
Informatica Economică, nr. 2 (42)/2007

106

Comparative Analysis of Business Object Approaches

Alina VLĂŞCEANU, alina.vlasceanu@ccr.ro
The Constitutional Court of Romania, Chief of the IT Department

Roxana-Adina IRIMIA, Roxana.Irimia@ro.ibm.com
IBM Romania, IT specialist

This paper presents a comparison of several technologies for developing distributed

applications. The specific technologies into consideration are: one focused on
COM/DCOM/COM + Microsoft technologies, Internet Explorer and ActiveX – and the other
focused on Netscape, CORBA, JAVA/J2EE solutions.
Rapidly changing business processes require quick adaptation of supporting information sys-
tems. Component technologies in general and business objects, in particular seem a promis-
ing approach.
In this paper, we survey, analysis and compare objects approaches. We develop a comparison
model covering concepts, distribution infrastructure, object facilities and object solutions. We
then use the model to analysis the Combined Submission to the OMG Business Object Do-
main. Each of the approaches allows us to compare them analytically.
Keywords: integrated technologies, interoperability, distributed systems, components, dis-
tributed architecture

ICROSOFT versus SUN vision re-
lated to components technologies

Web industry is divided in two polls: one fo-
cused on COM/DCOM/COM + Microsoft
technologies, Internet Explorer and ActiveX
– and the other focused on Netscape,
CORBA, JAVA/J2EE solutions.
In order to interact, the components must af-
filiate to a binary structure specified by Mi-
crosoft. As long as the components affiliate
to this binary structure, the components writ-
ten in different languages can interoperate.
COM/DCOM/COM+ represent a part of the
possible technologies that allow distributed
applications. Some technologies, like RPC
(Remote Procedure Call) permit distribution
at low level.
Usually, COM and DCOM are associated
along with OLE, ActiveX, MTS and COM+.
Indeed, these, as well as other technologies
constitute the Microsoft’s object oriented and
distributed strategy. This strategy is called
DNA (Distributed InterNet Architecture) and
has a complete set of products and specifica-
tions for implementing networking central
applications.
CORBA (Common Object Request Broker
Architecture) and J2EE (Java 2 Enterprise
Edition) technologies can be considered di-

rectly competitors of COM/DCOM.
COM objects can be created and manipulated
by Java code.
The tools are supplied for creating Java
classes which contains COM information li-
braries.
Generally, the Microsoft approach regarding
Java support implies a close joining with exist-
ing Internet strategy (Internet Explorer,
COM/DCOM, and ActiveX).
The main differences between EJB and COM
are:
- COM components can be written in many
languages (Visual Basic, C++, Java, Delphi),
while EJB (Enterprise JavaBeans) can be
written only in Java code;
- COM components work only on Windows
platforms, while EJB and EJB associated
servers are portable and, as a result, are
working on a large variety of platforms.
While COM and DCOM represents the low
level of technology that allows components
to interact, OLE, ActiveX and MTS represent
the high level of the applications services
which are built on the COM and DCOM
technologies.
OLE deliver services such as linked and em-
bedding objects which are used in creating
compound documents.

M

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6612732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:alina.vlasceanu@ccr.ro
mailto:Roxana.Irimia@ro.ibm.com

Informatica Economică, nr. 2 (42)/2007

107

ActiveX extend the basis capacities of COM
related to organization services, such as
transactions and security which allow Enter-
prise Information System’s to be built using
COM components.
Distribution support and services quality de-
livered by COM+ can help to overcome the
complexity involved in these architectures.
COM+ integrates MTS services and mes-
sages which form a queue to COM and make
COM programming much easier through an
approach integration with Microsoft lan-
guages, for example Visual Basic, Visual
C++ and J++.
Directly competitors of CORBA’s are
DCOM/ActiveX, WebObjects and RMI.
The joining between JAVA and CORBA
brings a lot of advantages for CORBA, such
as: supplements CORBA services regarding
the objects life cycle control, simplifies code
distribution in large CORBA systems, and it
is the ideal language for writing CORBA ob-
jects.
DCOM, just as CORBA, separates imple-
mentation interface, and all the interfaces
must be described using an IDL. Microsoft
IDL depends on DCE and it is not compati-
ble with CORBA. While CORBA depends
on classic object model, DCOM doesn’t. A
DCOM component doesn’t support multiple
heritance, but it can implement several inter-
faces, and thus code reutilization doesn’t re-
sult from heritance, but from aggregation.

CORBA - JAVA RMI comparative analysis
The relation between JAVA and CORBA is
more about complementary than competition.
JAVA is an excellent language for describing
CORBA objects. It implements components
service from CORBA, based on OpenDoc.
While CORBA defines visual containers for
components and mobile recording containers,
JAVA can deliver the content of such con-
tainers (Java Beans).
More than that, the mobile code facilities
from JAVA allow the partition of an applica-
tion between client and server at the execu-
tion moment. JAVA simplifies the code dis-
tribution in large CORBA systems through a
centralized management of code on the

server and distribution to the clients, when
and where is necessary.
In compensation, CORBA brings three im-
mediately benefits to Web applications: al-
low the avoiding of the CGI neck less
through direct invocation by the client of
servers’ methods, facilities a scalable infra-
structure of servers (server objects can com-
municate using CORBA ORB), extends
JAVA with a distributed objects infrastruc-
ture (the possibility of communication be-
tween different addresses spaces).

Comparative analyze of CORBA – SOAP
technologies
In order to understand the present problems
in the framework of Web services technolo-
gies, a comparative analysis regarding SOAP
and other distributed technologies is abso-
lutely necessary.
CORBA offers an object oriented distributed
technology. Moreover, the Enterprise Java
Beans technology promoted by the Sun Mi-
crosystems and adopted by all the big com-
panies concentrated on JAVA development,
became compatible with OMG platform. The
SOAP goal isn’t to replace or to remove
CORBA from the market, but, on the con-
trary, OMG recently launched SOAP –
CORBA interoperability specification.
Also, there are certain projects that try to cre-
ate interoperability between technologies
based on SOAP and CORBA platforms.
Further, it can be identifies a set of CORBA
services that doesn’t have an equivalent in
SOAP technology.
SOAP contains specifications which ex-
ceeded the level of a protocol. In basis of the
SOAP facilities and considering the W3C
recommendations on the invocation modes,
higher level services are built (for example
WSDL and UDDI).
Interoperability between different platforms
CORBA contains components that work on
any computer, called ORB (Object Request
Broker) components.
In version 1.0 CORBA didn’t offer the im-
plementation details of these components,
and therefore the interoperability between
clients and server was much reduced.

Informatica Economică, nr. 2 (42)/2007

108

CORBA 2.0 has introduced the IIOP protocol
which offers high interoperability between
applications from different platforms.
On the other side, SOAP runs on the WEB
protocols known as HTTP or SMTP. In this
way, it can be used on any existing platform.
Data transmitting format
The CORBA platform uses the binary encod-
ing format and in this way it brings a plus in
the system’s performance.
IIOP protocol implies that both the transmit-
ter and the receiver have complete knowl-
edge regarding the message and it doesn’t in-
clude meta-information. This enhances the
performance, but excludes the possibility of
intermediary nodes for processing and trans-
forming messages. In this way it is easier to
repair programs, because the data are from
the beginning within a system legible for the
developers.
SOAP uses the XML format for data encod-
ing both in text and binary form.
Scalability
CORBA is an object oriented platform.
Therefore, most calling are stateful. Never-
theless, for stateless callings (pure RPC),
CORBA offers a very simple mechanism
through ORG components of every com-
puter. The choice between stateful and state-
less invocation is at the developers’ option.
In most cases, SOAP functions over HTTP or
SMTP protocols. HTTP is a stateless proto-
col, and therefore the stateful session be-
tween successive invocations can be
achieved either through cookies or by the
transmission of certain objects IDs into mes-
sages.
Objects identity and life cycle
The identity of an object is maintained
through objects references of “substitute”
type (stub) which work on the client’s com-
puter. CORBA can be used for transparent
communications between application’s ob-
jects.
SOAP doesn’t require an identity mechanism
of objects. The Web services are, generally,
identified by an URL. If the identity object is
missing, we can notice that SOAP is an RPC
system and not an ORPC system, because it
isn’t based on objects (classes, instances),

and even less oriented on objects (heritance,
polymorphism, etc.). If the identities are not
maintained, the objects are destroyed after an
inactivity period.
Transport protocols
CORBA in version 2.0 defines IIOP, as a dif-
ferent reading of GIOP (General Inter-ORB
Protocol) based on TCP/IP protocol.
There is the possibility to use another proto-
col called DCE CIOP (DCE Common Inter-
ORB Protocol).
In case of SOAP, the protocol defined for the
methods calls is HTTP, while SMTP can be
used for other types of messages.
There is also the possibility to implement the
support for other protocols (such as FTP pro-
tocol).
Security
CORBA security service offers a variety of
security politics for different scenarios. This
service refers to the authentication, authori-
zation and encoding of messages.
SOAP allows the use of different services
that refer to different levels. However, there
is no standard regarding the authentication
and authorization, each web service devel-
oper implementing his own security method.
Easy to use
CORBA is a platform where implementation
is quite complex from many points of view:
- use of two different languages (client/server
language and interfaces description lan-
guages – IDL);
- a very large set of services (security, trans-
actions, objects life cycle, publishing and
finding interfaces etc.);
- the distribution system of clients and serv-
ers with ORB components require the pres-
ence of these components on the client com-
puters.
On the other hand, the most important advan-
tage of SOAP technology is its simplicity.
The basic technologies are HTTP and XML,
so the development is quite simple and easy
to understand. However, the high level ser-
vices such as WSDL and UDDI have com-
plicated a bit the SOAP world.
Limitation of SOAP technology
As it was already mentioned, CORBA offers
a quite large set of services. For example,

Informatica Economică, nr. 2 (42)/2007

109

when Enterprise Java Beans appeared, Sun
Microsystems related to the CORBA list of
services in order to implement a subset of
such services.
Yet, SOAP offers a larger simplicity both in
message systems and in data representation.
But the lack of certain services bothered the
developers: there are no objects identities,
there isn’t an event service; the procedure
calls are only synchronous; there isn’t a stan-
dard modality of authentication and authori-
zation.

JAVA VERSUS .NET
Nowadays, there are two important platforms
for new application: Java 2 Enterprise Edi-
tion (J2EE) and Microsoft .NET.
.NET has certain advantages, because it has
used from the beginning modern technology,
such as XML and web services. By develop-
ing its own virtual java machine, Microsoft
solved the problems of JAVA interpreter.
.NET and J2EE are very similar, but Micro-
soft offers a more modern technical solution,
by implementing web technologies and XML
language. Likewise, the C# language and the
virtual machine (CLR) are ideas deriving
from JAVA.
Several functionalities of Windows operating
systems can be used directly, such as IIS
(Internet Information Services) web server,
Active Directory, OLEDB and Windows
Load Balancing. The efficient coupling with
the operating system is the cause of the im-
proved performances of .NET applications,
as compared with J2EE applications, al-
though it is difficult to assess the objectivity
of the tests.
In order to take the right decision in the fu-
ture, the users have to consider two important
criteria:
• the potential of development and compre-
hensibility maintained by a certain platform;
• the platform’s own solutions offer, which
are necessary to remain on the market.
JAVA language had an important develop-
ment in the last five years, due to the associ-
ated technical platform power.
Recently, Microsoft offered a similar techno-
logical platform.

The concept of Component Object Model
(COM) became too complex because of the
support for different languages. Likewise, the
distribution processing with DCOM solution
based on Microsoft RPC concept and on
Windows registry didn’t prove to be com-
patible with Internet.
J2EE products acquired, in time, an accept-
able level of maturation.
If we measure the productivity only accord-
ing to the “code numbers”, .NET has certain
advantages as against J2EE.
Also, there are other differences of strategic
importance:
A. J2EE isn’t a product, but a specification
for which different companies offer several
products.
The applications are independent of the mid-
dleware support owner. In this way, the com-
panies not only obtain independence as re-
gards certain providers, but they can develop
their own technological platforms.
.NET is a products collection of a single pro-
ducer and it works only with Windows sys-
tem. In this way is assured the integration of
different components using some special
characteristics of the Windows operating sys-
tems.
B. J2EE is independent of the operating sys-
tem concept.
The portability is provided by Java Runtime
Environment, and the application server and
other middleware products can be pro-
grammed according to the operating system.
Beside these aspects, there are other impor-
tant criteria to take into account while mak-
ing a decision regarding these two technolo-
gies, such as the comprehensibility and de-
velopment level. The J2EE advantage is the
existence of API interfaces -Application Pro-
gramming Interface), which creates a techno-
logical independence of applications.
This facilitates the future development of
technology with reduced secondary effects.
JAVA components model is more methodic
and more elaborated, and the architecture
based on connectors offers the basis for a
larger interoperability than the correspondent
facilities in the .NET technology.

Informatica Economică, nr. 2 (42)/2007

110

Conclusions
The approaches we assessed are at different
stages of their development and they are
based on different technologies.
Business applications composed from busi-
ness objects will be different from conven-
tionally developed ones. Business applica-
tions will consist of heterogeneous and dis-
tributed business objects that encapsulate cer-
tain functionality. Business objects exist in-
dependently and autonomously. They are in-
tegrated into coherent software architectures
by business object facilities.
Software processes that deploy business ob-
jects will be different, too.
They will have to be more flexible and
adaptable. In particular, they will be less
geared towards the development of objects.
Future software processes will involve ex-
plicit make-or-buy decisions. These have to
be supported by tasks that research the mar-
ket for suitable objects and activities that
evaluate candidate objects.

References
[1] Support for comprehensive reuse. Soft-
ware Engineering Journal, V. R. Basili and H.
D. Rombach, September [1991]
[2] Essays on Object-Oriented Software En-
gineering, E. Berard, Prentice Hall, [1993]
[3] Object-Oriented Languages, Systems and
Applications, G. S. Blair, J. J. Gallagher, D.
Hutchinson and D. Shepard, Halsted Press,
[1991]
[4] Middleware Isolates Business Logic, K.
Bohrer, Object Magazine, November [1997]
[5] Microsoft Transaction Server Program-
ming, S. Hillier, Microsoft Press, [1998]
[6] Software reuse, C. W. Krueger, ACM
Computing Surveys, 24(2), [1992]
[7] Instant UML, P. A. Muller, Wrox Press,

[1997]
[8] OMG. COMMON Facilities RFP-4:
Common Business Objects and Business Ob-
ject Facility. Technical Report TC Document
CF/96-01-04, Object Management Group,
492 Old Connecticut Path, Framingham, MA
01701, USA, [1996]
[9] CORBA services: Common Object Ser-
vices Specification, Revised Edition. 492 Old
Connecticut Path, Framingham, MA 01701,
USA, March [1996]
[10] OMG. Combined Business Object Facil-
ity: Business Object Component Architec-
ture. Technical Report TC Document
BOM/98-01-07, Object Management Group,
492 Old Connecticut Path, Framingham, MA
01701, USA, JAN [1998]
[11] OMG. Combined Business Object Facil-
ity: Common Business Objects. Technical
Report TC Document BOM/98-01-06, Object
Management Group, 492 Old Connecticut
Path, Framingham, MA 01701, USA, JAN
1998.
[12] OMG. Combined Business Object Facil-
ity: Interoperability Specification. Technical
Report TC Document BOM/98-02-03, Object
Management Group, 492 Old Connecticut
Path, Framingham, MA 01701, USA, JAN
[1998]
[13] Developing Java Web Services, Ramesh
Nagappan, Robert Skoczylas and Rima Patel
Sriganesh, John Wiley & Sons, [2003]
[14] SOAP Programming with Java, Bill
Brogden, Sybex, [2002]
[15] Component-Based Software
Development: Case Studies, Kung-Kiu Lau,
World Scientific Publishing Co, [2004]
[16] Developing Secure Distributed Systems
with CORBA, Ulrich Lang and Rudolf
Schreiner, Artech House, [2002]

	Keywords: integrated technologies, interoperability, distributed systems, components, distributed architecture
	
	M
	ICROSOFT versus SUN vision related to components technologies
	Web industry is divided in two polls: one focused on COM/DCOM/COM + Microsoft technologies, Internet Explorer and ActiveX – and the other focused on Netscape, CORBA, JAVA/J2EE solutions.
	In order to interact, the components must affiliate to a binary structure specified by Microsoft. As long as the components affiliate to this binary structure, the components written in different languages can interoperate.

