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Semi-linear Credibility Results

Virginia ATANASIU
Academy of Economic Studies, Bucharest

An original paper which suggests a way of thinking for semi-linear credibility theory devel-
opment, founded on analysis of the functions of the observable random variables.
This line of thought fits perfectly within the framework of the greatest accuracy credibility

theory.
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ntroduction

Semi-linear credibility estimators are lin-
ear functions of transformed observations.
The estimators mainly considered here - in
the first section - are linear functions of sev-
eral functions fi,....f; of the observable ran-
dom variables. So instead of considering lin-
ear combinations of the observable variables
themselves, one could consider as estimators
the class of linear combinations of given
functions of the observable variables, and

solve - see the second section-:

2
n

t
MIHE fO(XHl)_zchrfpr(Xr)
p=l r=1
In this way one obtains semi-linear credibil-
ity results. One may either assume the func-
tions fy, f,r to be given in advance, or one
may try to determine the best choice. If one
wants to estimate a variance-like term, it
might be appropriate to consider a quadratic
function f; = . So, in case one would like to
estimate the variance, a quadratic function is
considered. Probably it is also better to take
quadratic functions of the observable vari-
ables than to approximate by a combination
of linear functions. This is also more in har-
mony with the dimensions of the problem. In
some cases one only has data on large claims,
so one takes x, if X >a, 0 otherwise as the
claim amount. One possible choice for f is
min(x,d), where d denotes the threshold
value above which a claim is called "large".
This special choice enables us to evaluate the
effect of reinsurance on the risk premium.
Sometimes the results of credibility are too
sensitive to changes in large claims. Choos-
ing f like this gives us the possibility to avoid
too large fluctuations in the premiums. This

choice should be considered in combination
with an excess of loss reinsurance treaty with
retention d for future operations. This article
is devoted to semi-linear credibility, where
one examines functions of the random vari-
ables representing claim amounts, rather than
the claim amounts themselves.

Several approximating functions

Here and in the following we present the
main results leaving the detailed computa-
tions to the reader. Consider a finite se-
quence @, Xi,..., X;, Xi+1 of random variables.
Assume that for fixed @, the variables Xj,...,
X+ are conditionally independent and iden-
tically distributed (i.i.d.). The variables
Xi,...,X; are observable, and @ is the struc-
ture variable. The variable X is considered
as being not (yet) observable. We assume

that £,(X;), p=0,n,7 =1,# +1 have finite vari-

ance. For fy we take the function of X we
want to forecast. We use the notation:

#,(0) =E[6(X)|0] (1.1)
(p=0,n,r=1Lr+1)
This expression does not depend on r. Our

problem is the determination of the linear
combination of 1 and the random variables:

£,(X0) (p=Ln,r=11)(1.2)

closest to s, (0)= E[f,(X.,)| 8] in the least
squares sense. It is equivalent to determine
the linear combination of that form closest to

fo(X¢+1). For this model we define the follow-
ing structure parameters:

my=E |u, (0)|= E{E|f, (x| 0]t= ELf, (x,)]
(1.3)
a =E{Cov|f, (X,), £, (X,)1 6]} (1.4)

t+1
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bq = Cov |, (0),12,(8)] (1.5)

e =Cov | f, (X, ), 1, (X,)] (1.6)

dpq =Cov lfp (x,), Hy (H)J (1.7)

for p, ¢ =0,n. These expressions do not de-

pend on r =1,7+1. The structure parameters
are connected by the following relations:

Cpg = Apg T bpq (1.8)

dpq =bpq (1.9)

for p, q =0,n. This follows from the covari-
ance relations obtained in the probability
theory, where they are very well-known. In-
deed, we have:

cp = Cov |, (X,).1,(X,)|= E{Cov|f, (X,). £,(X,)| 0]} +Cov {E [£,(X,)| 6],

, E[£,(X)| 0]} = an+Cov [, (6)

1,(0)]=a,, +b,,(p.q=0.n)

So the verification of equality (1.8) is readily performed. Next, we have:
dpg = Cov|f, (X, )11, (0)|= E{Cov|f , (X, ), 11,(8) | O]} +Cov{E[£,(X,) 61,
Elu,0)| 0} = ERELf, (X, )u, 0 |0 Ef, (X,) | 0JE|u, (0) 1 0}

+Covlu, (0). 4,(0)]= Elu, (0)E|r, (X

)N 0)- 1, (0)u, (0)j+b,,=Elu, (0)

y(0)= 1, (0)u, )b, = E0) b, =0+, =b, (g =00

Therefore the verification of equality (1.9) is
readily performed.

Optimal non-homogeneous linearized es-
timator

Just as in the case of considering linear com-
binations of the observable variables them-
selves, we can also obtain non-homogeneous
credibility estimates, taking as estimators the
class of linear combinations of given func-
tions of the observable variables, as shown in
the following theorem:

Theorem 2.1 (optimal non-homogeneous
linearized estimator)

The linear combination of 1 and the random

variables f,(X;) (p = Ln,r :ﬂ) closest to
1,(0)=E[f,(X,.,) 0] and to fo(Xe+1) in the

least squares sense equals:

n t 1 n
M= Zsz;fp(Xr)+m0 - z,m, (2.1),
p=l p=1

=1
where z,...,2, is a solution of the linear sys-
tem of equations:

i[cpq +(t-d, F, =, (g=1,1)(22)

or of the equivalent linear system of equa-
tions:

> (a,, +b,,f, =tb,, (q=1,n)(2.3)

p=1

Remark 2.1 Inserting the relations (1.8) and
(1.9) into (2.2) we observe that (2.2) is
equivalent to (2.3). Indeed, let ¢ be fixed.

We have:

Z[cpq +(-1d, F, =, = 2[% +b, +(=1p, |, =tb,, < 2(% T
p= p= p=

Hopttpg—b,, )7 = thog = Y la,, +tb, k, =ib,,

Proof of Theorem 2.1: we have to examine
the solution to the problem:

i Eﬂﬂ 0)-a -3 3,0, )H

p=1 r=1

(2.4),
where: o = (a o )p - Since (2.4) is the mini-

p=1

mum of a positive definite quadratic form, it
suffices to find a solution with all partial de-
rivatives equal to zero.

Let:
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+2a, Z:fp (Xr )apr} =E [:u(f (0)]+ a; + Eﬁzrfp (Xr )aprJ } - 2OCOE[/JO (0)] -
23 Bl 0)1, (X, ), + 20, LS, (X, ),

Taking the partial derivative with respect to o =m, _Zapr m, (2.6)

a, gives the following equation: por

) E[ ﬂ ] + 22 E[ ]a _0.or [Inserting this expression for ¢, into (2.4)
0 r Y .

leads to the following problem:
E[,uo ZE[f Dk, =0 (2.5)

Using (1.3) in (2. 5) we obtain

Min EH —m, — ZZa I, (x mp]}zJ 2.7)

p=1 r=1

Let: f(ap,, I,_n,r—ﬂ)—EH,uo(H)—mo—Zap,,[fp(X,)—mp]} }_
=E{,u§(¢9)+m§+Za§,[fp(Xr)—mp]2+ZZZapr " [f m,,]'

p.p r.r

'lfp'( ) m J 2270#0( 2/10 Zap;[f mp]+2m020{pr-
~[fp( —-m ]} E[,u0 ]+m0+2ap,E{[f -m ]2}+222am

pplr

'ap',:E{[fp ][f —m J} 2moE[ﬂo ] 22 aprE[:Uo
-(fp(Xr)—mp)]+2moz:‘aprE[fp , mp]—E[yo ]+m0+...+
v E{f, () -m Pl 42 e, >a,, Elr,(x,)-m, Ir (x

p#p
r#r

-m J}+ -2m E[y0 6)]- ( ta, E[/,t0 49)(f mp) +...)+2m0-

(v, B, (X, )=m )
On putting the derivatives with respect to «,, equal to zero, we get the following system of
equations:

20, £, (X, )=m, P}« 230, B, (6 )-m, 17, (0, )=, -2

p¢p
I”#I”

Eluy (001, (x,)=m, |+ 2m Ef, (X, )-m, |= 0,(p = Lmsr =1,2), that is:




120 Informatica Economica, nr. 1 (41)/2007

Euy(0)-m Ir, (x,)-m, =S e E]r,(x,)-m, 17, (X, )-m [ 0= Lnr=10), or
Efuy(0)- E(u, (0))][fp (x,)-£(r,(x, )] = Za,,,E{[f,, (X,) ~ E(f,(X)]
L )-£lr, (b p =1 =1)

So: Cov [, (6), f,,(X,)]:Zap.,,cm[f,,(x,), £ @8

(p=1,_n,r ﬁ) Substjituting pwith g r with r in (2.8) one obtains:
oo 1,8, J-3 T ol (211 2o

(q =1,n,r'= l,t). Substltutlng p' with p,r' with » in (2.9) one obtains:
Corlu(0).1,(x,)]= 3 Ta, Corly, (4,1, (5, ) = L= 1) @10)
From (1.5), (1.7), (1.9;we get

Cov |1, (0), £, (X, )= Covlf, (X . ) 11, (0)| =y = b, = Covlps, (0), 11,(6)] =
=Cov |u,(0), 1, (0)|= by, (= dy, ) 2.11),

where q =1,_n,r' =1,¢.Letr,r =1, withr= 7 . From (1.1), (1.5), (1.9) we get
Cov |1, (x,) £, (X, )= ELs, (x,)f, (X, )= EL7, (5, LS, (X, ) =

= B {EL, ()7, (X 1ol Blelr, (v, ) oleelr, (x. ) ) -

=E{e]f, (x | eJElf ()] eJ} Elu, 0)|E|x, 0)|= Elu, (0)x,0)]-

-Elu, (6 jE[yq (6)]= Covl,up Lu,(0)|=b, =d, (2.12),

forall p,q= Ln.
In view of (1.1), (1.4), (1.5), (1.8) and (2.12), we calculate the summation:

Zl_:apr Cov[fp (Xr )’ fq (X;-' )] = apr' Cov[fp (Xr' )’fq (Xr' )]+ Zapr ' COV[fp(Xr)’
f(X, 0= o, (E|Cor(s, (X, ) £, (X )1 6)]+ CorlELS, (X )| 0) B0

| 0)]} + z A pyr dpq =a, {apq + COV[/JP (9)’ H, (9)]}+ dpq Z Apr = apr' (apq+bpq)+
+dpq' Z Ay = apr'cpq + dpq Zapr (2.13),

where: p,q= Ln,r =1,.
Introducing (2.11) and (2.10) in (2.13), one obtains:

qu = Z{O{prcw + dpqzapr :l’ ((] - L_n,r' - E) (2.14)

Because of the symmetry in time clearly:
a,=a,=.=a,=a,(2.15)

and so the system of equations (2.14) can be written as:



Informatica Economica, nr. 1 (41)/2007

121

qu - iap [cpq + (t - l)dpq ]’ (q = I,_I’l) , Or (See (19))

dog= Yo le, +(t-1d, |.(q=1.n) 2.16)

Comparing (2.2) with (2.16), we conclude that:

a,=z,/t (p=1n)Q2.17)

Remark 2.2 The relation (2.15) can be proven as follows; forr’ = 1,1’ =2,....,r’ =t-1, 1’ =t

the system of equations (2.14) implies:

n

boq = Z(aplcpq +a,,d, +...+0{ptdpq>q =1,n,

p=l

n

boq = Z(apchq +apldpq +ap3dpq +...+aptdpq>q =1,n,

p=l
n

boq = Z(apjtflcpq +apldpq +...+ap7t72dpq +a

p=l1

n

ptdpq)q =Ln,

qu: Z(aptcpq +ap1dpq +0{p2dpq +"‘+ap,t—1dpq)vq =Ln.

p=l1
The first two equalities imply:

Z(aplcpq ta,,d, +...+aptdpq)= Z(apldpq ta,,c,, ta,d, +..+

p p

ta,d, ), that is:

Zaplcpq + Zazﬂdm + z(azﬁdpq oot aptdpq): zapldpq + Zazﬂcpq +
P p P p p

+Z(ap3dpq +..+ aptdpq ),Vq = I,_n, or:
p

ilapl (Cpq _dpq): ilapz (Cpq _dpqlvq = I,_I’l,
p= p=

that is (see (1.8) and (1.9)):

dYaya, = a,a,,Yg=1n (2.18)

p=1 p=1
Hence, for q = 1 we have:
Z:aplap1 = Zapzapl,Vn eN* and from
p=1 p=l1
here for n=1, we get: 2,,a,, = a,,qa,,, so:
a,, =a, (2.19),

because a,, # 0.
Next, for q = 2 one obtains:

n n
— %
Zaplap2 —Zapzapz,VneN and from
p=1 p=l1
here for n = 2, we get:

a,a, +aya,, =a,,a, +a,,a,, that is (see
(2.19)): a,a,, =a,a,,, so:

a,, =0, (2.20),
because a,, #0.
Next, for q = 3 one obtains:

n n

— *
Zaplap3 —Zapzap3,VneN and from
p=l p=l

here for n = 3, we get:
A3 + Qg Ay3 + 31033 = A3 + Aoy + O3, d5;
, that is (see (2.19), (2.20)): a;,a;;, = a3,a54;,

so:

o, =as, (2.21),

because a,; #0.

From (2.19), (2.20) and (2.21), we may con-
clude that:

a, =a,,forallp= Ln (2.22)

The equality (2.22) can be proven by induc-
tion. Indeed, for n = 1 is readily performed.
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We assume that:
a, =a,,Vp=1n-1
From (2.18) for

q = n, we have:

n n
Zaplapn = Zapzapn , that is:
p=l1 p=l

lowing equation:z = tdy;/{c;;+(t-1)d;; }. From
(2.12) for n=1 one obtains: do; = Cov[f(X}),
(X, di = Cov[fi(X), fi(Xe)], where
r#r'. Finally, for n=1 the relation (2.1)
reads:

- 1 +m0 zm,.
a,a, tada,, +..+a, ,4,,,ta,a, =a,a, + a22a2n 1004,
+ So the theorem is proven.
+a,,a,and so: a,a, =a,a, . From here,

we get: «, =a,,, because a,, #0. From

the following two equalities and proceeding
in the same way, one obtains:

a,, =a,,forallp=1n (2.23)

Finally, from the last two equalities and pro-
ceeding in the same way, one obtains:

il = pt,forallp— 1 n (2.24)

The relations (2.22), (2.23), and (2.24) imply
(2.15). Now (2 6) and (2.17) lead to:

(24

p=1 r=1 t p=1
(2.25)
Consequently:
,UO( =M =a,+ ZZf
p=1 r=1 =

as was to be proven (see (2.4), (2.15), (2.17)
and (2.25)).

For the special case when n=1, Theorem 2.1
reads:

Theorem 2.2 (optimal non-homogencous
linearized estimator, n = 1)

The linear combination of 1 and the random

variables f;(X;) (r = 1,_t) closest to x, (9) and
to f()(Xt+]) in the least squares sense equals:

—ZZ f1 +m0

where: m; = E[f(X})], z = tdoi/{c11+(t-1)d;;}
with: d()] = COV[f()(Xr), fl(Xr’)], d]] =
Cov[fi(X;), fi(Xp)] for r 7', 11 =
Cov[fi(Xy), fi(Xp)].

Proof:

For n=1 the relation (1.3) implies: m; =
E[fi(X})]. For n=1 the relation (1.6) implies:
ci1 = Cov[fi(Xy), fi(X;)]. For n=1 the linear
system of equations (2.2) reads: [c;;+(t-
1)di1]z = tdo; which is equivalent to the fol-

zm, (2.26),

m, —‘[Eé}z mpproximation _to

Conclusions

This paper is an original approach of a more
general credibility model.

We obtained a semi-linear credibility model,
which involves the class of linear combina-
tions of given functions of the observable
variables, for solving the minimization prob-
lems of the type:

MnE{ WS, f (X, )H So

p=l r=1

fo(Xir1) or to
72 (0)= E[f,(x..,)| 6] furnished in this arti-

cle, is based on prescribed approximating
functions fj, fz, ,fi. The usefulness of this

Zn: z Zt:_ D Xm?qnﬁpon Eh%lt 1s easy to apply, since

“~ rif is Sufficient

Knotv estimates for the pa-
rameters anq, bpq appearing in the credibility
factors z,. The estimators mainly considered
here are linear functions of several functions
fi, f,..., f; of the observable random vari-
ables, which represents claim amounts, rather
than the claim amounts themselves. For this
reason, semi-linear credibility estimators,
which are linear functions of transformed ob-
servations lead to easily computable premi-
ums. This semi-linear credibility results are
the most recent developments in credibility
theory and they certainly present the only so-
lution where insurance industry faces risks
with basic risk characteristics that cannot be
assigned to any established collective or with
a risk coverage under circumstances not ear-
lier met. We give a rather explicit description
of the input data for the model used, only to
show that in practical situations there will
always be enough data to apply semi-linear
credibility theory to a real insurance portfo-
lio. The point we want to emphasize is that
practical application of semi-linear credibil-
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ity is feasible nowadays using the greatest
accuracy credibility theory.
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