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So far, considerable research efforts have been invested in the are of using statistical 

methods for image processing purposes yielding to a significant amount of models that aim to 
improve as much as possible the still existing and currently used processing techniques, some 
of them being based on using wavelet representation of images. Among them the simplest and 
the most attractive one use the Gaussian assumption about the distribution of the wavelet 
coefficients. This model has been successfully used in image denoising and restoration. The 
limitation comes from the fact that only the first-order statistics of wavelet coefficients are 
taking into account and the higher-order ones are ignored. The dependencies between wave-
let coefficients can be formulated explicitly, or implicitly. The multiresolution representation 
is used to develop a class of algorithms for noise removal in case of normal models. The mul-
tiresolution algorithms perform the restoration tasks by combining, at each resolution level, 
according to a certain rule, the pixels of a binary support image. The values of the support 
image pixels are either 1 or 0 depending on their significance degree. At each resolution lev-
el, the contiguous areas of the support image corresponding to 1-value pixels are taken as 
possible objects of the image. Our work reports two attempts in using the multiresolution 
based algorithms for restoration purposes in case of normally distributed noise. Several re-
sults obtained using our new restoration algorithm are presented in the final sections of the 
paper.  
Keywords: multiresolution support, wavelet transform, filtering techniques, statistically sig-
nificant wavelet coefficients. 

 
Introduction  
The effectiveness of restoration tech-

niques mainly depends on the accuracy of the 
image modeling. A long series of image de-
gradation models have been proposed under 
various working assumptions. One of the 
most popular degradation models is the linear 
continuous image-degradation where it is as-
sumed that the image blur can be modeled as 
a superposition with an impulse response that 
may be space variant and its output is subject 
to an additive noise.  
The restoration can be viewed as a process 
that attempts to reconstruct or recover a de-
graded image using some a priori knowledge 
about the degradation mechanism.  
Thus restoration techniques are oriented to-
ward modeling the degradation and applying 

the inverse process in order to recover the 
original image. This approach usually in-
volves formulating a criterion of goodness 
that will yield some optimal estimate of the 
desired result.  
Generally speaking, the multiresolution algo-
rithms perform the restoration tasks by com-
bining, at each resolution level, according to 
a certain rule, the pixels of a binary support 
image. The values of the support image pix-
els are either 1 or 0 depending on their signi-
ficance degree. At each resolution level, the 
contiguous areas of the support image cor-
responding to 1-value pixels are taken as 
possible objects of the image. The multireso-
lution support set is a data structure suitable 
for developing noise removal algorithms that 
perform the restoration tasks by combining, 
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at each resolution level, according to a cer-
tain rule, the pixels of a binary support im-
age. The values of the support image pixels 
are either 1 or 0 depending on their signific-
ance degree. At each resolution level, the 
contiguous areas of the support image cor-
responding to 1-value pixels are taken as 
possible objects of the image.  
So far, considerable research efforts have 
been invested in the are of using statistical 
methods for image processing purposes 
yielding to a significant amount of models 
that aim to improve as much as possible the 
still existing and currently used processing 
techniques, some of them being based on us-
ing wavelet representation of images. Among 
them the simplest and the most attractive one 
use the Gaussian assumption about the distri-
bution of the wavelet coefficients. This mod-
el has been successfully used in image de-
noising and restoration. The limitation comes 
from the fact that only the first-order statis-
tics of wavelet coefficients are taking into 
account and the higher-order ones are ig-
nored. The dependencies between wavelet 
coefficients can be formulated explicitly, or 
implicitly. Moreover, most wavelet models 
can be loosely classified into two categories: 
those exploiting inter-scale dependencies and 
those exploiting intra-scale dependencies [7].  
Typically, on each resolution level, the mag-
nitudes of wavelet coefficients corresponding 
to images are strongly correlated [8]. The 
wavelet coefficients can be thought on a 
quad-tree-like structure such that when a pa-
rental node is of small magnitude, those of its 
descendents are very likely to be small as 
well. A working assumption is that the wave-
let coefficient distributions are Gaussian mix-
ture for all subbands.  
The spatial clustering trend of wavelet coef-
ficients are extensively exploited by different 
compression algorithms as, for instance, the 
EQ coder and the morphological coder [6]. 
For example, in case of the EQ coder, the re-
sulted wavelet coefficients are independent 
of zero mean and slow varying variance. This 
technique proved useful in developing de-
noising applications in signal processing, 
where local statistics are estimated from the 

data [9]. Also, methods were spatially vary-
ing variances were assumed have been pro-
posed, these models being able to take into 
account the inter-scale dependencies.  

 
2. Image Denoising Using a Scale-Space 
Mixture Model  
A model explicitly combining the inter-scale 
and intra-scale dependencies of image wave-
let coefficients was proposed by Liu and 
Moulin [9]. The model uses a simple classifi-
cation technique and is based on the follow-
ing empirical observations: wavelet coeffi-
cients of large magnitude are typically repre-
sentative for edges, textures as well as noisy 
areas, while those of small magnitude rather 
correspond to smooth regions.  
The design of this model is motivated by the 
zero tree coding technique. Let T be a signi-
ficance threshold. In each subband except the 
first fine scale, the wavelet coefficients are 
partitioned into two classes based on the 
magnitude of their parents: Wsig is the set of 
coefficients that have significant parents (>T) 
and Winsig is the set of coefficients that have 
insignificant parents. Hence, the size of the 
each of the two classes is controlled by the 
significance threshold T. However, the two 
classes have quite different statistics. Since 
the histogram of the coefficients in Winsig is 
highly concentrated around zero, while the 
histogram of Wsig is more spread out.  
The described statistical model can be ap-
plied to image denoising as follows. Assume 
that the initial clean image I is disturbed by 
additive white noise of zero mean and va-

riance 2σ , producing the image η+= II ' . 
The goal is to determine a good estimation of 
I given the image I’.  
The estimation problem can be formulated in 
the wavelet domain: the image coefficients 
I~  have to be estimated using the empirical 
coefficients η+= II ~'~ . The algorithm can be 
described as follows. 
For each wavelet coefficient, depending on 
the subband it belongs to, execute:  
Step 1. For each of the first three fine sub-
bands (with horizontal, vertical and diagonal 
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orientations), wavelet coefficients within the 
subband are modeled as identically distri-
buted Laplacian with mean zero and variance 

2~jI
σ , where j stands for the index of the se-

lected subband. The variance estimate is 
computed as,  

{ }{ }22~ ,'~,0max σσ −∈= subbandjIIVar
jI

 (1) 

Consequently the maximum a posteriori 
(MAP) estimates of I~  result by applying a 

soft threshold 2~

22

jI
σ

σλ =  to each noisy coef-

ficient.  
Step 2. For each of the higher subbands, 
wavelet coefficients are clustered into one of 
the classes Wsig and Winsig according to the 
magnitude of their estimated parent with re-
spect to T. Coefficients in Wsig are modeled 
as identically distributed Laplacian of zero 
mean. Their estimated variances are,  

{ }{ }22~ ,'~,0max σσ −∈= sigjI
WIIVar  (2) 

The wavelet coefficients belonging to Winsig 
have small magnitudes and they represent 
smooth image areas. Assuming that 2ˆ iσ  is 

the true variance of iI~  , the MAP estimation 
is,  

i
i

i
i II '~

ˆˆ

ˆˆ
22

2

σσ

σ

+
=  (3) 

Note that the course band coefficients are not 
processed because of their very high SNR.  
The approach can be described as a top-down 
denoising process. Initially, the coarse scale 
coefficients are identified, then the algorithm 
propagates from parental nodes to their des-
cendent subbands until the highest subband is 
reached. The coefficient estimates and the 
parental node significance information are 
used to process the next subband.  

 
3. The Proposed Denoising Wavelet Based 
Model  
Our attempt aims the development of a de-
noise intra-scale algorithm based on the mul-
tiresolution support set of the images.  

The multiresolution representation is used to 
develop a class of noise removal algorithms 
in case of normal models. The multiresolu-
tion algorithms perform the restoration tasks 
by combining, at each resolution level, ac-
cording to a certain rule, the pixels of a bi-
nary support image. The values of the sup-
port image pixels are either 1 or 0 depending 
on their significance degree. At each resolu-
tion level, the contiguous areas of the support 
image corresponding to 1-value pixels are 
taken as possible objects of the image. Our 
work reports two attempts in using the multi-
resolution based algorithms for restoration 
purposes in case of normally distributed 
noise. Several results obtained using our new 
restoration algorithm are presented in the fi-
nal sections of the paper.  
The multiresolution support set is a data 
structure suitable for developing noise re-
moval algorithms. The multiresolution algo-
rithms perform the restoration tasks by com-
bining, according to a certain rule and at each 
resolution level, the pixels of a binary sup-
port image. The values of the support image 
pixels are either 1 or 0 depending on their 
significance degree. At each resolution level, 
the contiguous areas of the support image 
corresponding to 1-value pixels are taken as 
possible objects of the image. The multireso-
lution support is the set of all support images. 
The multiresolution support can be computed 
using the statistically significant wavelet 
coefficients.  
Let j be a certain multiresolution level. Then, 
for each pixel ( )yx ,  of the input image I, the 
multiresolution support at the level j is, 

( ) ⇔=1,,; yxjIM  I contains significant 
information at the level j and the pixel 
(x,y). 
If we denote by ψ  be the mother wavelet 
function, then the generic computing scheme 
of the multiresolution support set is described 
as follows. 
Step 1. Compute the wavelet transform of 
the input image usingψ . 
Step 2. Compute ( )yxjIM ,,;  using the statis-
tically significant wavelet coefficients for 
each resolution level j and for each pixel 
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(x,y). 
The computation of the wavelet transform of 
a one dimensional signal is performed by the 
algorithm “À Trous”. The algorithm can be 
extended to perform this computation in case 
of two-dimensional signals as, for instance, 
image signals. Let f  be the continuous sig-
nal function and let φ  be a low pass filter 
having the dilatation property 

( ) ( )∑ −=⎟
⎠
⎞

⎜
⎝
⎛

l
lxlhx φφ

22
1  (4) 

where h is a discrete valued low-pass filter. If 
we denote by ( ){ }kc0  the sampled signal f  
computed via ϕ , then  

( ) ( ) ( )kxxfkc −= φ,0 . (5) 
The set ( ){ }kc j  at the resolution level j is giv-
en by, 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

jjj
kxxfkc

2
,

2

1 φ , (6) 

therefore, we get 

( )∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−

l
jj

lkxlhkx
1222

1 ϕϕ (7) 

and 

( ) ( ) ( ) ( ) ( )∑∑ ⎟
⎠

⎞
⎜
⎝

⎛
−

−
=⎟

⎠

⎞
⎜
⎝

⎛
−

−
= −−−−

l
jj

l
jjj lkxxflhlkxlhxfkc 1111 2

,
2

1
2

,
2

1 ϕϕ

( ) ( )∑ −
− +=

l

j
j lkclh 1

1 2 . 

The wavelet coefficients jω are computed us-
ing the terms 1−jc  and jc as 

( ) ( ) ( )kckck jjj −= −1ω . (8) 
The wavelet coefficients can be also ex-
pressed as [12], 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

jjj
kxxfk

2
,

2

1 ψω   (9) 

where ( ) ⎟
⎠
⎞

⎜
⎝
⎛−=⎟

⎠
⎞

⎜
⎝
⎛

22
1

22
1 xxx φφψ .  

Using the resolution levels p,...,2,1 , where p is 
a given parameter, the “À Trous” algorithm 
computes the wavelet coefficients according 
to the following scheme [12]. 
Input: The sampled signal ( ){ }kc0  
For j=0,1,…,p do 
Step 1. j=j+1; compute ( )kc j 1− ,  

( ) ( ) ( )∑ −
− +=

l

j
jj lkclhkc 1

1 2 . 

Step 2. Compute ( ) ( ) ( )kckck jjj −=ω −1  
End-for 
Output: The set ( ){ }

pjpj ck
,...,1

,
=

ω . 
Note that the computation of ( )kc j  carried out 
in Step 1 imposes that either the periodicity 
condition ( ) ( )kcNkc jj =+  or the continuity 
property ( ) ( )NcNkc jj =+  holds. 

Since the representation of the original sam-
pled signal is 

( ) ( ) ( )∑
=

+=
p

j
jp kkckc

1
0 ω  (10) 

in case of images, the values of 0c  are com-
puted for each pixel (x,y) as follows, 

( ) ( ) ( )∑
=

+=
p

j
jp yxyxcyxc

1
0 ,,, ω .  (11) 

If the input image I encodes a noise compo-
nent η , then the wavelet coefficients also en-
code some information about η . A label pro-
cedure is applied to each ( )yxj ,ω  in order to 
remove the noise component from the wave-
let coefficients computed for I. In case for 
each pixel (x,y) of I, the distribution of the 
coefficients is available, the significance lev-
el corresponding to each component 

( )yxj ,ω  can be established using a statistic-
al test. We say that I is local constant at the 
resolution level j in case the amount of noise 
in I at this resolution level can be neglected.  
Let 0Η  be the hypothesis 0Η : I is local con-
stant at the resolution level j. In case there is 
significant amount of noise in I at the resolu-
tion level j, we get that the alternative hypo-
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thesis⎬ 0Η : ( )yxj ,ω  ~ ( )2,0 jN σ . In order to 
define the critical region W of the statistical 
test we proceed as follows. Let 10 << ε  be 

the a priori selected significance level and let 
εz  be such that when  ⎬ 0Η  is true, 

( )( ) ∫
− ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
−=<=−

ε

ε
ε

σσπ
ωε

z

z jj
j dttzyx 2

2

2
exp

2
1,1 cÜÉu . (12) 

In other words, the probability of rejecting 
⎬ 0Η  (hence accept 0Η ) when ⎬ 0Η  is true is 
ε  and consequently, the critical region is 

[ ]εε zzW ,−= . Accordingly, the significance 
level of the wavelet coefficients is given by 

the rule: ( )yxj ,ω  is a significant coefficient 

if and only if ( ) Wyxj ∉,ω . 
Usually, εz  is taken as jkσ , where k is a se-
lected constant 3≈k , because 

( )( ) ( )( ) ( )( ) =−<+>=> jjjjjj kyxPkyxPkyxP σωσωσω ,,,  

( )( ) ( )( )( )jjjj kyxPkyxP σωσω ≤−=>= ,12,2  

( )( ) ( )εσωεσ −≥>⇒< 12, jjjk kyxPz  

Using the significance level, we set to 1 the 
statistically significant coefficient and re-

spectively we set to 0 the non-significant 
ones. The restored image I~  is computed as 

( ) ( ) ( )( ) ( )∑
=

+=
p

j
jjjp yxyxgyxcyxI

1
,,,,,~ ωωσ  (13) 

where g is defined by ( )( ) ( )

( )⎪⎩

⎪
⎨
⎧

<

≥
=

jj

jj
jj

kyx

kyx
yxg

σω

σω
ωσ

,,0

,,1
,, . 

 
4. The Filtering Technique of the Images 
Distorted by General Normal Distributed 
Noise 
Let g be the original “clean” image, 
η~ ( )2,σmN  and the analyzed image η+= gf . 
The sampled variants of f, g and η  obtained 
using the two-dimensional filter ϕ  are given 
by, 

( ) ( ) ( )cylxclfyxc −−= ,,,,0 ϕ , 

( ) ( ) ( )cylxclgyxI −−= ,,,,0 ϕ , 

( ) ( ) ( )cylxclyxE −−= ,,,,0 ϕη , 

000 EIc += . 
Consequently, the wavelet coefficients of 0c  
computed by the algorithm “À Trous” are 

( ) ( ) =⎟
⎠

⎞
⎜
⎝

⎛ −−
= jjj

c
j

ycxlclfyx
2

,
2

,,
2
1,0 ψω ( ) ( ) =⎟

⎠
⎞

⎜
⎝
⎛ −−

ψη+ jjj
ycxlclclg

2
,

2
,,,

2
1  

( ) ( ) =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −−
=

jjjjjj
ycxlclycxlclg

2
,

2
,,

2

1

2
,

2
,,

2

1 ψηψ -= ( ) ( )yxyx E
j

I
j ,, 00 ωω + , 

where ( ) ⎟
⎠
⎞

⎜
⎝
⎛−=⎟

⎠
⎞

⎜
⎝
⎛

22
1

22
1 xxx φφψ . For any pixel ( )yx, , we get 

( ) ( ) =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
=

pppp
ycxlclfyxc

2
,

2
,,

2

1, ϕ ( ) ( )yxEI pp ,+çå? . 

The representation of the image 0c  is given by ( ) ( ) ( ) =+= ∑
=

p

j

c
jp yxyxcyxc

1

0
0 ,,, ω  
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= ( ) ( ) ( ) ( )∑∑
==

+++
p

j

E
j

p

j

I
jpp yxyxyxEyxI

1

0

1

0 ,,,, ωω . (14) 

Note that only ( )yxEp ,  and ( )∑
=

p

j

E
j yx

1

0 ,ω  in-

clude noise component in (14). The mean of 
the noise can be decreased using the follow-
ing algorithm. 
Step1. Determine the images ( )iE , ni ≤≤1 , by 
superimposing noise sampled from ( )2,σmN  
on the “white wall” image. 
Step2. For all j, pj ≤≤1 , compute jc , ( )i

jE , 

ni ≤≤1  and the coefficients ( )iE
j

c
j ωω ,0  using 

the “À Trous” algorithm, according to, 

( ) ( ) ( )∑∑ −−
− ++=

l c

jj
jj cylxcclhyxc 11

1 2,2,,

( )( ) ( ) ( ) ( )∑∑ −−
− ++=

l c

jji
j

i
j cylxEclhyxE 11

1 2,2,,

( ) ( ) ( )yxcyxcyx jj
c
j ,,, 1
0 −= −ω  and  
( )
( ) ( ) ( ) ( )( )yxEyxEyx i

j
i
j

iE
j ,,, 1 −= −ω  

Step 3. Compute the image I~  by  

( ) ( ) ( )( ) ( )
( )
( )∑ ∑

= = ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−+−=

n

i

p

j

iE
j

c
j

i
pp yxyxyxEyxc

n
yxI

1 1

0 ,,,,1,~ ωω . 

Step 4. Compute a variant of the original im-
age 0I  using the multiresolution filtering 
based on the statistically significant wavelet 
coefficients. 
Note that I~  computed at Step 3 is 

,'~
0 EII +=  where E’~ ( )2',' σmN , 0'≈m  

and ( ) 22' σσ ≈E .  
 

4. Concluding Remarks and Suggestions 
for Further Work  
A series of experiments were performed, dif-
ferent 256 gray level images being prepro-

cessed aiming the contrast enhancement, in-
creasing enlighting and noise removing by 
filtering them. Our experiments use the aver-
aging and respectively binomial filtering 
techniques. The parameters involved in the 
mentioned algorithm were tuned taking into 
account the following factors: the distortion 
degree of the inputs, the particular smoothing 
filter, the volume of the resulting accepted 
data.  
The implementation of the proposed algo-
rithm used the masks  

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

256
1

64
1

128
3

64
1

256
1

64
1

16
1

32
3

16
1

64
1

128
3

32
3

64
9

32
3

128
3

64
1

16
1

32
3

16
1

64
1

256
1

64
1

128
3

64
1

256
1

1h  and 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

20
1

10
1

20
1

10
1

5
2

10
1

20
1

10
1

20
1

2h . 

 
Some of the results produced by the proposed 
algorithm are depicted in Table 1. Our tests 
were performed on distorted images 
processed by the masks 1h  and 2h and the 
Gaussian distributions N(40,100) and respec-

tively N(50,200), assumed to model the addi-
tive noise.  
In our opinion, the performance of efficiency 
of the proposed algorithm can be significant-
ly improved by narrowing the class of 
processed nodes, namely by taking into ac-
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count and process only the coefficients be-
longing to the set sigW . Also, improvements 
are expected to come from different refine-
ments of the proposed algorithm. 
Table 1. 

Restoration algo-
rithm 

Type of 
noise 

Mean er-
ror/pixel 

Using the mask 1h  N(40,100) 12.6 

Using the mask 2h   10.53 

Using the mask 1h  N(50,200) 16.16 

Using the mask 2h   12.74 

 
Extensions of this methodology in case of 
more general assumptions concerning the sta-
tistical properties, as for instance modeling in 
case of generalized Gaussian mixtures are 
aimed. These developments are still in 
progress and the results are going to be re-
ported elsewhere.  
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