size dum-

mies) 3.666 0.110 0.794
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Table 3e. Estimation results for the augmented production function (two innovation 

types). 

 
manufacturing (N = 

1364) 
services (N = 1843) 

 coeff  se (bs) coeff  se (bs) 

Capital inten-

sity 
0.207*** 0.016 0.261*** 0.014

Employment 0.038** 0.017 -0.131*** 0.025

BP(0,1) 0.095 0.485 7.252*** 2.357

BP(1,0) -0.079 0.160 0.917*** 0.312

BP(1,1) 0.202*** 0.068 -0.033 0.285

R2 0.30 0.31 

BP denotes the cluster variables of the Bivariate Probit model. The combinations 

(0/1,0/1) reflect whether a firm has product and/or process innovation (0 = no, 1 = 

yes). The dummies for combinations of innovation types are replaced by predicted 

propensities from the bivariate probit knowledge production function. See footnote 3c 

for additional notes. 
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Table 4. Olley-Pakes estimation results by industry for the augmented production 

function. 

 
manufacturing (N = 

1364) 
services (N = 1843) 

 coeff se (bs) coeff se (bs) 

Capital inten-

sity 
0.145*** 0.020 0.116***

0.021 

Employment 0.008 0.009 -0.069*** 0.005 

TP(0,0,1) 15.647*** 1.126 16.345*** 0.937 

TP(0,1,0) -2.611 2.555 -5.292 3.843 

TP(0,1,1) 2.511 2.474 33.784*** 6.595 

TP(1,0,0) 0.837 1.233 -4.203* 2.426 

TP(1,0,1) 3.731*** 1.291 0.687 1.611 

TP(1,1,0) 0.475 0.982 -18.445*** 4.626 

TP(1,1,1) 6.812*** 0.678 13.329*** 1.338 

R2 0.78 0.74  

See footnote to table 3c. 

Table 5. Estimation results by industry for the augmented production function with 

new-to-market product innovation. 

 
manufacturing (N = 

1992) 
services (N = 3319) 

 coeff se (bs) coeff se (bs)

Capital inten-

sity 0.206
***

0.011 0.251
***

0.011

Employment -0.013 0.022 -0.196*** 0.016

TP(0,0,1) 1.383*** 0.395 4.545*** 0.357

TP(0,1,0) -0.283 0.505 -0.863 1.724

TP(0,1,1) 0.565 0.444 0.850 1.603

TP(1,0,0) -0.213 0.561 -1.954 1.286

TP(1,0,1) 0.430 0.724 0.662 0.690

TP(1,1,0) 0.103 0.444 -2.884 3.625

TP(1,1,1) 0.734*** 0.181 2.470*** 0.463
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R2 0.31 0.35 

See footnote to table 3c. 
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Table 6a. Marginal effects (ME) of continuous variables for the knowledge production function with lagged innovation 

inputs. 

 Product innovation Process innovation Organizational innovation 

 ME se(bs) ME se(bs) ME se(bs)

Manufacturing  (N = 

2209) 
    

R&Da 0.957***  0.187  0.620 *** 0.085  0.320***  0.033

ICTa -0.459*  0.240 -0.329 *** 0.109  -0.089  0.059

broadband intensityb 0.064**  0.028  -0.008  0.027  0.137***  0.015

e-purchasesc 0.076  0.111  0.231 *** 0.062  0.163*  0.095

e-salesc  0.102  0.109  0.045  0.064  0.020  0.022

Services  (N = 3333)     

R&Da  0.091  0.108  0.073 *  0.043  -0.052  0.066

ICTa  0.642***  0.172  0.229 ***  0.065   0.608*** 0.105

broadband intensityb  0.049***  0.019  0.006   0.016   0.124*** 0.038

e-purchasesc   0.006  0.097 -0.106 *  0.063   0.043 0.048

e-salesc  0.080  0.064 -0.007   0.076  -0.096** 0.051

See footnote to table 3b. 
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Table 6b. Estimation results by industry for the augmented production function 

with predictions for innovation output based on lagged innovation input. 

 
manufacturing (N = 1764 

) services (N = 2328) 

 coeff se (bs) coeff se (bs)

Capital inten-

sity 0.206
***

0.015 0.291
***

0.004

Employment 0.001 0.018 -0.207*** 0.014

TP(0,0,1) 1.393** 0.551 2.779*** 0.390

TP(0,1,0) -1.684* 1.018 -0.187 0.679

TP(0,1,1) 2.647*** 0.979 4.335*** 1.386

TP(1,0,0) 0.402 0.545 0.637 0.738

TP(1,0,1) 0.752* 0.442 0.308 0.387

TP(1,1,0) -0.593*** 0.220 -2.433*** 0.734

TP(1,1,1) 0.698*** 0.165 2.011*** 0.157

R2 0.27 0.37 

See footnote to table 3c. 



Table 7. Kodde-Palm complementarity and substitutability test results.a

  product/process product/organizational process/organizational 

 H0: comp subs comp subs comp subs 

manufacturing Baseline  0.000 2.940 7.456 0.000 0.000 4.127 

 Olley-Pakes  0.000 58.776 52.919 0.000 0.730 0.410 

 Innovation new to market 0.000 10.272 3.050 0.000 0.211 0.000 

 Lagged innovation inputs  0.000 10.277 17.709 0.000 0.000 4.468 

    

services Baseline  0.000 2.849 39.968 0.000 0.000 16.27 

 Olley-Pakes  0.283 3.288 9.461 0.000 0.000 1.599 

 Innovation new to market 0.000 8.367 8.244 2.581 0.000 3.716 

 Lagged innovation inputs  0.000 4.999 25.231 0.616 1.280 5.734 

    

Critical valuesb α = 0.10 α = 0.05 α = 0.01    

lower bound (df = 1) 1.642 2.706 5.412    

upper bound (df = 2) 3.808 5.138 8.273    
a All test statistics are based on bootstrapped covariances. 
b Accept H0 if test statistic smaller than lower bound, reject if larger than upper bound. If test statistics is between the bounds, the 

outcome is inconclusive. 
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