
Informatica Economică vol. 15, no. 4/2011 203

Designing and Implementing a Distributed Social Network Service for
Mobile Devices

Alexandru RADOVICI, Valentin CRISTEA

”Politehnica” University of Bucharest
aradovici@ilab.fils.pub.ro, valentin.cristea@cs.pub.ro

The paper presents a new paradigm for building social network services. The proposed plat-
form is called eXtensible Social Network. As it uses the XMPP protocol for authentication
and communication, it allows users from different service providers interact with each other,
without having to change their accounts. Moreover, the platform provides means for users to
authenticate and interact with each other while temporary disconnected from the Internet.
Moreover, the platform is specially designed for mobile devices, running on their restrictive
operating systems and taking advantage of the systems optimizations.
Keywords: Social Network, Mobile Devices, Service, XMPP, iOS, Android, Distributed, Plat-
form

Introduction
Social networks have lately become the

most important mean of communication over
the Internet. They currently integrate almost
every one of the most used services offered
online: email, instant messaging, file sharing
and many other functions. When thinking of
social networks, one might think they are
mainly used for free time activities. Lately,
this is not true. Social networks are now be-
ing used as well in academia [1] and business
communication. Actually, nowadays’ social
networks can be thought as the evolution and
integration of the services offered by the In-
ternet.
Even if they are largely used, social network
have several problems and security issues
that might prevent users from using them.
When it comes to social networks for mobile
devices, current days implementations are
just user-interfaces for web services offered
by several social network services providers.
This paper tries to identify several problems
that occur in social network services thus
pointing out the importance of building a dis-
tributed social network service. The paper al-
so proposes a new paradigm in building a
distributed social network service, service
that is independent of the current providers
and that tries to solve most of the problems
pointed out.
The second chapter of the paper describes the
problems encountered in the social network

services and proves why these problems are
important of users.
The third chapter proposes a new paradigm
for a distributed social network service, ser-
vices which are based upon a standard proto-
col called XMPP [2]. In this way, users of
different service providers are able to interact
with each other. Moreover, the system de-
scribes is independent of any service provid-
er, thus users not being bound to a certain
terms of services.
The forth chapter shows the way that the new
social network service is implemented for the
most used mobile devices systems. iOS [3],
[4] and Android [5] will be discussed. Limi-
tations of the mobile systems are also taken
into account and the implementation is opti-
mized so that they take advantage of each
system that they run on.
The last part of the paper describes briefly
the testing using a real life application.

2 Social networks problems
We have identified several problems and se-
curity issues in nowadays’ social networks.
These problems are as follows:
• Users are able to connect and communi-

cate only with other users of the same
social network; in order to interact with
users of another social network service,
one of the users has to sign up for an ac-
count on the other social network ser-
vice. In this way, users have face having

1

204 Informatica Economică vol. 15, no. 4/2011

to choose which social network to sign
up to so that is has the most advantages
[6]. Most of the time, users will have to
build accounts on several networks and
share data on all of them.

• The social network service provider,
based on the license and terms of ser-
vices imposed to the users that want to
use the service [7], has the right to use
all the data shared by the users for no
matter what purpose for an unlimited
time, even after the user has asked the
deletion of the data. The use of the data
is done without having to notify the user.
The service provider might sell the data
to advertising companies that might use
them for advertising campaigns or for
sending spam. There have been accusa-
tions, no all being proved, that social
networks have done this [8, 9].

• By linking the shared data, the social
network provider can find out supple-
mentary information about it users and
not only [10]. For instance, using the
shared photos’ person tagging infor-
mation, Facebook automatically recog-
nizes persons in the newly shared pic-
tures. This is done without the approval
of the persons in that picture. In this
way, persons that don’t even have a Fa-
cebook account might get tagged in pho-
tos. It is sufficient for some users to tag a
certain person by just writing his name
as a string. Facebook will then automati-
cally recognize that person in most of the
newly shared photos.

• Social networks don’t offer very many
services on their own. Most of them of-
fer instant messaging, files, pictures and
video sharing, messages and event plan-
ning. Third party applications built for
the social networks offer most of the
valuable services. The problem is that
every social network service provides
its’ own API for writing applications,
thus making porting applications from
one network to another very difficult.
Moreover, in this way, applications,
which are actually the main part, become
just plugins for the social network.

• Existing applications need to be rewrit-
ten in order to benefit of social network
functions. For large applications, this is
not feasible. An example is a NutriEduc
system [11] that needs social network
extensions but cannot be rewritten for
each social network.

• When it comes to mobile devices, social
network systems provide only user inter-
faces that use the network’s services.
Moreover, most of them, due to the de-
sire to look alike on all mobile plat-
forms, don’t take into account the devic-
es that they are running on, thus being
very inefficient on resource management
and running slow. If the user chooses to
use a third party application to access the
social network, he has to give put his
credentials. This might be a problem, as
some of social network credentials are
good for payments as well. Google+ us-
es the user’s Google account, the same
account used for Google Checkout ser-
vice.

To overcome most of these problems, this
paper proposes a new and original social
network platform, called eXtensible Social
Network (XSN). Its main strong points are:
• XSN is based upon a standard communi-

cation protocol called XMPP. In this
way users that have account at different
providers can communicate with each
other. Moreover, XMPP provides string
authentication between servers, thus as-
suring the identity of users.

• The platform reverses the applications
paradigm. Instead of thinking on appli-
cations as plug-ins for the social net-
work, XSN becomes a plug-in. By
providing a library that can be integrated
into existing applications, XSN allows
existing applications to be extended with
social network services.

• As mobile devices become more and
more used, the platform’s implementa-
tion is optimized for usage on such de-
vices. The implementation takes into ac-
count each mobile system and its rec-
ommendations for writing applications.
iOS and Android are the platforms that

Informatica Economică vol. 15, no. 4/2011 205

are discussed, as they have together al-
most 70% market share.

3 The XSN Platform
We have showed before several problems
and security issues of the social networks. In
order to solve these problems, we have pro-
posed a new social network service based on
a new paradigm. It is called eXtensible Social
Network (XSN). It has been designed having
in mind the following ideas that would allow
the users to communicate easy, to use exist-
ing applications and protect the uses’ data
from being used by the service provider:
• The system must be distributed in the

sense not to require users to have an ac-
count at a single service provider. Re-
gardless of service provider, user must
have access to all system functions; no
matter what service providers their
friends have. The service provider must
ensure the authenticity of the users and
to provide data routing.

• Information stored in the system must
not be covered by a license to use
the service, which gives the service pro-
vider unlimited rights to the use
of data loaded.

• The social network should be an exten-
sion of existing applications. Program-
mers should not have to rewrite applica-
tions, but must be able to improve them
by using the social network. Basically,
the social network must be extension to
programs and not vice versa.

• The system needs to be used by groups
of people who are already in a social
network, without having to create new
accounts. Users, especially the less tech-
nical, are often reluctant to try a new so-
cial networking service.

• Being primarily a system for mobile de-
vices, it must run on restricted operating
systems. To protect the users’ data,

many operating systems for mobile de-
vices impose powerful security rules on
applications. Such systems are iOS and
Windows Phone 7 [12]. Android is a
more permissive. To run on such a sys-
tem, XSN needs to be designed differ-
ently from an application running on a
standard operating system.

• The system must have minimum inter-
ference with the operation of mobile de-
vice. It is unacceptable that a call cannot
be made because the social network sys-
tem uses too many resources.

• The system must also take into account
that the device runs on battery; although
processing resources are quite large,
their intensive use will quickly discharge
the battery, which is unacceptable for
mobile devices.

• It is required that users that are on the
same network (LAN) to be able to com-
municate with each other even if the In-
ternet access is temporarily unavailable.
This means that users need to be able to
authenticate event when access to the au-
thentication server is not available.

During the description of the proposed sys-
tem, we will make comparisons with existing
systems, especially with the Diaspora *,
which is based on some of the principles
listed above. In Figure 1 we show the posi-
tioning XSN compared to other existing ser-
vices, in terms of user authentication and da-
ta storage media.
It can be seen that it is positioned in the mid-
dle, between Facebook, Google + Twitter or
LinkedIn using centralized storage of data (in
terms of the user), and Diaspora *, which is a
distributed system that uses users' personal
computers to store the shared data.

206 Informatica Economică vol. 15, no. 4/2011

Diaspora*

X
S
N

Metadata

Data

Twitter Facebook Linkedin Google Plus

Fig. 1. XSN positioning compared to other existing social networking services.

Usage of the XMPP protocol
To implement the proposed system, we have
used the XMPP protocol. This is a standard
instant messaging protocol, originally de-
signed under the name Jabber.
XMPP assigns each user an identifier, called
JID. It is composed of three parts: user name,
the server where the user has registered the
account and resource. The latter is a text that
identifies the program used for connection. A
user can connect simultaneously using more

programs. An example of JID is al-
ice@wonderland.network/fastmessage,
where Alice is the username, wonder-
land.network is the server and fastmessage is
the program.
The resource name is important because the
same user using XMPP can connect using
multiple clients. Thus, Alice is able to con-
nect both from the mobile device and the PC.
In XSN, each user is identified by his JID, al-
so called XSNID.

Informatica Economică vol. 15, no. 4/2011 207

For XSN, we used XMPP authentication,
routing and storing friends list. XSN uses the
same identifiers as XMPP.
The XMPP protocol allows users connected
on different servers to communicate with
each other. Thus, using XMPP, enables XSN
interconnection users, no matter what server
use. XMPP servers will authenticate each
other using certified public key algorithms
[13]. This eliminates the possibility of a

counterfeit server. If the servers would not
authenticate, anyone could create a server
with a false address and pose as authentic
server. In Figure 2 shows Alice and Bob that
have accounts on different servers (wonder-
land.xmpp respectively movies.xmpp) and
can talk to each other. They access the net-
work using multiple devices simultaneously.
Moreover, one can notice that XMPP servers
communicate directly with each other.

Fig. 2. The architecture of the XMPP protocol

XMPP allows each user to store a list of
friends, called a Roster. This is actually a list
of JID's. Each JID may have a name associ-
ated. An important property of the list of
friends is the ability to group friends. Moreo-
ver, the groups are actually labels; a user can
be placed into several groups. XSN uses this
property to store the friends list. In order not
to interfere with XMPP service, XSN friends
are placed in groups with the name beginning
with xsn:. Examples of group names are xsn:
friends, xsn: work, etc..
In most current systems of social networks,
friendship relationships are mutually agreed
by the two users. XSN proposed the system
used by Google +, namely friendship rela-
tions are established unilaterally (one person
can be placed on the list of friends without
requiring his consent). Access to information

is one-sided. For example, if Alice has Bob
in her list of friends, that means that Alice
gives Bob's right to have access to certain in-
formation, but Alice can access Bob's infor-
mation only of Bob has her in his friends list
too.
An additional security feature is the use of
public key infrastructure (PKI) system. Be-
sides the JID, XSN assign each user a pair of
keys that will be used to authenticate users
without access to the XMPP server. The key
pair is generated automatically by the XSN
client the first time a user adds a friend to his
friends list. Thus, the client will check
whether there is a group in the Roster whose
name begins with xsn:. If so and the client
does not have key pair, it means that there
are at least another XSN client used by the
user that has it. The new XSN client will try

208 Informatica Economică vol. 15, no. 4/2011

to download the key from the older client. If
there is no group beginning with xsn:, the
client will generate a new key pair.
When adding a new user in the list of friends,
the client will send the public key to the new
user’s client. Thus, each user will have to
hold the public keys of all his friends. The
public key of a user is not secret anyway; ba-
sically anyone must be able to obtain it.
There are many extensions to XMPP proto-
col, some of which can be very useful for a
social network service (for instance data
storage on the server side, vCard stored on
the server card, extended friends list, etc..).
To be able to be used by any user, regardless
of the server where the user has an account,
XSN does not use any of these extensions.
XMPP standard does not require implement-
ing any extensions, thus the use of extensions
by XSN would limit the users that can access
the network.
Another important property is that the XSN
system does not require any modification of
the XMPP servers.
Based on the XMPP protocol, we proposed a
social network service where users no longer
need to have an account with at a single ser-
vice provider. It also starts from an existing
community of users without interfering with
its services. If they wish, users may also run
their own serve. Also, XSN does not assume
any modification of XMPP servers. Moreo-
ver, public servers, like Google or Jabber,
ensure the authenticity of their users.

XSN services platform
The usefulness of social network services ac-
tually comes from the number of applications
and services that they offer. In general, how-
ever, existing services tend to provide as
many services as possible by giving pro-
grammers the possibility to write extensions.
These extensions are dependent on the social
network service provider, and make applica-
tions extensions of the social network ser-
vice. The Paradigm that we propose involves
the exact opposite: social network service
should be thought s being an extension to ex-
isting applications. Thus, existing applica-
tions must not be rewritten. It allows users to
use applications that exist already and benefit
from social networking services. The best
example is NutriEduc, an application devel-
oped by IRIT for monitoring and assisting
people with diabetes. The application was ex-
tended so that users can share recipes and
tips with friends. The use of a standard social
network service the application would have
needed to be rewritten. Using XSN, rewriting
was not necessary, only adding one addition-
al library was enough.
Figure 3 shows the components of the XSN
platform. We have designed the XSN client
so as to provide only basic functions related
to authentication of users, management of the
list of friends, authorizing access for applica-
tions. For any other services we designed a
library that provides the interconnection be-
tween existing applications and XSN.

Fig. 3. The XSN platform components. XMPP protocol is used for authentication and

transport. The XSN library is linking applications to the XSN network. The XSN client au-
thorizes applications to perform actions on behalf of the user.

Mobile operating system restrictions
Because XSN is designed to operate on mo-

bile devices we had to take into account the
particularities of operating systems running

Informatica Economică vol. 15, no. 4/2011 209

on them. We will present below their limits.
We discuss here the most common three,
namely iOS developed by Apple, Android
made by Google and Windows Phone 7 de-
veloped by Microsoft. IOS is based on BSD
[14], a UNIX version created by the Univer-
sity of Berkeley, Android uses the Linux
kernel over which it implements a specific
set of libraries and a Java virtual machine,
called Dalvik. Windows Phone 7 is new and
information about its foundations is not yet
publicly available.
Except Android [15], all these systems are
very restrictive. The most important aspects
of this are:
• The system can run one application at a

time. Although all three systems are do
multitasking, applications made by pro-
grammers are not allowed to run in par-
allel. Windows Phone 7 does not accept
any exception to this rule. iOS, since
version 4 (and 4.2 for iPad), accepts re-
strictive multitasking. Thus, applications
can run in parallel, but only the applica-
tion that is present on the screen gets the
processor. Background applications re-
tain memory and other data, but do not
receive processor. The only way to pro-
cess the background data is to ask sys-
tem to do that. The system can play au-
dio files, listen to a VoIP socket or noti-
fication geographical location changes.
Android allows running of GUI pro-
grams and services and allows back-
ground processing without restrictions.
However, Android does not recommend-
ed massive background processing or
maintaining active sockets. These re-
strictions are imposed because, although
devices have relatively high processing
power, the batteries that they are
equipped with are not powerful enough.

• Memory limitations of the devices. Be-
cause devices need to function quickly
and efficiently operating systems on mo-
bile devices do not use swap space. This
implies that the memory used by all ap-
plications is limited to RAM size. The
three systems apply different rules for
memory overruns. iOS considers that the

currently running program must manage
very well its memory. Thus, if the
memory used approaches the limit, the
system will notify twice running pro-
gram, after which, if it does not erase
some data, it will forcibly stopped. An-
droid will do vice versa, rather than
close the program running on screen, it
will close background programs. GUI
programs will be closed first, and if there
is still not enough memory, the system
will close programs running as services.
Windows Phone 7 does not specify what
it does to free memory.

• Programs run sandboxed, each with its
own directory. Other programs cannot
access its files. iOS and Windows Phone
7 make no exception to this rule. An-
droid has a more complicated system.
Devices running Android are able to ac-
cess data card (usually SD card). Storage
space on the card is available to all ap-
plications. They can read and write any-
where, regardless of which application
the files belong to. The system will in-
form the user at the application’s instal-
lation time about the ability to access the
SD card and will require the user to ap-
prove it.

• Exchange of data between programs is
strictly monitored and regulated by the
system. The policy applied by the sys-
tems is that each program to should run
alone, without changing data or infor-
mation with other programs. Sometimes,
however, there is a need to transfer data
between programs. iOS allows this via
clipboard (copy - paste) or by functions
associated with different URLs. The first
variant not very effective and safe as the
information passes through a public text
buffer and any application can access it.
How two applications cannot run simul-
taneously, the user will have to make the
transition from one to another. The se-
cond option is associating a program that
can open certain types of URLs. When
an application asks to open a URL, the
system will start the program that was
associated with the URL and will send

210 Informatica Economică vol. 15, no. 4/2011

the URL to that program. After finish-
ing, the can send back data to the first
program, who originally requested URL
opening. Windows Phone 7 does not yet
allow the exchange of information, but
presumably it will be implement in the
future. Android is more permissive. In-
formation exchange can be done either
through the Binder system that transmits
Java objects that implement the
Parcelable interface from one program
to another, either by Android Interface
Definition Language (AILD). Binder
sends Java objects between programs,
wrapped in Intents. AIDL is used to con-
trol services by function calls. In essence
AILD is a RPC system. It is based on
Binder, but allows the definition of con-
trol functions, not just objects passing
[16].

• Once compiled programs cannot be
modified or extended by plug-ins. Two
aspects determine this: one commercial
and one about security. At compilation,
each application is digitally signed.
When installing and running the system
will verify the application’s digital sig-
nature. This system will ensure that the
application was not altered (e.g. virus)
since compilation. Moreover, the digital
signature allows manufacturers to pre-
vent installing applications that were not
approved and that don’t go through their
distribution system. Android is the only
system that is more permissive in that it
does not require manufacturers to dis-
tribute their applications through their
distribution solution, but also does not
allow modification of applications or
adding components later. iOS even for-
bids programs from running scripts
downloaded over the Internet.

Although XSN is designed to run on mobile
devices, it is assumed that the user will have
other devices that are connected to the Inter-
net. This includes computers, laptops, smart
TVs, etc.
With a clear view of the restrictions on mo-
bile systems, we started from the following
premises:

• XSN will communicate with other appli-
cations by using short messages at long
intervals, so that the iOS URLs passing
system to be enough.

• XSN will not store many data on the
mobile device and, more importantly,
will not be able to make massive back-
ground data transfer.

The XSN Client and the applications plat-
form
XSN is running on mobile devices, which
means that it is subject to restrictions im-
posed by the mobile operating systems. Alt-
hough Android would allow an easier im-
plementation, XSN must be run on other de-
vices as well, because their market share is
considerable. It is less likely that Apple and
Microsoft will change their mobile operating
systems restrictions, and even Android be-
gins to impose some restrictions. As de-
scribed above, XSN should be a simple client
that allows existing applications to use social
network services.
A solution is to integrate XSN into applica-
tions as a plugin, but this is not possible due
to restrictions of the operating systems run-
ning on mobile devices. Another possible op-
tion would be the integration of XSN in the
applications’ source code. The idea is not
bad, but raises a security issue. If XSN is in-
tegrated directly into the applications’ source
code, in order to access the user’s account,
applications must receive the user’s JID and
password associated with that account. It is a
major security risk, because no one can guar-
antee that the application will use this data
only for the purpose stated. For example,
Google accounts provide support for XMPP
(Google Talk client is actually an XMPP cli-
ent). If a Google user would use an applica-
tion and should give his username and pass-
word, the application could not only use the
XSN system, but also would be able to read
the user’s e-mail or to pay using the user’s
credit card (if the user uses Google Checkout
and) etc.. This is not acceptable, so an inno-
vative solution was needed.
Assuming that the programs may not be ex-
tended, and two programs may not run in

Informatica Economică vol. 15, no. 4/2011 211

parallel, we designed a platform for applica-
tions that relies only on delegation of respon-
sibility. In the classical approach, applica-
tions for social networking services use the
user’s account to communicate on his behalf.
In our proposed platform, applications are al-
so XSN network users, meaning that are as-

sociated with an XSN account (JID). In-
stalling an application by the user requires, in
fact, adding it the friends list. During
runtime, the application itself will use its
XSN account but will have to be authorized
to perform certain actions on behalf of the
user.

Fig. 4. The responsibility delegation to other applications

Whenever the application wishes to perform
an action on behalf of the user, for example
to store a file, to read a file, to communicate
with another application, it must obtain an
authorization from the XSN client located on
the same device or from a remote XSN cli-
ent. Authorization means granting a certifi-
cate signed with the user’s private key stating
that the application is allowed to take the de-
sired action. Figure 4 shows how the applica-
tion
Very nice movies asks Alice’s XSN client to
communicate with one of Bob’s applications.
Once received the certificate, called token,
the application makes the request to Bob’s
application. Bob’s application checks the au-
thenticity and validity of the certificate using
Alice’s public key and verifies that the certif-
icate granted the application to take the de-

sired action. One can also clearly notice that
the application has a separate XSN account
on the very-nice-movies.xmpp server.
This method has some disadvantages as well.
First, communication is slow as, for various
actions, the application must obtain the XSN
client’s approval. Moreover, if another appli-
cation wants to obtain some data from a user,
it must first ask user’s XSN client or his
friends’ XSN Clients about the JID of the de-
sired application that holds the data.

XSN system services
The XSN system offers developers a plat-
form over which they can build other ser-
vices. An XSN service is actually a standard.
A name and an identifier that is a string iden-
tify it. The identifier is used for the certifi-
cates. The XSN platform architecture is

212 Informatica Economică vol. 15, no. 4/2011

shown in Figure 5.

Fig. 5. The XSN system architecture. Authentication and transport is provided by XMPP.

Each application has its own JID and communicates directly with XMPP. To perform actions
on behalf of users, applications must obtain a certificate from the XSN client. An application

may provide one or more services. A service can be offered by several applications.

A service can be offered by several applica-
tions. We take the example of the messaging
service in Figure 5. Suppose that its ID is
XSN: messages. For this service, Alice can
use WonderlandPost application with the JID
app1@xsn.com or PostalApp with the JID
app2@xsn.com. Bob can use MoviesPost
with the JID post@movies.xmpp. Although
they are different applications, and most like-
ly programs written by different program-
mers, they provide the same service, which
means that Bob can read messages sent by
Alice.
An application can, in turn, provide more
services. For example, PostalApp
(app2@xsn.com) can provide the e-mail ser-
vice {XSN: messages} and instant messaging
service {XSN: im}. For each one of the ser-
vices, the PostalApp program must ask the
approval of Alice’s XSN client application
and receive a certificate that allows it to offer
this service on behalf of Alice. When in-
stalling an application, the user can decide
what services he wants to use.
A user can install multiple applications that
offer the same service and decide which to
use. Of course, he can use both.

The services communication system
Due to the fact that each application has its
own XSN ID, we face the following prob-
lem: Alice's WonderPost application, which
provides XSN:messages service to send mes-
sages, must communicate with Bob's mail
service, namely MoviePost. How does Alice
know what is Bob’s mail service JID? We
hape proposed the following solutions:
• If at least one of Bob’s resources (XSN

Clients) is connected, WonderPost will
select the one with the highest priority
and will require additional information
on Bob's postal service. Bob’s XSN cli-
ent will check whether WonderPost has
a valid certificate from Alice, and if so,
will provide Bob's service's JID. If Bob
has two applications installed that pro-
vide the same service, one of them will
be chosen randomly.

• It is important to note that the JID that
Alice receives must be complete, which
is of the form name@server/resource.
The resource identifies, in fact, very pre-
cise the application that should receive
the message. We refer here to the actual
program running on one of Bob's devic-
es.

Informatica Economică vol. 15, no. 4/2011 213

• In the event that none of Bob’s resource
is connected, WonderPost will try to ask
all of Alice's friends if they know who is
Bob's service. Every friend of Alice will
check the application’s certificate to en-
sure that, in fact, Alice has authorized
WonderPost to know which application
is Bob’s mail service. If one of Alice's
friends has the information (which is a
mutual friend of the two), it will respond
with Bob’s application’s JID, but with-
out the resource, because it has no way
of knowing what Bob's running resource
is (or even if it runs). Once WonderPost
has learned Bob’s mail application JID,
it has two solutions: either sends a query
message to the received JID querying
which is Bob’s resource, which means
that application’s makers should remem-
ber every time a resource is online. An-
other solution for WonderPost is to send
the message using the mailbox system
provided by the storage service [17].

Offline authentication in the temporary ab-
sence of Internet access
A problem that occurs when using XSN is
the continuous need of Internet access. To
communicate with users and their applica-
tions XSN must have access to the XMPP
servers. The problem is not just for XSN, all
social networking services have this problem,
even any program that needs a connection to
a server. In general, the problem has no solu-
tion because while no Internet connection, a
user cannot physical communicate with users
that are in another place. But the question
arises what happens to users that are in the
same location, for example in a restaurant.
Following studies have proposed solutions to
interconnect them, but these solutions cover
only the operating system related problems
[18]. XSN propose a solution, which assumes
that there is a local network between devices,
even if Internet is temporarily inaccessible.
Discovering the local network users is done
using Bonjour [19] or Zeroconf [20]. These
systems allow publication of information
about services offered in the local network
without needing a server. Once discovered

services, users can connect to each other. For
authentication, users will use public key sys-
tem. I have described above that adding a
friend on the list, also means getting his pub-
lic key. Thus, if two users have a bilateral
friendship, both have locally stored each oth-
er’s public key. To connect with each other
and to authenticate, they will use these keys
for authentication.
If two users that are not mutual friends they
will apply the following algorithm for au-
thentication: one of the XSN clients will gen-
erate a password that the second user will
have to introduce. This implies that the two
are side by side or have another way to
communicate with each other. Devices that
use the Bluetooth system use this system.
Once authenticated, users will change public
keys with each other and will check these
keys when access to the Internet is restored.
Thus, if support for local network intercon-
nection is implemented in the devices’ oper-
ating system, XSN enables user authentica-
tion. Of course, access to services that re-
quire Internet connection, such as, most like-
ly, the service for data storage) is not possi-
ble. Support for interconnection is imple-
mented iOS as Bonjour and in Android as
Zeroconf and, in part, by a library called
jmDNS [21] which implements the functions
of Bonjour’s multicast DNS server. Windows
Phone 7 does not specify whether it supports
or not local network interconnection.

4 Implementing XSN
We have implemented the XSN client and li-
brary for most of the mobile devices that ex-
ist on the market. We have chosen Android
and iOS devices as they have together almost
70% of market share.
A technical problem arises when implement-
ing XSN for iOS. The most restrictive sys-
tem, iOS does not allow running programs in
background, thus the XSN client cannot pro-
cess background data. It has yet to run in or-
der to respond to messages about services or
applications queries. The technical solution is
to register socket as VoIP. Thus, XSN will be
notified by the operating system when-
ever it receives data. XSN can thus respond

214 Informatica Economică vol. 15, no. 4/2011

quickly to various requests coming from the
network. Moreover, if a service needs to
communicate directly with its correspondent
from the user’s device, XSN can notify the
users who can start the program.
We have done tests using 4th generation
iPods, iPads and iPad 2. All are running on
Apple’s 1 Ghz A4 and A5 processors having
from 256 MB up to 1 GB of RAM. Tests
have shown that the XSN client has minimal
overhead, as is does not run continuously.
Android on the other hand allows services,
thus implementing the XSN client was no
problem. In order to communicate with the
XSN library from applications, we use An-
droid Interface Definition Language (AIDL).
The testing has been done using HTC Hero
devices that are more than two years old. It
can be said that XSN runs acceptably, but
there is still a need for improvement.
In order to test our implementation, we are
now extending the NutriEduc application
built by Institute de Recherché on
Informatique de Toulouse (IRIT). Its purpose
is to monitor and assist persons with diabe-
tes. XSN will allow the sharing of recipes
and the storage of sensitive information.

5 Conclusions
Upon designing and implementing the XSN
system we have come to the following con-
clusions:
• Using the XMPP protocol platform has

two advantages. Unlike traditional social
network services like Facebook,
LinkedIn or Twitter, XSN does not re-
quire users have an account with the
same provider in order to communicate
with each other. This solves the problem
of interconnection of users. Moreover,
because many of the existing services
are already using XMPP, including
Google Talk, there is already a commu-
nity of users that can use XSN without
the need to make other accounts. It can
also be used in industrial applications
such as those described in PREMINV
platform \ cite {article: ve_sibiu_2009}.

• XSN is not using any XMPP protocol
extension so that service can run on any

server, regardless of what extensions it
implements. Moreover, we have not
made any changes to XMPP servers so
that users can use either your own serv-
er, or a public one. This feature brings an
advantage on the distributed social net-
work service Diaspora*, which forces
the user to use his personal server in or-
der to connect to the network.

• Authentication in XSN is secure, as
servers authenticate each other. Moreo-
ver, we strongly believe that users will
be more willing to user public available
XMPP servers, such as Google or Jab-
ber, to create accounts for XSN.

• XSN proposes a method to authenticate
users and provide services to some ex-
tent in the temporary absence of connec-
tion to the Internet.

• The system works well on mobile devic-
es that run restrictive operating systems,
such as iOS. As two applications cannot
run in parallel and applications must not
get the user’s authentication data, cryp-
tography is used in order to grant appli-
cations to act on behalf of the user, using
their own XSN authentication data.

References
[1] T. A. Pempek, Y. A. Yermolayeva, S L.

Calvert, “College students’ social net-
working experiences on Facebook”,
Journal of Applied Developmental Psy-
chology, 30(3), 2009, pp. 227 – 238.

[2] P. Saint-Aandre, K. Smith, R. Troncon,
XMPP: The Definitve Guide, O’REILLY,
2009.

[3] D. Mark, J. LaMarche, Beginning iPhone
3 Development: Exploring the iPhone
SDK, Apress, 2009.

[4] D. Mark, J. LaMarche, J. Nutting, More
iPhone 4 Development. Further Explora-
tions of the iOS SDK, Apress, 2011.

[5] M. Murphy, Beginning Android 2,
Apress, 2010.

[6] S. Spanbauer, “The right social network
for you”, PC World, 26(4), 2008, pp. 105-
110.

[7] Facebook. Statement of rights and
responsabilitie,

Informatica Economică vol. 15, no. 4/2011 215

http://www.facebook.com/terms.php,
accesed in April 2010.

[8] L. Davis. Facebook plans to make money
by selling your data, February 2009,
http://www.readwriteweb.com/archives/fa
cebook_sells_your_data.php, accessed in
September 2011.

[9] J Fogel, E. Nehmad, “Internet social net-
work communities: Risk taking, trust, and
privacy concerns”, Computers in Human
Behavior, 25(1), 2009, pp. 153-160.

[10] A. Narayanan, V. Shamtikov, “De-
anonymizing social networks”, IEEE
Symposium on Security and Privacy,
2009, pp. 173-187.

[11] J. C. Buisson, “Nutri-Educ, a nutrition
software application for balancing meals,
using fuzzy arithmetic and heuristic
search algorithms”, Artificial Intelligence
in Medicine, 42(3), 2008, pp. 213-227.

[12] H. Lee, E. Chuvyrov, Beginning Win-
dows Phone 7 Development, second edi-
tion, Apress, 2011.

[13] C. P. Pfleeger, S. L. Pfleeger, Security in
computing, third edition. Prentice Hall,
2003.

[14] S. J. Leffler, The Design and implemen-
tation of the 4.3 BSD UNIX operating
system, Addison-Wesley, 1989.

[15] A. Shabtai, Y. Fledel, U. Kanonov, Y.
Elovici, S. Dolev, Google android: A
state-of-the-art review of security mecha-
nisms, CoRR, abs/0912.5101, 2009.

[16] A. Radovici, “Implementation of a Web
Server Optimzied for Services for the An-
droid Platoform” (“Implementarea unui
server web pentru platforma Android
optimizat pentru oferirea de servicii”),
Master Thesis, ”Politehnica” University
of Bucharest, 2010.

[17] A. Radovici, “Contributions to Social
Networking Services for Mobile Devices”
(“Contributii la service de retele sociale
pentru dispozitive mobile”), PhD Thesis,
”Politehnica” University of Bucharest,
2011.

[18] B. A. Ford. “UIA: A Global Connectivi-
ty Architecture for Mobile Personal De-
vices”, PhD Thesis, Massachusetts Insti-
tute of Technology, 2008.

[19] Apple. Bonjour,
http://developer.apple.com/opensource/,
accesed in September 2011.

[20] D. H. Steinberg, S. Cheshire, Zero Con-
figuration Networking: The Definitive
Guide, O’Reilly Media, 2005.

[21] SourceForge. Jmdns,
http://jmdns.sourceforge.net/, accessed in
September 2011.

Alexandru RADOVICI has graduated the Faculty of Engineering in Foreign
Languages of the “Politehnica” University of Bucharest in 2008. He holds a
master in Computer Science since 2010 and has finished his PhD in Comput-
er Science in 2011 at the same university. Since 2008 he is a member of the
Department of Engineering in Foreign Languages and since 2010 he has been
teaching the first Mobile Devices Application Development course in his
university. The course covers topics from almost all mobile device operating

systems, such as Android, Windows Mobile, Windows Phone, iOS etc. His topics of interests
are mobile devices, operating systems and devices programming.

Valentin CRISTEA is Professor of the Computer Science and Engineering
Department of the University Politehnica of Bucharest. His main fields of
expertise are Large Scale Distributed Systems, Grid and Cloud Computing,
and e-Services. He teaches courses and supervises PhD students on these top-
ics. Valentin Cristea is Director of the National Center for Information Tech-
nology, leader of the CoLaborator, Distributed Systems and Grid, and e-
Business/e-Government laboratories. He has a long experience in the devel-

opment, management and/or coordination of international and national research projects.
Valentin Cristea is member of the IEEE and ACM professional organizations.

