
Revista Informatica Economică nr.3(47)/2008

47

Working with Documents in Databases

 Marian DÂRDALĂ, Cristian IONIŢĂ
Academy of Economic Studies, Bucharest, România

dardala@ase.ro, Cristian.Ionita@softmentor.ro

Using on a larger and larger scale the electronic documents within organizations and
public institutions requires their storage and unitary exploitation by the means of databases.
The purpose of this article is to present the way of loading, exploitation and visualization of
documents in a database, taking as example the SGBD MSSQL Server. On the other hand,
the modules for loading the documents in the database and for their visualization will be
presented through code sequences written in C#. The interoperability between averages will
be carried out by the means of ADO.NET technology of database access.
Keywords: interoperability, documents, database, full text search.

Introduction
The need to store unconventional data in

databases made the producers of SGBD-s
diversify the types of data associated to the
fields of a table. Thus, it appeared the image
type for manipulating the image type fields,
and the generic BLOB type (Binary Large
Object) for storing the data that are not
structured as length and representation
format. By the means of BLOBs was solved
the problem of storing the documents in
databases, and for filtering them, on the basis
of their content (words, expressions,
dictionary) were added new operators to the
SELECT phrase. Taking into account the
diversity of the types of documents, for the
access to the document content, the search
engine uses filters.

2. Defining the tables and preparing the
database for working with documents
In a database, a table that contains fields
should have at least three fields:
- the primary key of the table;
- the type of documents;
- the document itself.
The field that plays the key role identifies in
a unique way a tuple from the table - that is a
document. The type of this field was defined
by user according to the identification data of
the documents.
The type of document is a literal that
memorizes the format of the document
stored in that tuple, as .txt, .pdf etc. This field
is very important because the access to the

content of the document will be done
through different procedures according to the
type of document. Thus, for indexing the
documents in pdf format, as well as for the
access to the content of a pdf document, the
Adobe PDF IFilter should be inserted in the
system. For obtaining all the formats
recognized by the system of access to the
documents, can be used the command (stored
procedure)
sp_help_fulltext_system_components with the
filter parameter:

sp_help_fulltext_system_components filter
The result will appear under the form of a
table like in Figure 1.
It can be noticed that Adobe PDF IFilter
application installs in the system a library
with dynamic binding called AcroIF.dll that
contains the routines of access to the content
of a pdf document.
After the database was created, to activate
the full-text search component on that
database, the next command should be
executed:

sp_fulltext_database enable
The field that memorizes the document itself
is varbinary (MAX) type and corresponds to
BLOB type generic.
The creation of the documente table with the
above described structure is done with the
command:

create table documente (cheie varchar(50) primary
key, tipdoc varchar(8), doc varbinary(MAX))

To be able to carry out search operations on
documents, there will be created a catalogue
containing the search index on the content

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6612701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Revista Informatica Economică nr.3(47)/2008

48

basis. Thus, it will be created a folder
(cat_doc) in which the catalogue will be
stored. Moreover, there can be chosen also
searches insensitive to accents, that is
considering the a character equal with á
character or with â character:

CREATE FULLTEXT CATALOG [cat_doc] IN PATH
N'd:\temp' WITH ACCENT_SENSITIVITY = OFF

After creating the catalogue, the search index
for searches in documents will be
constructed, index associated to the index of
the primary key of the documente table
(PK__documente__7C8480AE); the index is
stored in the catalogue cat_doc and is
updated automatically when there are
changes of content.
CREATE FULLTEXT INDEX ON [dbo].[documente]
KEY INDEX [PK__documente__7C8480AE] ON
[cat_doc] WITH CHANGE_TRACKING AUTO

Through the command:
ALTER FULLTEXT INDEX ON [dbo].[documente]
ADD ([doc] TYPE COLUMN [tipdoc] LANGUAGE
[English])
It is updated the index for searches in
documents, of the documente table, by
adding the field according to which will be
done the indexing for searches based on
content (doc) and on attribute (tipdoc) that
indicates the format of the document stored
in that tuple.
After establishing the options regarding the
configuration of the index for searches in
documents, it is activated through the
command:
ALTER FULLTEXT INDEX ON [dbo].[documente]
ENABLE

Fig.1. Filters associated to the formats of documents

3. Loading documents in the database and
their visualization
In order to store the document in a table, it is
taken over from a folder and it is formed a
data flow that will be inserted in the field
that memorizes the document. At the same

time, in the tipdoc field, the type of
document is memorized under the form of a
row of characters. The loading of the
document in the documente table involves
adding a new tuple in the relationship, as it
can be noticed in the next sequence:

// database connection opening
string cstr = @"Data Source=MM-LAPTOP\SQLEXPRESS;Initial Catalog=test_doc;Integrated Security=True";
SqlConnection conn = new SqlConnection(cstr);
try { conn.Open(); }
catch (Exception ex)
{

MessageBox.Show(ex.Message);
}

// we read the data from the file and store it into a byte array
FileStream fs = File.OpenRead("d:\\ex.pdf");
byte[] vecb = new byte[fs.Length];
fs.Read(vecb, 0, (int)fs.Length);

Revista Informatica Economică nr.3(47)/2008

49

// we insert the new row into the table
string sinsert = "Insert into documente values(@mcheie, @mtip, @mdoc)";
SqlCommand cinsert = new SqlCommand(sinsert, conn);
cinsert.Parameters.Add(new SqlParameter("@mcheie",(string)"100"));
cinsert.Parameters.Add(new SqlParameter("@mtip",(string)".pdf"));
cinsert.Parameters.Add(new SqlParameter("@mdoc",vecb));
cinsert.ExecuteNonQuery();

Extracting a document from documente table
was carried out by storing the data flow in
the doc field in a temporary folder with temp
name and the extension given by the value of
tipdoc attribute. In the example presented

there are used pdf documents - that is why
the folder has the name temp.pdf. Visualizing
the document was done by using the method
Navigate, in the control of type WebBrowser
(webb) included in a dialogue window (viz).

// database connection opening
SqlConnection sc = new SqlConnection(@"Data Source=MM-LAPTOP\SQLEXPRESS;

Initial Catalog=test_doc;Integrated Security=True");
sc.Open();

// we build and execute the SELECT command
string sirq = "Select * from documente where cheie= '100' ";
SqlCommand sqc = new SqlCommand(sirq, sc);
SqlDataReader dr;
bool vb;
dr = sqc.ExecuteReader();
vb=dr.Read();
if(vb==false)
{

MessageBox.Show("Document inexistent!!! ");
return;

}

// we read the document into the vecb variable
System.Data.SqlTypes.SqlBytes vecb = dr.GetSqlBytes(2);
sc.Close();

byte[] vbytes = new byte[vecb.Stream.Length];
vecb.Stream.Read(vbytes, 0, (int)vecb.Stream.Length);

// we create the local file
string calefisurl = "file:///" + Application.StartupPath + "/temp.pdf";
string calefis = Application.StartupPath + "/temp.pdf";
FileStream fs = File.Create(@calefis);
fs.Write(vbytes, 0, vbytes.Length);
fs.Close();

// we open the document inside the WebBrowser control
Viz_doc viz = new Viz_doc();
viz.webb.Navigate(@calefisurl);
viz.ShowDialog();
In the following program sequence it is presented by the operation of extracting and
visualization of a document from the documente table in a Web application (developed in the
ASP.NET technology).
// database connection opening
SqlConnection con = new SqlConnection();
con.ConnectionString = @"Data Source=MM-LAPTOP\SQLEXPRESS;

Initial Catalog= test_doc; Integrated Security=True";
SqlCommand command =
 new SqlCommand("SELECT LEN(doc), doc FROM documente WHERE cheie='100' ", con);
con.Open();

using (SqlDataReader reader = command.ExecuteReader(CommandBehavior.SequentialAccess))
{

if (reader.Read())

Revista Informatica Economică nr.3(47)/2008

50

 {
// we clear the buffers used for response
 this.Response.Clear();
// we disable buffering
 this.Response.Buffer = false;
// we add a MIME header to inform the browser about the file type
 this.Response.ContentType = "application/pdf";
// we instruct the browser to save the file locally rather then open it
 Response.AddHeader(@"Content-Disposition", "attachment; filename=tmp.pdf");
 long fileLen = reader.GetInt64(0);
 Response.AddHeader("Content-Length", fileLen.ToString());

 byte[] buffer = new byte[FileChunkSize];
 long count = 0;
 long offset = 0;
// we send the file in small chunks
 while ((count = reader.GetBytes(1, offset, buffer, 0, FileChunkSize)) > 0)
 {
 this.Response.OutputStream.Write(buffer, 0, (int)count);
 offset += count;
 }
 }
reader.Close();

It can be noticed that the document is loaded
at the client progressively, on data blocks; a
data block was dimensioned at a number of
FileChunkSize bites:

const int FileChunkSize = 1024 * 128;

4. Searching the documents on the basis of
their content
The search component on the basis of
content is a new characteristic added to
SGBDs, allowing thus the efficient search in
large documents. For searches by using
conventional data fields, there can be used,
for making up the conditions, equality,
relational and logical operators. For searches
based on patterns, the like operator is used.
The main difference between using the like
operator, respectively the full-text search
facility, consists of the fact that the like
operator searches sequentially, while using
the full-text search facility, the search is
based on index, so the operation is much
faster.
The search operators that enriched the select
phrase are: contains, containstable, freetext
and freetexttable. The operators contains
versus freetext, respectively containstable
versus freetexttable, are used the same way,
differing only the search operation which is
larger in the case of using the contains
operators. The reason is that in case of using
the freetext clause there are taken into

account also derivates of the searched word.
The search carried out on the basis of these
operators can be done based on simple
words, on expressions, on radicals of words,
using logical operators for defining the
search criteria, on the proximity of words in
the text, and on the dictionary specified
through language clause.
There will be presented examples of using
the searches based on contents, using
different facilities and operators:
- search based on simple words:

select cheie from documente where freetext(doc,
'asfalt')

there will be displayed the keys of those
tuples that contain documents in which
asphalt word is found;
- search based on expressions:

select cheie from documente where contains(doc, '
"panta de scurgere" ')

- search based on defining a logic search
expression, that is displaying the keys of the
tuples that contain documents in which cale
or ferata words are found.

select cheie from documente where contains(doc, '
"cale" or "ferata" ')

- search based on using the * character with
role of substitution of a group of characters:

select cheie from documente where contains(doc, '
"transp*" ')

there will be displayed the keys of
documents in which there can be found
words that begin with transp and continue
with other characters, such as: transport,

Revista Informatica Economică nr.3(47)/2008

51

transplant or transparent.
- by using the containstable clause in the
select phrase, there can be obtained the result
of filtering under the form of a relation
containing the key and the rank (rank) for
evaluating the representativity of the search
operation:

select * from containstable(documente, doc, ' "cale"
and "ferata" ') order by rank desc

The result will be ordered decreasingly
according to the rank. In the next example
the near operator is used for searching those
documents that contain the beton word near
armat word:
select * from containstable(documente, doc, ' "beton"

near "armat" ') order by rank desc
The rank of satisfying the search condition
depends upon the frequency of finding the
condition in the document, upon the
proximity of the words involved in the
search etc.
There is also the possibility to search in the
text of a document various forms of a word.
To exemplify, the following select phrase
searches in the table documents that contain
inflectional forms of metal word, that is
metalic, metalifer etc., depending on the
language indicated by the language clause or
by the set language, which is considered
current. The inflectional form of a word
depends on the dictionary of the used
language.
SELECT cheie FROM documente WHERE
CONTAINS(doc, ' FORMSOF (INFLECTIONAL,
"metal") ', language 'Romanian-Romanian');
To visualize the languages that the current
instant recognize, there can be consulted the
system table sys.fulltext_languages, with the
command:

select * from sys.fulltext_languages

5. Conclusions
Using the BLOB generic type to store
unconventional data does not involve only
working with documents in a MSSqlServer
database. The same thing happens when we
want to store images, sounds, video and
animations in a database, from the point of
view of their storage and visualization. Yet,
as we mentioned in the article, the specific
part of working with documents refers to the
possibility of searches based on the contents
of documents, by constructing the search
index on the basis of content.

References
1. Dârdală, M., Reveiu, A., Controlling
Media Type in Multimedia Databases,
Proceedings of the Romanian Symposium on
Computer Science, Universitatea Alexandru
Ioan Cuza, Iaşi, 2006;
2. MacDonald, M., Szpuszta, M., Pro
ASP.NET 2.0 in C# 2005, Editura Apress,
2005, USA;
3. Sack, J., SQL Server 2000 Fast Answers
for DBAs and Developers, Editura Apress,
2005, USA;
4. Smeureanu, I., Dârdală, M., Reveiu, A.,
Visual C#.NET, Editura CISON, Bucureşti,
2004;
5. * * *, Microsoft Developer Network
Library, Microsoft Press, 2005;
6. * * *, Microsoft SQL Server 2005
Implementation and Maintenance, Microsoft
Press, USA, 2006;

