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Abstract 
 

Weather derivatives have become very popular tools in weather risk management in recent 
years. One of the elements supporting their diffusion has been the increase in volatility observed 
on many energy markets. Among the several available contracts, Quanto options are now 
becoming very popular for a simple reason: they take into account the strong correlation 
between energy consumption and certain weather conditions, so enabling price and weather risk 
to be controlled at the same time. These products are more efficient and, in many cases, 
significantly cheaper than simpler plain vanilla options. Unfortunately, the specific features of 
energy and weather time series do not enable the use of analytical formulae based on the Black-
Scholes pricing approach, nor other more advanced continuous time methods that extend the 
Black-Scholes approach, unless under strong and unrealistic assumptions. In this study, we 
propose a Monte Carlo pricing framework based on a bivariate time series model. Our approach 
takes into account the average and variance interdependence between temperature and energy 
price series. Furthermore, our approach includes other relevant empirical features, such as 
periodic patterns in average, variance, and correlations. The model structure enables a more 
appropriate pricing of Quanto options compared to traditional methods. 
 
Keywords: weather derivatives, Quanto options pricing, derivative pricing, model simulation 
and forecast. 
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1. Introduction 
 
In many economic sectors, weather conditions may significantly affect the demand for goods 
or services, or influence regular working paths. Accordingly, weather risk has a strong impact 
on sales or production levels (meaning that they are correlated to the weather) and significant 
impact on financial results. Furthermore, given that the weather risk affects the volume of 
sales or production, it is often called a volumetric risk. 
The development of financial engineering led to the diffusion of weather derivatives as a tool 
for transferring weather risks off the balance sheet. However, the first generation contracts 
only dealt with weather risk and just covered exposure to temperature changes. However, 
most energy companies are characterised by a strong weather exposure and cannot effectively 
hedge weather risk with just simple weather derivatives. In fact, there is a low, but significant, 
correlation between outdoor temperature and energy price. Hence, the real weather exposure 
in many energy companies is non-linear and the payout from classic weather derivatives does 
not enable a complete coverage of revenue shifts caused by weather conditions and their 
impact on energy prices. Weather therefore has a direct impact on energy companies through 
revenues (as weather affects energy demand); as well as an indirect impact (by affecting 
energy prices). As a result, to hedge weather exposure more appropriately, non-linear 
contracts that take into account both energy price and weather conditions should be used. 
Quanto options are an example of the type of contract that enables an improvement in the 
weather risk management process.  
Quanto options (abbreviation of ‘quantity adjusting options’) originally appeared in currency-
related markets, where the price of a financial instrument quoted in a given currency is 
converted to another currency at a fixed rate (see Zhang, 2001, for additional details). Within 
the energy market, Quanto options take into account the volumetric impact of weather 
conditions on energy price. For instance, when the winter is colder than expected in a north 
European country, the energy market suffers an increase in demand and an increase in the 
energy price. In this case, energy producers should hedge the volume risk but also take into 
account the benefits of price increases. In addition, Ho et al. (1995) show that hedging with 
Quanto contracts is much cheaper and more efficient than through simple combinations of 
two separate plain vanilla options written on energy prices and temperatures, respectively. 
Unfortunately, several elements affect the correct pricing of Quanto options. Initially, we 
might consider several payoff designs in the knowledge that for many of these designs the 
closed-form pricing formula derived within a Black-Scholes framework is unavailable. A 
relevant computational effort is required for the pricing of such contracts. Secondly, the 
peculiar features of energy price and temperature time series (jumps, long-memory, periodic 
patterns in mean and variance, non-Gaussian distributions) raise some doubts regarding the 
appropriateness of a simple geometric Brownian motion as a reference model. To overcome 
these limitations, contract prices are determined by brokers using a variety of approaches, and 
so a huge dispersion of prices is observed in OTC markets. 
The aim of this paper is to present a pricing methodology for Quanto options that is based on 
Monte Carlo simulations from an econometric model for the underlying time series. The 
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approach we propose (in two variants) enables pricing a range of instruments (including 
Quanto options) based on the underlying modelled variables, and can be used to hedge the 
non-linear price and volume exposures that are typical of the energy sector. 
In this study we motivate the need for Quanto options in the energy sector, and we provide a 
pricing approach for these contracts. Our method has several advantages: it includes the 
stylised facts characterising energy log-prices and temperature data (namely, periodic 
patterns, long-memory, heteroskedasticity, and correlation dynamics); the method improves 
on univariate approaches since it includes interdependence of energy from temperature; and it 
allows correlations to depend on a periodic function. The novel aspects of our contribution 
depend thus on the model, on the empirical evidence of periodic structure in energy and 
temperature correlation, and on the proposal of a Financial approach for pricing Quanto 
options. 
The paper proceeds as follows. Section 2 describes energy markets, their correlation with 
weather, and the peculiar features of energy prices and temperature time series. Furthermore, 
Section 2 contains a motivating example on the use and specification of contingent 
derivatives in practice. Section 3 touches on the problem of pricing weather contracts from a 
general viewpoint. In addition, the section highlights the advantages and disadvantages of a 
number of approaches. Section 4 presents the model specification, and discusses the 
estimation and simulation issues. Section 5 contains the empirical results: model estimation 
and pricing of a Quanto option based on Oslo energy price and temperature data. Section 6 
contains a summary and conclusions. 
 
 

2. Quanto options for energy and weather markets 
 
To provide a rationale for the introduction of Quanto options based on weather data and 
energy prices, we start with a brief introduction on energy and weather derivative markets. 
Later, we focus on economic motivations for the use of Quanto options, and we provide a 
short introduction on possible designs for Quanto payoffs. 
 
 
2.1 Energy markets 
 
The deregulation of electricity markets started in the early 1990s in the US and some 
European countries. One of the most important electricity markets that led the way in 
liberalisation was the Nordic Power Exchange (known as Nord Pool) which included Sweden, 
Norway, Finland and Denmark. Nord Pool was established in January 1993 in Norway and 
was progressively expanded to include the other Nordic nations. Nord Pool organises the 
Elspot a day-ahead electricity market (‘spot physical market’) as well as an electricity 
derivatives market (‘financial market’). In the spot market, 24 hourly power contracts are 
traded for physical delivery in one specific hour during the next day. A price per Megawatt 
Hour (MWh), named the system price, is determined separately for each hour for the whole 
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market area through a uniform-price auction, without considering capacity limits in the 
transmission lines. A wide range of derivative contracts are traded at Nord Pool, including a 
variety of forwards, futures, and options. All forward and futures contracts refer to a base load 
of one Megawatt (MW) during every hour for a given ‘delivery period’ (ranging from one day 
to one year in length), and all contracts are settled in cash daily against the system price 
during the ‘delivery period’. Nord Pool, now also termed Nord Pool ASA, is considered one 
of the most liquid wholesale markets in the world.  
There are several bidding areas for which the transmission system operator defines the 
capacity allocated for Elspot. When the flow of power between bidding areas exceeds the 
allocated capacity, the areas may have different prices. If power flows are within the defined 
limits, the energy price becomes common across the areas. 
In Norway, there are six different spot price areas: Bergen, Kristiansand, Kristiansund, Oslo, 
Tromso, and Trondheim. In this study, we make use of data from one specific bidding area, 
that of Oslo, for which we consider both the area daily energy price, and the Oslo daily 
average temperature. As the econometric model used in this paper will allow for the 
interaction between energy prices and temperature, the fact that both variables are 
geographically located is very attractive and unique in the doctrine. 
One additional remarkable feature of the Nordic Electricity Market for financial asset 
valuation purposes, is the existence of wide-ranging futures/forward contract maturities 
(daily, weekly, monthly, quarterly, and yearly). This extensive variety of contracts means the 
forward curve can be obtained for the whole market by using the system price (the main 
reference of the market) as the underlying asset. Further to this, each bidding area has its own 
forward contracts (‘Contracts for Differences’) enabling the estimation of specific forward 
curves for each area. For more details on Nord Pool ASA we refer interested readers to 
www.nordpool.com. 
 
 
2.2 Weather derivative markets 
 
The first contracts linked to weather data appeared in late 90s in the US as an effect of energy 
market liberalisation. At that time, several energy companies realised that outdoor 
temperature is one of the key factors responsible for profit and loss in the energy sector. 
In general terms, weather derivatives represent a wide class of financial contracts (traded on 
exchanges or over-the-counter) whose settlement directly depends on weather variables 
(mainly quantitative such as temperature, wind speed, or precipitation) at a given 
meteorological station. The Chicago Mercantile Exchange (CME) hosts the only exchange 
market actually trading weather contracts. The CME quotes futures and options on these 
futures for 41 locations around the world. The most traded contracts depend on temperature 
indices. The two most popular indices are the Daily HDD (Heating Degree Day) and the 
Daily CDD (Cooling Degree Day) which capture, respectively, the winter and summer 
exposure to temperatures. These indices are defined as: 
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Daily HDD = max (65°F – average daily temperature,1 0)     (1) 
 
Daily CDD = max (average daily temperature – 65°F, 0)     (2) 
 
Cumulated CDD (between May-October) and cumulated HDD (between October-April) are 
the reference quantities for contracts covering 18 US and 6 Canadian cities. The CME uses 
similar indices for 9 European locations, with two small differences: the threshold 
temperature level is set to 18 Celsius degrees, and the Cumulative Average Temperature 
(CAT2) replaces the CDD because of the cooler summer temperatures in Europe compared to 
those in the US. To evaluate contracts, each index point (tick) has a theoretical value of 20 
USD for US and Canadian location-based contracts and 20 GBP for European-based 
contracts. The CME also quotes a Frost Day Index based contract for Amsterdam; 
temperature-based contracts for Japanese locations (these are based on different temperature 
indices); and snowfall-based contracts (depending on snowfall indices within a day at a 
specific location). 
Despite recent increase in the volume of weather contracts traded at the CME, the contracts 
still appear to be illiquid, especially for European locations. There are several elements 
driving such evidence, with one element playing a key role: sellers customise contracts to 
end-user needs, and therefore the standardisation (even with respect to the currency of the 
payout) is perceived as a negative element that creates additional risks for end-users. As a 
result, most contracts are exchanged over-the-counter. The writers of these contracts (mostly 
banks, insurance companies, and other financial institutions) sell weather protection to their 
clients, and often define contracts payouts using several weather indices at the same time (to 
hedge weather risk at several locations, or at a location not covered by a meteorological 
station). Furthermore, it is quite common to have contracts based on products or other non-
linear functions of many indices.  
 
 
2.3 An economic motivation for Quanto options  
 
To show how Quanto options can be used for hedging we present a simple case of a power 
operator, a company that is responsible for providing energy (via the grid) to a set of firms 
and households. Firstly, we need to make some assumptions about the activity of the retail 
operator. We assume that the retail operator, using historical data, estimates that in the next 
heating season (from November to March) the HDD index for a given area will reach the 
value of 2500 points with a standard deviation of 300 points. This represents its expectation 
about the future HDD. Using such a forecast, the retail operator defines the amount of energy 
that it should buy through long-term contracts with energy producers. 
The power retail operator also knows that changes in average daily temperature during the 
heating season have significant impacts on power demand. The retailer estimates that the 
impact is equal to 100 MWh per HDD point. Therefore, if the heating season is colder 

                                                 
1 The average temperature is equal to the arithmetic mean of the observed maximum and minimum temperatures 
during one full day at a given meteorological station. 
2 The daily CAT is simply the daily average temperature. 
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(warmer) than expected, the retail operator will have to buy (sell) energy on the spot market, 
being thus exposed to energy price changes. Let’s assume that at the beginning of the heating 
season, the expected average spot market price for the entire heating season is €45/MWh with 
an estimated standard deviation of €8/MWh. Furthermore, retail prices are sticky and must be 
maintained over the heating season. Therefore, the retail operator faces a risk associated with 
temperature variations, as well as with energy price changes. Table 1 presents the changes in 
the total cost suffered by the retail operator caused by deviations in temperature and 
associated with a range of possible values of the spot market energy price (we used a range 
equal to ± two standard deviations). Note the total cost increases if the retail operator needs to 
buy additional power in the spot market, or decreases if it sells excess power in the spot 
market. 
In Table 2 we report the total revenues from customers under the assumption that the retail 
price is fixed at €49.5/MWh (assume this price already includes a margin 10% for the retail 
operator). Note that revenues increase with increases in the HDD index, since the retail 
operator sells larger amounts of energy to retail customers. Table 3 reports the changes in the 
margin obtained by the retail operator (revenues of Table 2 minus costs in Table 1). We note 
that, under the assumption of constant retail prices, the impact of temperature is offset under 
some price states. However, in order to secure profit for the retail operator, these changes 
should be hedged with a proper contract, possibly eliminating the risk implicit in Table 3. 
Quanto options could be used for that objective. 
 
INSERT HERE TABLES 1 TO 3 
 
 
2.3 Quanto options description 
 
Quanto options belong to the wide class of correlation exotic options and are very popular on 
OTC and exchange markets, see Zhang (2001) for a survey. In general, a Quanto option (also 
called product option or flexo option) is a derivative contract, where the payoff depends on 
the product of two indices. As an example, consider a European based investor (with a Euro 
denominated wealth) with a position on a USD-denominated ETF tracking the S&P500 index. 
To offset the risk of a negative return (which is the combination of the ETF and the foreign 
exchange rate returns), the investor may follow alternative approaches. The first possibility is 
static hedging with two separate vanilla options (on the S&P500 and the Euro-Dollar rates). 
However, this coverage is not efficient due to the non-linear exposure of the uro-denominated 
wealth of the investor to the FX and S&P500 risks. Furthermore, this strategy requires the 
payment of two possibly expensive premiums. A second choice is the use of dynamic 
hedging. This strategy suffers because of the same limitations as the static strategy, namely, a 
loss in efficiency and a high cost. Quanto options, as the third solution, are the most 
appropriate choice, see Ho et al. (1995). A derivative based on the products of the S&P500 
index and of the Euro-Dollar exchange rate is cheaper and more efficient. 
If we focus on energy markets, we noted in the previous section that the revenues of power 
retail operators (and thus their risk exposure) are a non-linear function (a product) of two 
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elements: energy price and temperature. Such a feature motivates the use of Quanto options 
for static hedging. 
Let’s continue with the example given in previous section, and recall that Table 3 reports the 
overall risk exposure of the retail operator to energy price and temperature changes. We can 
ideally divide Table 3 into four sections (the four corners), each representing a scenario with 
different deviations from the Temperature HDD expected values and the energy spot market 
price. Each section has only positive or negative values. To receive from a derivative a 
positive payoff associated with energy and temperature values higher than expected (lower-
right corner) we can use the following double call option: 
 
max(0, E-K1)×τ×max(0, HDD-K2)         (4) 
 

where K1 and K2 denote the strike values for energy and weather, respectively, 
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iE  is the average daily energy price, m is the number of days in the heating season, 

1

max(0,18 )
m

i
i

HDD T


  , iT  is the average daily temperature level, and τ is the tick value, the 

change in energy demand per unit change in the HDD index. In our example, we fix the tick 
value at 100 MWh per point of HDD. Hence the payout of let’s say 5 HDD points 
corresponds to a money transfer equivalent to the price of 500 MWh. 
The opposite scenario (upper-left corner) corresponds to the following double put expression: 
 
max(0, K1-E)×τ×max(0, K2-HDD)         (5) 
 
Clearly, appropriate formulae also exist for mixed scenarios (when one index is below the 
expected value and the other index above the expected value). For the joint offset of negative 
corners of Table 3, we could use the following compositions of (4) and (5) that identify 
Quanto options:  
 
max((E-K1)×τ× (HDD-K2),0)        (6) 
 
max((K1-E)×τ× (K2-HDD),0)        (7) 
 
Note that (6) and (7) represent the same Quanto option, ensuring protection with respect to the 
negative states included in Table 3. The Quanto option depends on the product between two 
quantities (energy and temperature), each in deviation from a proper strike price, and with the 
introduction of a tick-value that translates the underlying option into a monetary quantity. We 
report in Table 4 the design of a Quanto option for the power retail operator example 
introduced in Section 2.2, and the option payoff in Table 5. By combining the outcomes of 
Table 3 and Table 5 we note that if the power retail operator buys a Quanto, its revenues will 
not be affected by negative states (without considering the Quanto premium).   
 
INSERT HERE TABLES 4 AND 5 
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3. Energy and weather derivatives valuation  
 
Theoretically, the most accurate price of a financial instrument is the market price. Such a rule 
also refers to all derivatives based on weather variables. However, if the market for these 
instruments is limited, illiquid, and highly inefficient, then a suitable model should support 
the pricing process, see VanderMarck (2003).  
A contract writer could decide to determine the theoretical contract price by standard methods 
such as the Black and Scholes (1973) model and its numerous extensions. However, Dischel 
(2002), highlights that the Black and Scholes model (B&S thereafter) cannot be used for the 
pricing of temperature-based contracts for a number of reasons: the underlying process 
governing the evolution of temperature is far from being a geometric Brownian motion since 
it includes long and short memory behaviours, as well as seasonal patterns; the market is 
extremely illiquid and shallow (it is mainly driven by reinsurance companies); temperature 
indices may not be adequately modelled by the Gaussian distribution; the underlying variable 
is not a traded asset and therefore pricing by replication is impossible. As a result, the 
Actuarial pricing approach dominates this market. Below we briefly introduce this method 
and later provide a link to a financial pricing approach we could follow to improve the 
Actuarial approach. Note that both methods are based on model simulations, and thus could 
be considered as Monte Carlo option pricing methods.   
 
 
3.1 The Actuarial approach 
 
Writers of weather-based contracts generally define the price using a range of approaches. 
One of the most common is the Actuarial approach, which is a popular methodology in the 
insurance sector. For an introduction to the methodology and some examples, see Zeng 
(2000), Davis (2001), Brix et al. (2005), among others. 
The Actuarial approach depends on the forecasts of the distribution of contract outcomes 
obtained from historical data and, if available, short- and medium-term forecasts. The 
Actuarial price equals the average expected payout coming from the predicted density (this is 
often called the ‘fair value’), plus a margin that, beside remuneration, also covers the costs of 
the contract writer (such as fixed costs, and risk-loading factors for model and market 
uncertainty, see Henderson, 2002). 
To produce the distribution of contract outcomes we can follow various methods. The 
literature classifies these methods into three groups: Historical Burn Analysis (HBA); Index 
Modelling (IM); Daily Modelling (DM). The first method, HBA, defines the distribution of 
contract payouts using historical weather indices evaluated using weather data. Given its 
simplicity, it is often used as a preliminary pricing method. Index Modelling extends HBA by 
adding a distributional hypothesis to the weather indices. It thus enables the capture of the 
tails and asymmetry of weather indices. The distribution is fitted on historical data and used 
within a Monte Carlo approach to determine the contract fair value. Unfortunately, both HBA 
and IM suffer from several drawbacks, as pointed out by Nelken (2000). In particular, they 
may be inaccurate if used with a limited number of historical observations over weather 
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indices (these are generally evaluated monthly, quarterly, or yearly). Furthermore, these 
methods may not be appropriate for the pricing of products based on a non-traded asset 
(weather) and a traded quantity (such as energy, but also natural gas, or EUA). 
The Daily Modelling method overcomes the previous problems and is thus becoming the 
most popular, see Brix et al. (2005). This method begins by fitting a model on daily weather 
data and then using that model to produce forecasts of weather indices. Given its structure, 
DM enables many features of weather data to be taken into account, and can also be easily 
extended to contracts based on many underlying assets. The use of daily data also simplifies 
the pricing of contracts with very short maturities (for instance weekly), given that the 
approach can incorporate short-term meteorological forecasts. 
The Daily Modelling method bases its results on a time series model to replicate the empirical 
features of the underlying index data. In this study we focus on models for daily temperature 
such as the most popular indices in the weather derivative market that are commonly used in 
Quanto structures. For this purpose, we use the ARFIMA-FIGARCH model with 
deterministic components that include trends and seasonality in mean and variance. Models in 
this shape are widely used on the market and the general idea was presented by Beine and 
Laurent (2003). 
This model is then used to predict the future evolution of these variables and of the associated 
indices (HDD or CDD). By using Monte Carlo methods, a large number of paths or scenarios 
are simulated and used to recover the contract payout density. The expected value of the 
density then defines the contract fair value. In standard practice, the price charged to the 
contract buyer includes a margin calibrated to the Value-at-Risk of the contract payouts, and 
is also discounted by using a risk-free rate (for instance the Euribor rate). 
In this paper, we apply an Actuarial pricing procedure that matches the methods available in 
the literature and consists of the following steps: 
 

1) Propose a model that jointly captures the dynamic of electricity prices and 
temperature; 

2) Simulate a number of paths for electricity and temperature using the model developed 
in step (1); 

3) Estimate the average pay-off of a specific option using the simulated path and given 
the contract parameters; 

4) Increase the above value by a risk-loading factor computed as 5% of the pay-off 
Value-at-Risk at the 95% confidence level; 

5) Discount the above future value using the appropriate Euribor rate. 
 
 
3.2 A Financial approach 
 
In this subsection we present a financial solution to the Quanto valuation using some well 
known facts in derivative valuation. The underlying assumption is that electricity derivatives 
are driven by two state variables: electricity price and weather (proxy of load). The wide 
range of maturities and periods available in the Nord Pool for electricity prices enables 
estimation of the forward curve for every day. We can interpret the forward curve as the risk-
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neutral trend of electricity prices.3 If we assume that the market price of risk of the weather 
variable is zero, then all the risk adjustment in the derivative valuation will come from the 
electricity price risk.4 Under this assumption, we propose to determine a risk-neutral valuation 
of energy and temperature Quanto options following these steps: 
 

1) Estimate the forward curve with a range of futures/forward energy prices; 
2) Propose a model jointly capturing the dynamic of electricity prices and temperatures; 
3) Simulate a number of paths for electricity and temperature using the model developed 

in step (2), but replacing the electricity price estimated trend with the forward curve; 
4) Estimate the average pay-off of a specific option using the simulated path and the 

contract parameters; 
5) Discount the above future value using the appropriate Euribor rate. 

 
We stress that step 2 above and the step 1 of the Actuarial approach provide exactly the same 
model. The relevant difference is in the simulation, where the Actuarial approach uses the 
estimated, or ‘real’ trend, while the Financial approach employs the forward curve by turning 
the Actuarial pricing into a Financial risk-neutral pricing which also accounts for changes in 
outdoor temperature.  
We note that in a recent contribution Pirrong and Jermakyan (2008) proposed a model for 
electricity derivatives valuation using two state variables: demand (load) and fuel price. Given 
that electricity demand is closely related with weather conditions Pirrong and Jermakyan 
(2008) suggest the introduction of weather as an additional state variable as a possible 
extension of their framework. Despite the fact that their proposal would enable the evaluation 
of assets whose payoffs depend on power prices, loads, and weather, we stress that this 
requires a very sophisticated mathematical framework that employs numerical techniques 
without providing closed form solutions. The valuation framework we propose in this paper 
has the advantage of providing a model describing a number of stylised facts regarding the 
joint evolution of energy prices and temperature. Some of these facts have not been 
previously studied (see Section 4.1 below) and can be considered as an extension of the 
Actuarial approach – with a direct link to Financial pricing methods.   
 
 

4. Methodology of Quanto option pricing   
 
This section presents the models and methods we use in the evaluation of Quanto options both 
under the Actuarial and Financial approaches. We first present the model for the joint 
evaluation of energy price and temperature dynamics. We then describe the estimation of the 

                                                 
3 See Hull (1997), pages 297-298.   
4 Benth and Benth (2007) assume the market price of risk to be zero in their application for the Stockholm 
temperature derivative valuation. When two risk factors are considered in a derivative valuation, some authors 
assume that the market price of risk of one of these factors to be zero, see for example Gibson and Schwartz 
(1990).   



 10

energy price forward curve. Finally, we briefly discuss the simulation approach we follow to 
generate future paths of energy price and temperature. 
 
 

4.1 An econometric model for energy and temperature data 

 
We propose here a model that describes the joint evolution of energy log-prices and average 
temperature – including a number of stylised facts and features characterising the variables. In 
particular, we take into account: seasonality patterns in means and variances for both series; 
day-of-the-week effects in the energy log-price mean and variances; log-memory in both 
series means and variances; weekly seasonal auto-regressive patterns in energy log-prices; 
auto-regressive patterns with spillovers from temperature levels to energy log-prices; 
heteroskedasticity with variance spillovers from temperature to energy; dynamic correlations 
with seasonal evolution. In the following, we present the several components of the model in 
detail. 
Denote by tx  the energy log-price and by ty  the average temperature level. The following 

dynamic system governs the mean evolution of both series: 
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and: L denote the backshift operator,  L  is a Vector Auto Regressive (VAR) polynomial of 

order p with a restricted structure enabling an effect of lagged temperature on energy log-

prices;  L  is a Seasonal Vector Auto Regressive (S-VAR) polynomial of order P, needed 

to capture the stochastic weekly patterns (and thus S=7);  L  is a long-memory matrix 

inducing long-range dependence over temperature and energy log-prices; tZ  is a 

deterministic mean component that can be partitioned into a vector of sinusoidal trend 
components tD  (including sine and cosine waves, a constant, and a polynomial trend), and a 

matrix tW  of day-of-the-week dummies and holiday dummies (which affects only the energy 
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log-prices);  L  is a Vector Moving Average (VMA) polynomial of order q with a 

restricted structure similar to that of VAR; the innovation process follows a conditional 

distribution with a time-varying covariance matrix t  that will be defined below; and 1tI   is 

time t-1 information set. Furthermore, we assume that all parameter matrices satisfy the 
constraints ensuring stationarity and invertibility. 
Before moving to the second-order moment structure, we will report several comments on the 
mean structure. Firstly, the feedback from temperature to energy is not direct, but temperature 

enters into the energy equation in deviation from its unconditional mean 2 tD   and with a 

long-memory style impact. In fact, the energy log-price equation has the following 
configuration: 
 

            
   

1 2

1,1 1,1 1 1 1,2 2

1,1 1, 1,2 2,

1 1

                                                                      

d d

t t t t t

t t
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  (9) 

 
Thus, the structural evolution of the temperature matters for the evolution of energy log-
prices. We motive this choice by the fact that the unconditional mean could be easily captured 
and anticipated by the market (it is purely deterministic). In addition, the stochastic long-
range dependence characterising temperature is well-known and plays a role in determining 
the movements of energy, thus we also introduce long-memory feedbacks. 
The mean residual vector follows an unspecified conditional density characterised by 
heteroskedasticity, with a covariance matrix decomposed into volatility and correlation 
elements: 
 

t t t tV R V             (10) 

 
where tV  is a diagonal matrix of conditional volatilities and tR  is a dynamic correlation 

matrix. 
We model conditional variances by long-memory log-GARCH(1,d,1) processes with variance 
spillovers and feedbacks, and with deterministic components. The outer elements in (10) are 
represented as: 
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where the conditional variances are logarithms of underlying quantities that obey the 
following dynamic equations: 
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ξ α    (12) 

 
In (12), coefficient matrices have the following representation: 
 

1,1 1,2 1,1 1,2

2,2 2,2

,     
0 0

   
 

   
    
   

α ξ , 

 
and tD  and tW  are the same deterministic matrices used in (8) (the day-of-the-week dummies 

affect only the evolution of log-energy variances). Furthermore, we restrict model orders to 1 
for simplicity (higher orders can be easily introduced, but in our experience they are not 

needed); , ,  1, 2i tz i   are the standardised residuals defined as 0.5
, , ,i t i t i tz h   and with 

 2
1,ln 1.27tE z      under Gaussianity. Finally, we note that the ARCH and GARCH 

matrices enable a dependence of energy variances on temperature variances and innovations. 
As a result, if the off-diagonal coefficients in the ARCH and GARCH matrices are jointly 
equal to zero, the two conditional variances evolve as two independent log-GARCH 
processes. In the proposed model, the introduction of a log-transformation enables the 
removal of the constraints for positivity of conditional variances, thus simplifying the model 
estimation. The conditional variance dynamic could follow alternative specifications, starting 
from the seminal contributions of Engle (1982) and Bollerslev (1986), to the long-memory 
model of Baillie et al. (1996), to the more advanced specifications such as the periodic long-
memory GARCH of Bordignon et al. (2007, 2009). For a survey of possible GARCH 
specifications see Bollerslev et al. (1992, 1994), and Bollerslev (2009). 
Finally, we describe the dynamic evolution of the conditional correlations tR , which have 

been introduced to account for the dynamic we observed in preliminary exploratory analysis 
of energy and temperature data. This is further confirmed by the estimate of rolling 
correlations over the variance standardised residuals , ,  1, 2i tz i   of our empirical data, see 

Figure 1 and the following section for additional details. Dynamic conditional correlations 
models are now quite common in the literature, and their introduction is due to the works of 
Engle (2002), and Tse and Tsui (2002). Despite the huge number of studies proposing 
correlation models (see the surveys by Bauwens et al., 2006, and Silvennoinen and Terasvirta, 
2009), few specifications enable the introduction of exogenous variables in the correlation 
equation without requiring excessive parameter constraints. We adopt here the model of 
Christodoulakis and Satchell (2002) which proposes a dynamic equation for the Fisher 
transformation of the correlation. The model has a relevant limitation, it cannot be generalised 
to system dimensions higher than two, yet it perfectly fits our bivariate framework. The 
conditional correlation matrix tR  and the Fisher transformation of the correlation are equal to: 
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        (13) 

 
We then model t  as follows: 

 

 0 1 1 2 1, 1 2, 1 3 4t t t t t tz z D W      
     ψ ψ       (14) 

 
where tD  and tW  are the usual dummy matrices of deterministic components, and the 

innovation is given by the cross-product of GARCH standardised residuals. Given the 
estimates of the parameters in (14), we recover the conditional correlation matrix by inverting 
the Fisher transformation in Equation (13): 
 

 
 

exp 2 1

exp 2 1
t

t
t
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          (15) 

 
Equation (14) could be also slightly modified to allow for correlation targeting, by acting on 
the intercept 
 

    0 1 2 1 21 t tE D E W                  (16) 

 
where   is the Fisher transformation of the sample correlation between GARCH standardised 

residuals. Finally, we denote by tη the uncorrelated residuals, equal to 
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η
          (17) 

 
The model outlined in the previous paragraphs potentially contains many parameters. The 
introduction of long-memory in both the mean and variance further increases the 
computational complexity. Therefore, we chose to estimate the model in four steps, at the cost 
of loss in estimation efficiency. At first, we estimated the deterministic mean specification 
using the least squares method, and on the residuals we estimated the dynamic mean 
components by Quasi-Maximum Likelihood while assuming a constant variance matrix for 
the innovations. We then estimated the covariance part following Engle (2002) in another two 
steps. Therefore, we filter out the conditional variance dynamic, and finally we estimate the 
correlation parameters. 
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4.2 Estimating the energy forward curve  
 
Benth et al. (2007) propose a method to construct a smooth curve from observed forward 
prices. Since electricity prices are seasonally dependent, they propose to decompose the curve 
into a seasonal component and a correction term. The correction term is defined as a 
polynomial spline function with a maximum smoothness property, so that the constructed 
curve perfectly replicates the observed market prices. The seasonal component is a parametric 
function which is estimated by least squares. Following Benth et al. (2007) the relationship 
between average forward price and fixed delivery forwards is defined as follows: 
 

        (17) 

 
where:  represents the price at time , today, for receiving a unit of electricity (a 
Megawatt) at a continuous flow during the period ;  and  denote, respectively, 
the start and the end of the settlement period; and  represents the price of a forward at 
time  with delivery at the fixed time . Under the risk-neutral measurement  will be 
equal to the expected value of the underlying asset to be delivered in , that is the electricity 
instantaneous forward price. 
Assume that  futures/forward contracts are observed at time . Let  be the start of the 
settlement period for the contract with the shortest time to delivery, and denote by  the end 
of the settlement period for the contract going furthest in the future. The forward price is split 
into two parts 
 

        (18) 
 
where  and  are two continuous functions representing the seasonality of the forward 
curve and the adjustment function that measures the forward curve’s deviation from the 
seasonality, respectively. As the adjustment function is less sensitive to time as the forward 
maturities go ahead, this suggests that a time-varying  should be flat at the long end and 
therefore,  is assumed. Benth et al. (2007) define the ‘smoothness’ criteria as the 
function  minimising the mean square value of its second derivative on , 

, over the set of continuously twice differentiable functions. Benth et al. (2007) 

show that the smoothest adjustment function with the above properties is a polynomial spline 
of order four. Specifically, this function can be written as  
 

     (19) 

 
where  is the list of dates where overlapping contracts are split into sub-periods 
and the parameters to be found define the following vector 
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. We determine parameters by solving the following 
equality constrained convex quadratic programming problem 
 

          (20) 

 
subject to the connectivity and smoothness constraints of derivatives at the knots, 

, 
 

 

 

 
 
and 
 

 
 

 
 
for i = 1, ..., m. This is a minimisation problem with  constraints. The solution can 
be obtained by using the Lagrange Multiplier Method and solving the following 
unconstrained minimization problem  
 

         (21) 

 
The solution is obtained by solving the following linear equation 
 

          (22) 

 
where 
 

 
 
and the matrix A and b are obtained by formulating all the constraints in a equation system 

 where  is a  matrix and  is a  vector.  
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Finally, we must define a seasonal function . We suggest estimating a sinusoidal function 
similar to that used by Benth et al. (2007): 
 

        (23) 

 
where , , and  are parameters to be estimated, while Y should be calibrated to the year 
length (either 365 or 366 days). 
The difference between the sinusoidal trend and the forward prices are then fitted with a 
polynomial spline function using the maximum smoothness criteria. The solution given above 
to the constrained optimisation problem can be difficult to solve because many restrictions in 
the optimisation problem are close to being linear combinations, thus producing explosive 
results. An example could be given by the presence of monthly contracts within a specific 
quarter, as well as quarterly contracts. If the quarterly contract prices is very close to the 
linear combination of the corresponding monthly contract prices, a solution may not be found. 
Benth et al. (2008) propose solving the problem by using the QR factorisation. Alternatively, 
some contracts could be dropped from the analysis, thereby creating an over-identification 
problem. 
 
 
4.3 Simulating Quanto pay-offs  
 
Following the steps mentioned in Sections 3.1 and 3.2, the generation of the Quanto option 
pay-off is based on the simulation of a number of possible paths of energy prices and average 
temperatures. The central element is thus given by the model outlined in Section 4.1. 
To generate the Quanto pay-off we start with the estimated parameters of the model in 
equations (8)-(14) using a sample from time 1 to T. Assuming that the maturity date is in time 
T+h, we follow these steps to generate one possible option payoff: 
i) generate the uncorrelated residuals tη  for t=T+1, T+2, … T+h; in order to avoid 

misspecification errors in the joint distribution of model residuals, we suggest generating 
these series by resampling from the in-sample model residuals; 
ii) given the uncorrelated residuals we proceed backward and simulate the variance 

standardised but correlated residuals 1, 2, t t tz z    z , the mean residuals 1, 2, t t t     ε , the 

average temperature and energy possible paths tx , and ty ; all these quantities will be 

simulated for t=T+1, T+2, … T+h, and will represent a possible future evolution of the 
observed paths up to time T (thereby being conditional on the real data available up to time 
T); 
iii) in the case of the Financial approach, the real trend will be now replaced by the forward 
curve estimated in accordance with Section 4.2; 
iv) given the simulated paths of energy price and average daily temperature, determine the 
value of the HDD index in the range T+1 to T+h, and the average energy price in the same 
range; 
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v) determine the possible pay-off of the option for the simulated path, using the Quanto 
formula in (6). 
We then repeat steps i)-v) several times and so recover a density for the Quanto pay-off. The 
option price will then be determined following the steps in Sections 3.1 and 3.2. 
 
 

5. Empirical results 
 
5.1. Data description 
 
The empirical part of this research makes use of daily time series of energy prices provided by 
the Nord Pool electricity spot market (Nordic Elspot) and of daily average air temperatures 
provided by the National Climatic Data Center (United States). Time series of daily mean 
temperature for Oslo (Norway) refer to the period 1 January 1978 to 31 December 2008. Time 
series of energy prices refer to the period 1 January, 19995 to 31 December, 2008. The daily 
energy price is equal to the arithmetic average of the hourly prices within a specific day.6 The 
reference currency for the entire market is the euro, and prices refer to one Megawatt per hour 
(MWh). Furthermore, in order to apply the Financial approach for Quanto valuation we 
consider a range of futures/forward prices that we report in Table 6. 
 
 
5.2. Preliminary analysis  
 
Table 7 reports the descriptive statistics of electricity returns in the Oslo area and Table 8 
reports the autocorrelation statistics for electricity prices. One of the most discussed features 
of energy prices is the so-called ‘holiday effect’, the impact on electricity returns of the 
weekends. We have obtained a list of Norwegian holidays and weekends from 
www.timeanddate.com. Using the information provided by this website, we define four 
subsets of returns within our sample: the returns obtained between two working days (WW), a 
working day and a holiday (WH), a holiday and a working day (HW), and two consecutive 
days of holiday (HH), respectively. Descriptive statistics for these subsets are reported in 
columns 3 to 6 of Table 7. The last four columns of the same table refer to meteorological 
seasons, where the winter includes the months of December, January and February, and the 
other seasons follow. By looking at Table 7 we can make a number of considerations. At first, 
we note that the Oslo data is characterised by zero average return, and a strong Monday effect 
(increase in prices after holidays) which is observed in column HW. The reverse effect, 
associated with column WH, shows evidence of negative returns. The remaining two 
partitions of the whole sample, WW and HH, are less relevant for the purpose of the actual 
paper; nevertheless, we note that both provide an average negative return. Furthermore, 

                                                 
5 Older observations are unavailable. 
6 Note that every year, due to the transition from standard time to daylight savings time and vice versa, there is a 
day in spring with 23 hours, as well as an autumn day with 25 hours.  
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energy returns are right skewed and leptokurtic, and the variance of electricity price is higher 
in summer and lower in autumn. In addition, the winter and spring variance is similar to the 
variance calculated for the entire sample. Finally, when focusing on dynamic properties of the 
series, the unit root hypothesis cannot be rejected. Table 8 shows that electricity returns and 
squared returns have several significant autocorrelation patterns: daily, weekly, quarterly, and 
yearly. These elements will be important in the time series modelling. 
Table 9 reports a descriptive analysis of Oslo temperature data. We define meteorological 
seasons on a monthly basis, winter contains the months of December, January and February, 
Spring includes April, May and June and so on. In Table 9, the mean increases from winter to 
summer, while the volatility decreases. Furthermore, temperature distribution is not normal, 
the unit root hypothesis cannot be accepted, and data shows a strong autocorrelation pattern 
both in mean and variance (Table 10).  
Finally, given the purpose of jointly modelling energy and temperature, we also examine the 
relation between the two series from a descriptive viewpoint. We observe a significant 
negative correlation between time series of log-changes in energy prices and raw temperatures 
during winter and autumn (Table 11). If we consider changes in energy prices and changes in 
daily temperature then correlations are statistically significant for all seasons and over the 
entire sample. In particular, we note that the correlations are statistically significant and 
negative with only the exception of summer (positive and significant). Our model confirms 
this preliminary finding and shows evidence of periodic patterns in the correlations between 
energy and temperature (see following section).    
 
INSERT HERE TABLES 7-11 
 
 
5.3. Results of model estimation and simulation 
 
We estimate the model presented in Section 4.1 for Oslo energy price and temperature, and 
report the results in Tables 12 to 15. We also estimate the model with the multi-step approach 
described in Section 4.1. This method clearly does not achieve full efficiency but enables a 
relatively fast model estimation (less than two hours). We estimate the model using data up to 
December 2007 for the purpose of pricing a contract that matures at the end of 2008. 
Estimated parameters show that the deterministic component of energy includes a trend and a 
yearly cosine wave, see Table 12. The temperature periodic component seems much more 
relevant, and it is governed by a combination of sine and cosine waves. Energy prices also 
show evidence of Friday, Sunday and Non-Working day effects. In these cases, the average 
energy price is lower than in the other days. Notably, the Monday effect is not present. 
Table 13 reports the coefficients driving the stochastic mean dynamics. Both energy and 
temperature series, in deviation from their deterministic components, show long-memory 
effects. Energy long-range dependence is stronger than that of temperature. Furthermore, 
energy prices have a short-term dynamic that depends on lags of energy (lags 1, 3, 5, and 6) 
and temperature (lags 2, 4, 5, 6, and 7). This last finding supports the dependence of energy 
prices on temperature deviations with respect to its deterministic component. Such a result is 
further confirmed by the significance of the limited, and weekly S-VAR impact of 
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temperature on energy prices (energy S-VAR is also statistically significant). Temperature 
dynamic has a mild short-term component with significant lags 1, 5, 7, together with the SAR 
term. Finally, both series have a statistically significant MA term, and energy does not depend 
on lagged temperature innovations. 
The variance dynamic of temperature (see Table 14) does not depend on periodic 
components, and has a low persistence compared to the financial time series. This was an 
expected result. Energy variances depend on lagged temperature variances (further supporting 
the joint modelling of the two variables), on a yearly cosine wave, and on Monday and Friday 
dummies. 
Finally, we focus on the correlation dynamic shown in Table 15. In Section 4.1 we propose a 
model including periodic elements in the correlation dynamic. To support our choice, Figure 
1 reports the 60 days of rolling correlations between the energy and temperature standardised 

residuals 1, 2, t t tz z    z : the graph shows evidence of a strong periodic pattern. Therefore, it 

is not surprising to see in Table 15 verification that the correlation dynamic is highly 
persistent and shows relevant sine and cosine waves. 
 
INSERT HERE TABLES 12-15 AND FIGURE 1 
 
To implement the Financial valuation approach we also estimated for the electricity prices in 
Oslo between 1999-2007 a sinusoidal function similar to that used by Benth et al. (2007) and 
reported in Section 4.2, namely, Equation (23). We obtain the 2008 values of the sinusoidal 
function from the following equation: 
 

    (24) 

 
where in parenthesis we report the coefficient standard errors. 
We then fitted the difference between the sinusoidal trend in (24) and the forward prices for 
maturities included in Table 6 with a polynomial spline function by using the maximum 
smoothness criteria (see Section 4.2). To overcome an overidentification problem, we 
eliminated some closely related contracts.7 Figure 2 displays the forward curve on 28 
December, 2007; the last trading day in 2007 for the Nord Pool derivative market. 
 
INSERT HERE FIGURE 2 
 
Using the estimated model and forward curve, we proceed to the simulation of 10000 possible 
paths for the energy price and the average temperature for 2008. We decided to limit the 

                                                 
7 Specifically, we drop the contracts with tickers: ENOW02-08, ENOW03-08, ENOW04-08, ENOQ1-08, 
ENOQ2-08, ENOYR-09, SYOSLJAN-08, SYOSLFEB-08, SYOSLMAR-08, SYOSLQ4-08. These contracts are 
not included as restrictions in the forward curve estimation because they generate overidentification problems. 
For instance, this is the case of the monthly forward contracts corresponding to January, February and March and 
the first quarter forward contract. The sum of the three forward prices in January, February and March is almost 
equal to three times the first quarter forward price (they differ by only a small amount). 
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number of simulations to this value because the benefits of increasing the number would have 
been very marginal. We report in Table 16 and in Figures 3 and 4 some descriptive statistics 
of the Monte Carlo simulations. 
 
INSERT HERE FIGURES 3-4 AND TABLE 16 
 
The distribution of HDD indices for the analysed periods appears to be symmetric and close 
to the Gaussian. The simulated energy prices have a strong right-sided asymmetry, coherent 
with the real energy time series. This feature is very important and it will have a relevant 
impact on the premiums of Quanto options. Summarising, the simulated data closely 
replicates the features of real temperature and energy time series. 
 
 
5.4. Valuation of Quanto options 
 
We used the simulations above for pricing a Quanto option under both an Actuarial and a 
Financial approach. We considered a set of different Quanto options where the underlying 
factors are the HDD index (based on the average daily temperature) and the average delivery 
period energy price for the Oslo area. We set the strikes for these options at the historically 
average value for temperature and to the closing forward prices for electricity. Therefore, 
these options can be perceived as ‘at the money’ options. Tables 17 and 18 include the 
contract specification and risk-free rates used in the pricing process, while Table 19 contains 
the pricing results. 
 
INSERT HERE TABLES 17 - 18 
 
For the January delivery period the Actuarial and Financial methods provide similar prices, 
and the difference is less than 2.5%. For other delivery periods the Actuarial approach 
overestimates the option premiums, especially for option type II, where the difference in 
premiums for April is about 60%. On average, premiums provided by the Actuarial approach 
are 14% higher than those provided by the Financial approach for the type I option, and 27% 
higher for the type II option. The reason of such huge differences lays in the calibration of the 
energy price evolution by the forward curve. In this way, the Financial approach introduces 
market expectation about the future evolution of energy into the Quanto prices; that is to say, 
risk adjusted expected electricity prices.  
It is important to note, that in both approaches, the real market prices will be slightly higher 
due to the inclusion of additional factors, e.g. current portfolio structure, remuneration, costs 
of contract writing and exchange transactions, risk-loading factors for model and market 
uncertainty, etc. 
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6. Conclusions 
 
In this paper we propose a bivariate model capturing some well-known stylised facts of 
energy log-prices and temperature, together with their interdependence. Furthermore, we 
show evidence that the correlation between these quantities has a periodic behaviour, an 
element not yet discussed in the literature. This econometric model was employed for the 
purpose of Quanto options pricing using two approaches; an Actuarial approach and a 
Financial approach (the latter approach differing from the former approach because it includes 
market expectations about the evolution of energy prices). We provide an empirical 
application showing the benefits of the model proposed and of the Financial approach for 
pricing Quanto contracts. We demonstrate that premiums are, in most cases, lower for the 
Financial approach, a positive outcome which is coupled with transparency and coherency as 
the approach benefits from all the available information on the market. 
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Table 1. Additional cost (€) under different spot market price (€/MWh) and temperature
(HDD) scenarios 

Temperature (HDD) €29/MWh €37/MWh €45/MWh €53/MWh €61/MWh 
1900 -1,740,000 -2,220,000 -2,700,000 -3,180,000 -3,660,000 
2050 -1,305,000 -1,665,000 -2,025,000 -2,385,000 -2,745,000 
2200 -870,000 -1,110,000 -1,350,000 -1,590,000 -1,830,000 
2350 -435,000 -555,000 -675,000 -795,000 -915,000 
2500 0 0 0 0 0 
2650 435,000 555,000 675,000 795,000 915,000 
2800 870,000 1,110,000 1,350,000 1,590,000 1,830,000 
2950 1,305,000 1,665,000 2,025,000 2,385,000 2,745,000 
3100 1,740,000 2,220,000 2,700,000 3,180,000 3,660,000 

Red negative numbers denote an increase in cost, while black positive numbers identify a 
decrease in total cost. 
 
 

Table 2. Additional revenues (€) under different spot market price (€/MWh) and
temperature (HDD) scenarios 

Temperature (HDD) €29/MWh €37/MWh €45/MWh €53/MWh €61/MWh 
1900 -2,970,000 -2,970,000 -2,970,000 -2,970,000 -2,970,000 
2050 -2,227,500 -2,227,500 -2,227,500 -2,227,500 -2,227,500 
2200 -1,485,000 -1,485,000 -1,485,000 -1,485,000 -1,485,000 
2350 -742,500 -742,500 -742,500 -742,500 -742,500 
2500 0 0 0 0 0 
2650 742,500 742,500 742,500 742,500 742,500 
2800 1,485,000 1,485,000 1,485,000 1,485,000 1,485,000 
2950 2,227,500 2,227,500 2,227,500 2,227,500 2,227,500 
3100 2,970,000 2,970,000 2,970,000 2,970,000 2,970,000 

Red negative numbers denote a decrease in revenues, while black positive numbers identify 
an increase in revenues. 
 
 

Table 3. Deviations of the power retailer margin (€) under different spot market price 
(€/MWh) and temperature (HDD) scenarios 

Temperature (HDD) €29/MWh €37/MWh €45/MWh €53/MWh €61/MWh 
1900 -1,230,000 -750,000 -270,000 210,000 690,000 
2050 -922,500 -562,500 -202,500 157,500 517,500 
2200 -615,000 -375,000 -135,000 105,000 345,000 
2350 -307,500 -187,500 -67,500 52,500 172,500 
2500 0 0 0 0 0 
2650 307,500 187,500 67,500 -52,500 -172,500 
2800 615,000 375,000 135,000 -105,000 -345,000 
2950 922,500 562,500 202,500 -157,500 -517,500 
3100 1,230,000 750,000 270,000 -210,000 -690,000 

Red negative numbers denote losses while black positive numbers identify profits. 
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Table 4. Specification of a Quanto option based on HDD and energy price 
Protection period 1 November 2009 – 31 March 2010 

Temperature index HDD Index cumulated during the protection period  
Strike HDD (K2) 2500 

Energy Index (E) Average price of Nord Pool spot price (arithmetic) during protection period  

Strike energy (K1) 49.5 €/MWh 

Tick value  € 100 MWh / HDD 

Payout formula MAX(0,(K2 - HDD)*tick*(K1 - E)) 

Maximum payoff (cap) € 1,000, 000  
 
 

Table 5. Payoff (€) from the Quanto option in Table 4 under different spot market price
(€/MWh) and temperature (HDD) scenarios 

Temperature (HDD) €29/MWh €37/MWh €45/MWh €53/MWh €61/MWh 
1900 1,230,000 750,000 270,000 0 0 
2050 922,500 562,500 202,500 0 0 
2200 615,000 375,000 135,000 0 0 
2350 307,500 187,500 67,500 0 0 
2500 0 0 0 0 0 
2650 0 0 0 52,500 172,500 
2800 0 0 0 105,000 345,000 
2950 0 0 0 157,500 517,500 
3100 0 0 0 210,000 690,000 
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Table 6. Market data from Nord Pool (December 28, 2007) 
This table displays the closing prices of futures contracts (weekly maturities) and forward 
contracts (monthly, quarterly, and yearly maturities) for electricity seasoned at Nord Pool on 
the last trading day of 2007. Contracts at the bottom of the table whose ticker begins with 
‘SYOSL’ are the Contracts for Differences referred to in the Oslo bidding area – and enable 
the estimation of specific forward curves for this area. The remaining contracts are those 
whose underlying is the system price for the whole Nordic area. Columns with headings 
‘Startdate’ and ‘Enddate’ define the delivery period for each contract. 
 

Ticker Closing price Startdate Enddate 
ENOW01-08 47.79 2007-12-31 2008-01-06 
ENOW02-08 50.50 2008-01-07 2008-01-13 
ENOW03-08 51.50 2008-01-14 2008-01-20 
ENOW04-08 52.48 2008-01-21 2008-01-27 

ENOMJAN-08 51.11 2008-01-01 2008-01-31 
ENOMFEB-08 52.95 2008-02-01 2008-02-29 
ENOMMAR-08 49.90 2008-03-01 2008-03-31 
ENOMAPR-08 49.60 2008-04-01 2008-04-30 
ENOMMAY-08 47.60 2008-05-01 2008-05-31 
ENOMJUN-08 47.98 2008-06-01 2008-06-30 

ENOQ1-08 51.55 2008-01-01 2008-03-31 
ENOQ2-08 48.55 2008-04-01 2008-06-30 
ENOQ3-08 49.00 2008-07-01 2008-09-30 
ENOQ4-08 53.93 2008-10-01 2008-12-31 
ENOQ1-09 56.15 2009-01-01 2009-03-31 
ENOQ2-09 48.90 2009-04-01 2009-06-30 
ENOQ3-09 48.70 2009-07-01 2009-09-30 
ENOQ4-09 52.90 2009-10-01 2009-12-31 
ENOYR-09 51.70 2009-01-01 2009-12-31 
ENOYR-10 50.88 2010-01-01 2010-12-31 
ENOYR-11 50.10 2011-01-01 2011-12-31 
ENOYR-12 50.17 2012-01-01 2012-12-31 

SYOSLJAN-08 -1.00 2008-01-01 2008-01-31 
SYOSLFEB-08 -1.00 2008-02-01 2008-02-29 
SYOSLMAR-08 -1.00 2008-03-01 2008-03-31 

SYOSLQ1-08 -1.00 2008-01-01 2008-03-31 
SYOSLQ2-08 -1.00 2008-04-01 2008-06-30 
SYOSLQ3-08 -0.50 2008-07-01 2008-09-30 
SYOSLQ4-08 -0.50 2008-10-01 2008-12-31 
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Table 7: Summary statistics of electricity prices 
This table reports the descriptive statistics of electricity returns in Oslo (basic data provided by the Nord Pool market). Each column heading contains between brackets the 
number of observations. We have examined the holiday effect on electricity returns. The WW, WH, HW and HH headings refer to the returns obtained between two working 
days, a working day and a holiday, a holiday and a working day, and two consecutive days of holiday, respectively. The last four columns refer to meteorological seasons, 
where the winter is defined as the months of December, January, February and so on. Kruskal-Wallis statistics test equality between the whole sample and medians in each 
column time series. Levene statistics test equality between the whole sample and variances in each column time series. Skewness means the skewness coefficient and has the 
asymptotic distribution N(0; 6/T) under normality, where T is the sample size. The null hypothesis tests whether the skewness coefficient is equal to zero. Kurtosis means the 
excess kurtosis coefficient and has an asymptotic distribution of N(0 ; 24/T) under normality.  The hypothesis tests whether the excess kurtosis is equal to zero. The ADF and 
PP refers to the Augmented Dickey and Fuller (1981) and Phillips and Perron (1988) unit root tests on the original log-price time series. One-sided p-values computed 
following Mackinnon (1996) for the ADF and PP test are displayed as . (corresponding to the process with intercept and trend). The number of lags in the ADF test and the 
truncation lag in the PP test are obtained by information criteria (Schwarz and Newey and West, respectively). Marginal significance levels are displayed as [.] in the 
remaining tests.  
 

 WHOLE (3652) WW (1970) WH (548) HW (549) HH (585) Winter (902) Spring (920) Summer (920) Autumn (910)
Mean x 100 [=0] 0.03 [0.86] -0.58 [0.00] -4.60 [0.00] 9.49 [0.00] -2.42 [0.00] -0.08 [0.78] -0.33 [0.27] 0.33 [0.38] 0.19 [0.25] 

Median x100 [kruskal-wallis] -0.28 -0.39 [0.13] -3.27 [0.00] 6.57 [0.00] -1.14 [0.00] -0.47 [0.21] -0.69 [0.01] 0.08 [0.03] -0.03 [0.11] 
SD [levene] 0.09 0.07 [0.00] 0.08 [0.97] 0.10 [0.00] 0.07 [0.00] 0.09 [0.47] 0.09 [0.06] 0.11 [0.00] 0.05 [0.00] 

Skewness [=0] -0.01 [0.74] -2.02 [0.00] -2.56 [0.00] 3.67 [0.00] -6.36 [0.00] 2.34 [0.00] 0.70 [0.00] -1.90 [0.00] 1.25 [0.00] 
Kurtosis [=0] 35.72 [0.00] 61.38[0.00] 20.49 [0.00] 27.61 [0.00] 89.66 [0.00] 51.93 [0.00] 7.81 [0.00] 30.14 [0.00] 7.52 [0.00] 

Minimum -1.19 -1.19 -0.81 -0.12 -1.12 -0.81 -0.53 -1.19 -0.18 
Maximum 1.25 0.80 0.36 1.25 0.32 1.25 0.61 0.80 0.36 

ADF -4.28 0.00         
PP -4.97 0.00         

 
 
 



 
Table 8: Autocorrelation statistics for electricity prices 

This table reports the autocorrelation statistics of electricity returns for Oslo in the Nord Pool 
market. The column (.) reports the autocorrelation coefficient, while the Q(.) and Q2(.) labels 
identify columns containing the Ljung-Box tests for serial correlation on the levels and on 
their squares, respectively. At lag k, both test statistics are distributed as a Chi-square with k 
degrees of freedom. We report the p-values in brackets. 

 
Lags  Q(.) Q2(.) 

 -0.04 [0.02] 5.57 [0.02] 182.59 [0.00] 

 0.25 [0.00] 404.68 [0.00] 855.68 [0.00] 

 0.26 [0.00] 717.46 [0.00] 1297.75 [0.00] 

 0.29 [0.00] 1120.58 [0.00] 1438.98 [0.00] 

 0.21 [0.00] 2618.56 [0.00] 1596.19 [0.00] 

 0.21 [0.00] 12149.22 [0.00] 1816.69 [0.00] 

 
 
 

 
Table 9. Summary statistics of temperature in Oslo - raw data [°C] 

 
This table reports the descriptive statistics of temperature data in Oslo (raw data provided by the National 
Climate Data Center). Each column heading contains between brackets the number of observations. We have 
also examined meteorological seasons, where the winter is defined as the December, January and February 
months and so on. Kruskal-Wallis statistic tests equality between the whole sample and medians in each column 
time series. Levene statistic tests equality between the whole sample and variances in each column time series. 
Jarque-Bera statistic tests whether the time series is normally distributed. The reported probability [p-value] is 
the probability that a Jarque-Bera statistic exceeds (in absolute value) the observed value under null hypothesis 
of a normal distribution. The ADF and PP refer to the Augmented Dickey and Fuller (1981) and Phillips and 
Perron (1988) unit root tests on the original log-price time series. One-sided p-values computed for the ADF and 
PP test are displayed as . (corresponding to the process with intercept and trend). The number of lags in the 
ADF test and the truncation lag in the PP test are obtained by information criteria (Schwarz and Newey and 
West, respectively).   
 
  WHOLE (11323) Winter (2798) Spring (2852) Summer (2852) Autumn (2821) 

Mean 4.48  -5.52  3.92  14.70  4.62  

Median [Kruskal-Wallis] 4.64  -4.64 [0.0] 3.89 [0.0] 14.50 [0.0] 5.11 [0.17] 

SD [Levene] 8.95  6.17 [0.0] 5.95 [0.0] 3.06 [0.0] 5.78 [0.0] 

 Skewness -0.37  -0.61  -0.27  0.19  -0.36  

Kurtosis 2.61  2.93  3.28  2.68  2.71  

Minimum -27.94  -27.94  -18.86  5.50  -15.50  

Maximum 23.64  7.36  19.31  23.64  18.36  

Jarque-Bera [p-value]  328.3 [0.00]   175.2 [0.00]   43.2 [0.00]   29.7 [0.00]   71.2 [0.00]  

ADF [p-value] -6.93 [0.00] -14.7 [0.00] -13.11 [0.00] -17.70 [0.00] -14.45 [0.00] 

PP [p-value] -13.51 [0.00] -16.54 [0.00] -13.08 [0.00] -17.32 [0.00] -14.68 [0.00] 
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Table 10. Autocorrelation statistics of temperature data 
This table reports the autocorrelation statistics of time series of daily temperature in Oslo after 
removing trend and seasonality in mean. The column (.) reports the autocorrelation 
coefficient, while the Q(.) and Q2(.) labels identify columns containing the Ljung-Box tests 
for serial correlation on the levels and on squares, respectively. At lag k, both test statistics are 
distributed as a Chi-square with k degrees of freedom. We report the p-values in brackets. 

 
Lags  Q(.) Q2(.) 

 0.80 [0.00] 7298.93 [0.00] 5732.10 [0.00] 

 0.61 [0.00] 11517.06 [0.00] 8342.09 [0.00] 

 0.49 [0.00] 14223.61 [0.00] 9981.17 [0.00] 

 0.4 [0.00] 16070.93 [0.00] 11169.77 [0.00] 

 0.34 [0.00] 17373.74 [0.00] 12033.06 [0.00] 

 0.19 [0.00] 20672.91 [0.00] 14949.36 [0.00] 

 0.14 [0.00] 23438.71 [0.00] 17490.67 [0.00] 

 0.06 [0.00] 26204.58 [0.00] 21723.53 [0.00] 

 0.00 [0.00] 26405.62 [0.00] 22595.09 [0.00] 

 0.00 [0.00] 26470.80 [0.00] 28367.76 [0.00] 

 0.05 [0.00] 27662.87 [0.00] 42254.09 [0.00] 

 
 

 
Table 11. Correlation between electricity and temperature 

 WHOLE WINTER SPRING SUMMER AUTUMN
Energy log-price changes 

and temperature levels 
-0.0235 -0.1317* -0.0500 0.0160 -0.1024* 

Energy log-price changes 
and temperature changes 

-0.2102* -0.2644* -0.2880* 0.1146* -0.1163* 

* indicates significant at the 5% of significant level. 
 
 
 
Table 12. Coefficients in the mean deterministic component 

Energy Temperature 

Coeff. St.dev. T-stat Coeff. St.dev. T-stat 

βi,1: Constant 2.314 0.148 15.683 5.477 0.202 27.074 
βi,2: Linear trend 0.332 0.062 5.388  

βi,3: Yearly cosine wave 0.211 0.073 2.888 -10.242 0.297 -34.486 
βi,4: Yearly sine wave -3.513 0.269 -13.043 

δ1,1: Friday -0.021 0.006 -3.600  

δ1,3: Sunday -0.031 0.011 -2.935  

δ1,3: Non-working days -0.065 0.014 -4.681  
The table reports estimated coefficients together with their standard errors and T-statistics. Note that i=1 for 
Energy and i=2 for temperature. The last three coefficients enter only in the energy equation. 
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Table 13. Coefficients in the mean dynamic component 
Energy Temperature 

Coeff St.dev. T-stat Coeff St.dev. T-stat 
di :Memory 0.397 0.059 6.731 0.189 0.046 4.101 
ø1,1,1: Energy (t-1) 0.134 0.050 2.693    
øi,2,1: Temperature (t-1) -0.004 0.003 -1.279 0.194 0.095 2.050 
ø1,1,2: Energy (t-2) -0.001 0.046 -0.024    
øi,2,2: Temperature (t-2) 0.109 0.002 52.716 0.001 0.070 0.012 
ø1,1,3: Energy (t-3) 0.060 0.017 3.487    
øi,2,3: Temperature (t-3) 0.000 0.001 0.031 -0.026 0.014 -1.809 
ø1,1,4: Energy (t-4) 0.001 0.018 0.043    
ø1,2,4: Temperature (t-4) 0.037 0.001 57.233 0.001 0.017 0.044 
ø1,1,5: Energy (t-5) 0.356 0.017 21.546    
øi,2,5: Temperature (t-5) 0.006 0.001 10.242 0.230 0.015 15.529 
ø1,1,6: Energy (t-6) 0.203 0.017 11.853    
øi,2,6: Temperature (t-6) -0.004 0.001 -7.114 0.026 0.017 1.558 
ø1,1,6: Energy (t-7) -0.007 0.032 -0.222    
øi,2,7: Temperature (t-7) 0.017 0.002 8.031 -0.168 0.043 -3.908 
ξ1,1,1: Energy SAR(1) -0.243 0.034 -7.056    
ξi,2,1: Temperature SAR(1) -0.007 0.002 -3.074 0.189 0.043 4.450 
θ1,1,1: MA(1) Energy 0.372 0.061 6.059    
θi,2,1: MA(1) Temperature 0.001 0.003 0.340 0.454 0.096 4.733 

The table reports estimated coefficients together with their standard errors and T-statistics. Note that i=1 for 
Energy and i=2 for temperature. Non-significant coefficients are reported in italics. 

 
 
 
 
 

Table 14. Coefficients of the variance dynamic 
Energy Temperature 
Coeff St.dev. T-stat Coeff St.dev. T-stat 

ωi: intercept -0.684 0.317 -2.156 0.645 0.366 1.764
αi,i: ARCH 0.176 0.022 7.889 0.042 0.013 3.271
α1,2: temperature innovations (t-1) -0.023 0.014 -1.667       
ξi,i: GARCH 0.730 0.057 12.837 0.618 0.225 2.748
ξ1,2: temperature variances (t-1) 0.066 0.029 2.303       
γi,1: Yearly Cosine wave -0.206 0.096 -2.141 0.186 0.117 1.597
γi,2: Yearly Sine wave 0.007 0.023 0.285 0.029 0.031 0.944
φ1,1: Monday 0.754 0.184 4.092       
φ1,2: Friday 0.498 0.242 2.057       
φ1,3: Saturday -0.182 0.461 -0.396       
φ1,4: Non-working days 0.401 0.264 1.519       

The table reports estimated coefficients together with their standard errors and T-statistics. Note that i=1 for 
Energy and i=2 for temperature. Non-significant coefficients are reported in italics. 
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Table 15. Coefficients of correlation dynamic 
Coeff St.dev. T-stat 

ψ0: intercept -0.186 0.013 -14.080 
ψ1: innovations -0.013 0.006 -2.213 
ψ2: persistence 0.943 0.027 35.001 

ψ3,1: yearly cosine wave -0.014 0.005 -2.563 
ψ3,2: half-yearly cosine wave 0.006 0.002 2.470 
ψ3,3: quarterly cosine wave 0.005 0.003 2.002 
ψ4,1: yearly sine wave 0.001 0.002 0.127 

ψ4,2: half-yearly sine wave 0.001 0.002 0.604 
ψ4,3: quarterly sine wave -0.004 0.002 -2.239 

The table reports estimated coefficients together with their standard errors and T-statistics.  
Non-significant coefficients are reported in italics. 

 
 
Table 16. Monte Carlo simulations of weather and energy variables  
This table reports the mean, minimum, maximum, positive and negative semi-deviation of 
Monte Carlo simulated weather and energy variables appearing in Equation (15) that will be 
used to compute Quanto options payouts. In Panels A and B the model appearing in Section 4 
and estimated in Section 5.2 is used to obtain 10,000 simulations for the whole of year 2008. 
In Panel C, the Monte Carlo simulation of the energy variable is carried out after the 
estimated trend of the process for energy prices is substituted with the risk-neutral trend 
appearing in Figure 2.  

 
Panel A. HDD simulations with the real estimated distribution. 

Statistics January February March April Autumn 
Minimum 332.36 323.43 256.62 128.63 937.57 

Mean 688.87 638.02 571.98 397.31 1,528.51 
Maximum 1,029.20 970.53 948.53 660.40 2,212.05 

Semi-deviation (-) -53.12 -54.84 -50.10 -40.01 -96.61 
Semi-deviation (+) 53.78 53.71 48.98 40.00 98.60 

 
Panel B. Average energy prices simulations with the real estimated distribution. 
Statistics January February March April Autumn 
Minimum 12.95 8.97 13.39 10.11 24.96 

Mean 43.50 42.73 38.66 34.98 46.47 
Maximum 244.75 198.56 119.97 108.18 106.61 

Semi-deviation (-) -10.09 -13.13 -8.59 -7.25 -5.44 
Semi-deviation (+) 4.40 5.54 4.44 4.02 3.79 

 
Panel C. Average energy prices simulations with the risk-neutral (calibrated) distribution. 

Statistics January February March April Autumn 
Minimum 12.75 12.68 18.35 19.42 26.23 

Mean 43.30 46.43 43.62 44.28 47.73 
Maximum 244.55 202.27 124.94 117.48 107.87 

Semi-deviation (-) -10.09 -13.13 -8.59 -7.25 -5.44 
Semi-deviation (+) 4.40 5.54 4.44 4.02 3.79 
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Table 17. Specification of Quanto options based on HDD and energy price for Oslo 
Temperature index 
(HDD) 

Index with base 18C cumulated during protection period basing on readings from 
meteorology station in Oslo (WMO 1384) 

Energy Index (E) Nord Pool spot price (monthly arithmetic average) during protection period  
Tick value €10  × MWh / HDD 
Maximum payout No limit 
Payout formula for 
Quanto option I MAX[0,(K2-HDD)*tick*(K1 - E)] 
Payout formula for  
Quanto option II MAX[0,(HDD-K2)*tick*(K1 - E)] 
Protection period January 2008 February 2008 March 2008 April 2008 Autumn 2008 
Strike energy (K1)* 50.11 51.95 48.9 49.6 53.43 
Strike HDD (K2)** 683 622 589 400 1579 
* Forward prices (€/MWh) for Oslo electricity prices at Nord Pool in 28 December, 2007; to be used 

as strikes for energy prices. These prices are closing prices. The Autumn protection period refers to 
the 4th quarter: October, 1; to December, 31.  

** 10 years average HDD decreased by 2 points for each month and decreased by 5 points for each quarter 
to be used as strikes for weather index with dealer margin included. 

 
 
 

Table 18. Euribor(%) December 31st, 2007 
 

Period act/360 log. Rate 
1 week 4.141 4.139 
2 weeks 4.175 4.172 
3 weeks 4.228 4.223 
1 month 4.288 4.280 
2 months 4.494 4.477 
3 months 4.684 4.657 
4 months 4.698 4.662 
5 months 4.702 4.657 
6 months 4.707 4.652 
7 months 4.713 4.649 
8 months 4.716 4.643 
9 months 4.725 4.643 

10  months 4.732 4.641 
11 months 4.739 4.639 
12 months 4.745 4.636 
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Table 19. Quanto options valuation 
The last row in each panel reports the final price for each given type of option. In both 
approaches the final price is the mean value discounted with the risk-free rates. Panels A and 
B represent pure Actuarial approach, while panels C and D represent the Financial approach 
where in the Monte Carlo simulation the estimated trend of the energy prices is calibrated 
with the risk-neutral trend (forward curve of energy prices) appearing in Figure 1 and then 
discounted with the risk-free rates. Panel E shows the the real pay-offs of Quanto options 
using the true temperature and electricity prices in 2008.  

 
Panel A. Actuarial approach to Quanto option I 

Statistics January February March April Autumn 
Mean € 4,966 € 6,674 € 7,069 € 5,385 € 10,365

Standard deviation € 10,227 € 13,292 € 10,589 € 8,671 € 15,700
Value at Risk 95% € 22,430 € 30,625 € 29,197 € 23,441 € 43,707
Value at Risk 99% € 40,050 € 56,395 € 46,442 € 38,416 € 69,091

Maximum € 283,731 € 243,060 € 99,101 € 89,969 € 133,427
Final price € 4,948 € 6,625 € 6,987 € 5,302 € 9,896

 

Panel B. Actuarial approach to Quanto option II 
Statistics January February March April Autumn 

Mean € 2,160 € 3,201 € 1,730 € 2,818 € 2,148
Standard deviation € 4,221 € 5,781 € 3,834 € 4,886 € 5,101
Value at Risk 95% € 10,652 € 15,607 € 9,898 € 13,408 € 12,465
Value at Risk 99% € 18,904 € 26,024 € 17,688 € 20,995 € 24,613

Maximum € 95,235 € 56,792 € 39,657 € 43,951 € 61,797
Final price € 2,152 € 3,178 € 1,710 € 2,774 € 2,050

 
Panel C. Financial approach to Quanto option I 

Statistics January February March April Autumn 
Mean € 5,000 € 6,322 € 5,591 € 3,450 € 9,483

Standard deviation € 10,260 € 13,158 € 8,874 € 6,013 € 14,606
Value at Risk 95% € 22,590 € 28,781 € 23,532 € 15,081 € 40,265
Value at Risk 99% € 40,455 € 55,778 € 39,572 € 26,760 € 64,671

Maximum € 283,443 € 251,101 € 112,137 € 98,287 € 127,495
Final Price € 4,982 € 6,275 € 5,526 € 3,397 € 9,054

 

Panel D. Financial approach to Quanto option II 
Statistics January February March April Autumn 

Mean € 2,206 € 2,256 € 1,097 € 1,133 € 1,905
Standard deviation € 4,280 € 4,564 € 2,784 € 2,459 € 4,633
Value at Risk 95% € 10,846 € 11,725 € 6,575 € 6,201 € 11,303
Value at Risk 99% € 19,078 € 21,457 € 13,239 € 11,490 € 22,413

Maximum € 94,892 € 49,769 € 44,689 € 36,211 € 56,804
Final price € 2,198 € 2,239 € 1,084 € 1,116 € 1,818

 
Panel E. Real Quanto pay-offs in 2008 

Quanto option I €4,697 €15,051 0 €3,247 0 
Quanto option II 0 0 €317 0 €1,729 
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Figure 1. 60 days rolling correlations between energy and temperature variance standardised 
residuals. 
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Figure 2. Oslo forward curve for the year 2008 computed on 28 December, 2007. 
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Figure 3. Distribution of simulated HDD values for Oslo for different contract option periods. 
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Figure 4. Distribution of simulated energy meanprices for Oslo for different contract option 
periods. 
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