
Informatica Economică vol. 13, no. 3/2009 49

Numerical Methods for Obtaining Multimedia Graphical Effects

Alexandru SMEUREANU1, Ştefan Daniel DUMITRESCU2
1Academy of Economic Studies, Bucharest,

2Politehnica University of Bucharest
alexandru.smeureanu@i-neo.ro, dumitrescu.stefan@gmail.com

This paper is an explanatory document about how several animations effects can be obtained
using different numerical methods, as well as investigating the possibility of implementing
them on very simple yet powerful massive parallel machines. The methods are clearly
described, containing graphical examples of the effects, as well as workflow for the
algorithms. All of the methods presented in this paper use only numerical matrix
manipulations, which usually are fast, and do not require the use of any other graphical
software application.
Keywords: raster graphics, numerical matrix manipulation, animation effects

Introduction
This article describes a few basic but very

widespread visual effects than can be easily
implemented. The methods described can be
used as a first step towards understanding
how different and more complex
transformations can affect an image and why
do they actually work. All the
transformations and effects that mimic real
world processes like fire and water
reflections are created by respecting the
common laws of physics.
Because each of the image instances of the
animations are individually computed based
on different mathematical functions, the
animation can be regarded as a “vector
animation” rather than normal animation that
usually involves the fast redrawing of a
sequence of raster images on the screen.
Similar to the use of vector images instead of
raster images, this technique shares some
common properties: the size of the animation
is considerably lower, it can be zoomed in or
out without loss of quality and usually
requires a larger amount of processor time to
be displayed.
In the next part of this paper we will present
the implementation of three effects: fire
effect, water effect and the tunnel effect,
better known as the wormhole effect.

2 Implementing the fire effect
By analyzing an infrared image of a real fire,
we can observe how heat is distributed.

Normally the heat is building up at the
bottom of the fire and is gradually dissipating
towards the top of the fire. Also, the shape of
the fire flames tends to have a sharp triangle
shape towards the top. Based on these
observations we can conclude that the
intensity of the fire in one point depends on
the intensity of the fire bellow this current
point. For implementation purposes, the
intensity of the fire is measured with the use
of an integer value between 1 and 255. Each
intensity value is directly linked to a color
value, obtained with the use of a gradient.

CP

SE

SS

SWS

Current point

The base points

Fig. 1. Fire intensity modeling

 – Fire intensity on south east point
 – Fire intensity on the south east point

coefficient
 – Fire intensity on south west point
 – Fire intensity on the south west point

coefficient

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6612719?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

50 Informatica Economică vol. 13, no. 3/2009

 – Fire intensity on south point
 – Fire intensity on the south point

coefficient
 – Fire intensity on south point further

below
 – Fire intensity coefficient on the south

further point
 – Attenuation coefficient

The intensity of all the points are computed
and stored in a matrix with a number of rows
and columns equal to the height and width of
the desired image [1]. The intensity matrix is
computed bottom up. The first row of the
matrix has to be generated random or given

by the user. This row represents the source of
the fire.
The five intensity coefficients can be
tweaked in order to create different looking
fires [2]. In order to respect the symmetry of
the fire, the south east and south west
coefficients have to be the same. The most
important coefficient of all is CCP and
represents the attenuation of the fire. If its
value is too big the flames will be very short
and if the value is too small, bellow the sum
of all the other coefficients, the flames will
leave the screen.
These are the results for two configurations:

Fig. 2. Higher attenuation with random generated source of fire

Fig. 3. Lower attenuation with still source of fire

Several other color improvements can be
added to make it seem more real, like double

gradient in order to simulate smoke.

Fig. 4. Implementation of fire with smoke using double gradient

For an even more realistic effect, small
random disturbances can be introduced in the
matrix from time to time, and the fire source

points can also be programmed to show a
variance in time.

Informatica Economică vol. 13, no. 3/2009 51

Fig. 5. Mechanical water waves

3 Implementing the water effect
Water waves are mechanical waves that
travel on the surfaces of liquids. The
implementation of a water effect is composed
of three major parts [3]:
• The first part is the simulation of the

wave propagation

• The second part is computing the light
reflection

• Finally, rendering the image frame
Step 1. Simulating the water wave
propagation

Fig. 6. Water wave components

Similar to the implementation of the fire
effect, the water effect uses an intensity
matrix which has the same dimensions as the
image. The intensity matrix is initialized with
zero values, representing calm water. In
order to produce a wave, a point of the
matrix is “pushed” by setting a negative

intensity value.
The propagation is done by using a simple
sampling algorithm very much similar to the
algorithm used for blurring images. Current
point intensities are computed based on the
neighbors’ values.

NW NEN

CP E

S SESW

W

Fig. 7. Water wave intensity

modeling

where:

 – Wave intensity on south east point
 – Wave intensity on south west point

 – Wave intensity on south point
 – Wave intensity on east point
 – Wave intensity on west point
 – Wave intensity on north east point
 – Wave intensity on north west point

 – Wave intensity on north point
 – Attenuation factor

52 Informatica Economică vol. 13, no. 3/2009

Because the current point is computed based
on all the neighbor points, the order in which
the values of the points are computed affects
the outcome. In order eliminate this effect an
auxiliary matrix is used to store the results of

the current stage. After all the values are
computed, the auxiliary matrix is copied back
over the intensity matrix.

Fig. 8. The procedure for computing the intensity matrix

Step 2. Calculating the refraction of the
light
Looking from above a water pool, object at
the bottom will look skewed, due to water
and air having different refraction indices.
Refraction is the change in direction of a

light beam due to a change in its speed. The
change in speed is caused by the medium
through which it passes.
This is a simple and well understood effect,
and it is easy to calculate the exact light
deviation.

Fig. 9. Light refraction angle

In accordance to the laws of physics
the light reflection index is:

 – Light reflection index
 – Angle of incoming light
 – Angle of reflected light

The next step is to calculate the angle of
incidence of the light. Because we are
working in a 2D space, we have two different
incidence angles for each axis:

In a similar manner the angle of light
incidence for the Y axis is calculated:

Based on the angle of reflection and the
height difference, we can calculate the
displacement between what is directly at the
bottom and what we actually see.

Informatica Economică vol. 13, no. 3/2009 53

 – Displacement distance

 – Height difference.

Step 3. Rendering the image
The next step is to calculate the
displacements on the X axis and on the Y
axis. The last step is to copy the background
image used as bottom to the screen while
applying the calculated displacements when
copying each pixel.

Fig. 9. The water wave effect result

4 Implementing the tunnel effect
The tunnel effect is a very interesting effect
because although all graphic processing is
done in two dimensional space the user is

perceiving the animation as a three
dimensional forward flight, in a tunnel that
rotates.
The implementation of the effect is done in a
way similar to the water effect: it needs a
texture that will be applied on the walls of
the tunnel by using several optical
operations. In order to be efficient, the
algorithm uses two additional matrices that
will store precomputed displacements [4].
One of the matrices is an inverse distance
table that contains the distance for every
pixel of the screen to the center screen pixel.
Because the pixels in the center of the screen
are the furthest away, they will receive the
highest values, while the ones close to the
sides of the screen will receive lower values.
This means that those points are closer to the
camera. The second matrix contains the
angles of each pixel on the screen relative to
the center of the screen.
In order to be able to render the tunnel effect
we need to use the two tables. This is done
by copying the pixels from the texture to the
output buffer and displacing them in
accordance to the values of the pixel in the
distance displacement matrix and the angle
displacement value.

Fig. 10. Tunnel effect examples

Because the texture has a finite size and the
depth of the tunnel tends to go towards
infinite the texture has to be multiplied. This
is done while the pixels are being applied to

the tunnel by using the “modulo’ operator
that will repeat the texture if the value gets
out of bounds.

Fig. 11. Original textures used for the tunnel effect

54 Informatica Economică vol. 13, no. 3/2009

The final versions of the formulas for
computing the displacement are the
following:
Formula for distance table initializations:

 ,

where:
 – Integral out of argument
 – Fractional of argument

 – Texture image height
 – Tunnel depth factor. The tunnel depth is:

 – The column rank of the current pixel

 – The row rank of the current pixel

 – Stage width

Formula for angle table initialization:

, where:

 – Texture image width
 – Stage width
 – Stage height

 – Tunnel depth factor. The tunnel depth is:

In the formula above we use the
function because of several important
features:
1. The one-argument arctangent function
does not distinguish between diametrically

opposite directions. For example, the
anticlockwise angle from the x-axis to the
vector <1, 1>, calculated in the usual way as

 (radians), or 45°. However,
the angle between the x-axis and the vector
<−1,−1> appears, by the same method, to be

 again, even though the

answer clearly should be , or −135°.
2. The normal arctangent method fails when
required to produce an angle of ± (or ±90°).
For example, an attempt to find the angle
between the x-axis and the vector <0,1>
requires evaluation of arctan(1/0), which fails
on division by zero. In contrast,
gives the correct answer of .
The function takes into account the
signs of both vector components, and places
the angle in the correct quadrant. Thus,

 and

.
In order to create the moving effect, we
introduce two shifts variables when applying
the texture to the stage: and . By
increasing gradually the two variables we
obtain two important animation effects. By
increasing we make the camera to move
forward in the tunnel. By increasing we
make the camera rotate on its forward axis.
Several other chaotic moving effects can be
obtained by translating the central point of
the tunnel.

Fig. 12. Chaotic tunnel axis shifting animation frames

After wrapping all of this together the
formula for obtaining the color of each pixel

based on the displacements:

, where:

Informatica Economică vol. 13, no. 3/2009 55

• – Integral out of argument
• – Fractional of argument
• – Animation shifting for moving

ahead in the tunnel effect
• – Animation shifting for tunnel

rotation along the axis effect
• – The column rank of the current pixel

• – The row rank of the current pixel

• – Ouput image the x,y pixel
• – The x,y pixel of the texture

image initially provided

5 Possible hardware implementation
In the 1970s, NASA saw a need for
computing power orders of magnitude
beyond anything then available for satellite
image analysis. Already operating at that
time were satellites relaying voluminous
information to Earth at high transmission
rates, such as NASA's Earthscanning Landsat
resources survey satellite sending digital data
to ground stations at the rate of 15 million
bits per second [5]. On the developmental
horizon were satellites of far greater data
gathering and transmission capacities.
Because of the specific context, NASA
commissioned the development of a new
very small processor that came to be known
as a Massive Parallel Processor. The aim of
this project was to develop a small, simple

and thus cheap processor that would be very
easy to produce in large quantities. These
processors would be interconnected in
specific matrix like topologies in which each
processor would be responsible for one pixel.
In this way an image processing that usually
took more than one day on a normal pixel by
pixel processing approach, would now be
solved in less than five minutes on a massive
parallel machine.
A MPP machine based on the Blitzen
processors has a SIMD (single instruction
multiple data) architecture, meaning that at
any given time all processors execute the
same instruction but on a different set of data
[6].
The abstract architecture of the MPP Blitzen
processor is shown in figure 13.

B N-BIT Shift register A

sum carry

C

P G

DATA BUS

S

Shared random access
memory

Functional MPP unit

Fig. 13. Blitzen architecture

As it can be seen the internal architecture of a
processor unit is very simple. In our
proposed design, the processors are arranged
into a two dimensional grid each processor
having eight neighbors. In order to
communicate with the others, the P register is
used, along with a routing operation that will
allow the value stored in register P to be

transferred to the adjacent processor in its P
register and the value from the opposite
direction to be retrieved. This is a step-by-
step, one instruction at a time, parallel
processing.
This is the exact behavior needed to
implement the fire effect. The other effects
can also be easily implemented, having only

56 Informatica Economică vol. 13, no. 3/2009

to add small procedures.
In the diagram from figure 14 we propose the

implementation workflow of the fire effect.

Mask base row and fill with random
number

Exchange info with NE neigbour
(SW neibour value stored in P)

Move P -> A

Add A * static coef -> B

R
epeat for all neigbour values

needed
SW

, SE, S, SS

Move B current value -> RAM (or output memory)
Move B -> P (for repeating value exchange)

R
epeat process in order to anim

ate the effect

Fig. 14. Fire effect MPP implementation workflow

Implementing the water effect on the MPP
machine differs a little from the
implementation on a standard SISD (Single
Instruction Single Data) machine such as the
normal PCs. The main difference is that we
don’t need to have two data matrixes in order
to ensure that already computed values in the
current round will not affect the output of the

rest of the pixels before ending the current
round. This is because of the parallelism of
the architecture that does all the pixel
calculations in the same time, thus not
allowing partial results to influence the
outcome of the round, and also because each
calculation is done locally in the processor’s
registers that are not shared.

Exchange information about intensity with N processor

Move P -> A

Add A * static coef -> B

P -> RAM – Output memory [x][y]

R
epeat process in order to anim

ate the effect

R
epeat for all neigours

Calculate displacement

RAM – Texture [x+dx][y+dy] -> P

Fig. 15. Water effect MPP implementation workflow

Informatica Economică vol. 13, no. 3/2009 57

Because the internal memory of the Blitzen
processor is very small an external RAM
memory is needed to store the texture and
also the output.
Using simple and cheap processors can yield
benefits when trying to implement an
interesting graphical effect. Where the use of
computers with complex CPUs is difficult,
for example in creating lighting effects for
shows, an embedded unit containing a few
hundreds or even thousands of small simple
processing units integrated in the image
output device is a good choice.

6 Conclusions
There are lots of interesting animations
effects present not only online or in computer
games, but almost anywhere. Everywhere we
look we can see eye-catching animations and
effects used to lure people in and make them
aware of a certain company product or to set
a certain mood in a show by using light
creatively. The cinema industry fully utilizes
such effects, with great success [7].
Multimedia effects combined with words are
known to have better impact in the learning
process in contrast words alone [8]. Effects
like the ones presented in this article can be
used in physics lessons, like in elementary
physics, to better visualize when explaining
the mechanics of important topics such as:
heat dissipation, wave propagation and
optics.
Recent trends in application programming
are going towards a new concept: (RIA) Rich
Internet Application [9]. RIA applications
are deployed online, downloaded and run
locally in web browsers. They are designed
to offer enhanced user experience even on
slower PCs by using, among others
techniques, vector animation [10].
Multimedia effects similar to the ones
presented in this article are ideal for such
applications because they don’t consume
much bandwidth, as they do not download
images but actual machine code.
This article described the basic techniques
that are needed to implement three simple
effects: fire, water and the tunnel effect. Each
of these effects needs only basic

understanding of physics, and simple
programming skills. Furthermore, these
effects can always be improved upon by
adding more complexity to the generation
routines with relatively little effort [11].
The effects presented in this paper are almost
entirely based on matrix operations, and as
such are very well suited to be deployed on
parallel architectures, here overlaid on the
Blitzen system. An image projector
connected to a small embedded device can
provide a cheap way to create very
interesting fire, water or tunnel effects [12].

References
[1] Academic Tutorials, Graphics Section,

Fire Effect. Available:
http://www.academictutorials.com/graph
ics/graphics-fire-effect.asp

[2] Processing.org, Tutorials, Fire Effect.
Available:
http://processing.org/learning/topics/fire
cube.html

[3] R. Willemse, Game Development, Water
Effect. Available:
http://www.gamedev.net/reference/articl
es/article915.asp, 2/15/2000.

[4] Academic Tutorials, Graphics Section,
Tunnel Effect. Available:
http://www.academictutorials.com/graph
ics/graphics-tunnel-effect.asp

[5] E.W. Davis and J. H. Reif, Architecture
and Operation of the BLITZEN
Processing Element. 3rd International
Conference on Computing on
Supercomputing, Boston, MA, May
1988.

[6] D.W. Blevins, E.W. Davis, R.A. Heaton
and J. H. Reif, “BLITZEN: A Highly
Integrated Massively Parallel Machine,”
2nd Symposium on Frontiers of
Massively Parallel Computation,
Fairfax, VA, October 1988, Journal of
Parallel and Distributed Computing,
Vol. 8, February 1990, pp. 150-160.

[7] F. T. Hofstetter and P. Fox, Multimedia
literacy, New York, McGraw Hill, pp
77-90.

58 Informatica Economică vol. 13, no. 3/2009

[8] R. E. Mayer, The Cambridge handbook of
multimedia learning, Cambridge
University Press, 2005, pp. 88-100.

[9] M. De David, Web multimedia
development. Indianapolis SUA, New
Riders Pub, 1996.

[10] Laszlo, “An Open Source Framework
for Rich Internet Applications Laszlo,”
An Open Source Framework for Rich
Internet Applications, 2005.

[11] T. Markas and John H. Reif, “Memory-
Shared Parallel Architectures for Vector

Quantization Algorithms,” 1992 Picture
Coding Symposium, Lusanne
Switzerland, March, 1993.

[12] M. Royals, T. Markas, N. Kanopoulos,
J. H. Reif and J. Storer, “On the Design
and Implementation of a Lossless Data
Compression and Decompression Chip,”
IEEE Journal of Solid-State Circ., Vol.
28, No. 9, pp. 948-953, Sep. 1996.

Alexandru SMEUREANU graduated Politehnica University of Bucharest,
Automatic Control and Computers Faculty, Computer Science Department
and Bucharest University of Economics, the Faculty of Cybernetics,
Statistics and Economic Informatics. He is currently a PhD candidate in the
field of Economic Informatics at University of Economics. His interests
range in the software programming, network management, GIS systems,
vector graphics and embedded devices programming.

Ştefan Daniel DUMITRESCU graduated Politehnica University of
Bucharest, Automatic Control and Computers Faculty, Computer Science
Department. He is currently a PhD candidate in the field of Semantic
Technologies at Politehnica University of Bucharest. His interests range in
the informatics applications with accent on online development, information
extraction, knowledge representation and human-computer interaction.
Among other skills, he is also interested in project management and skilled in

network technology.

