
Informatica Economică vol. 13, no. 1/2009

47

Business Process Management Integration Solution in Financial Sector

Silviu Florin TEODORU
Oracle Romania, Bucharest, Romania

teodorusil@yahoo.com

It is vital for financial services companies to ensure the rapid implementation of new
processes to meet speed-to-market, service quality and compliance requirements. This has to
be done against a background of increased complexity. An integrated approach to business
processes allows products, processes, systems, data and the applications that underpin them
to evolve quickly. Whether it’s providing a loan, setting up an insurance policy, or executing
an investment instruction, optimizing the sale-to-fulfillment process will always win new busi-
ness, cement customer loyalty, and reduce costs. Lack of integration across lending, payments
and trading, on the other hand, simply presents competitors who are more efficient with a
huge profit opportunity.
Keywords: Web Service, business process, integration, financial services, integration, model-
ing.

Introduction
Financial institutions today combine a

wide range of product and service offerings,
across banking, insurance and asset man-
agement. They operate in global and cross
border markets. They have increasingly so-
phisticated and mobile customer bases. In-
creased regulatory vigilance and new corpo-
rate governance rules have the potential to
add new layers of complexity and cost. And
there continues to be consolidation, merger
and acquisition in the sector.
For all these reasons the effective manage-
ment of complexity and change is a key de-
terminant of future success. Those who au-
tomate and streamline their operations most
effectively will gain significant advantage.
Integration is now more than ever the key to
efficiency, enabling lower transaction costs
and increased sales volumes. This is true for
capital markets, for retail financial services,
and for the corporate sector.
Integration and process optimization not only
has to extend across the enterprise, but must
also embrace third parties who often supply
key components of today’s complex, multi-
instrument financial products. A mortgage
offer for example will typically involve un-
derwriters, insurers, the customer’s bank,
credit reference agencies and others, as well
as internal approval, accounting, collections,
credit control, risk management, commission

payment, incentive management, and busi-
ness intelligence processes. Improve all the
connections between all the elements of a
transaction and performance automatically
improves.
According to [7], the problem is that estab-
lished financial organizations still have nu-
merous, disparate, proprietary back-office
systems which cannot keep pace. These limit
the capabilities of even the most advanced
front-end systems. The remodeling and im-
plementation of new processes to meet the
demands of dynamic change are severely
constrained.
There are three objectives to aim for:

 driving greater efficiency and value from
existing systems and processes;

 managing the risks associated with dy-
namic change;

 achieving greater visibility and flexibility
across complex operations.
In next paragraphs it is described an ap-
proach to process management which deliv-
ers those aims. At last financial institutions
have a solution that allows them to cater for
and anticipate change, allowing far greater
operational and marketplace efficiency, while
meeting regulatory and governance require-
ments.

2. Basic concepts
A Web service is defined by the [2] as "a

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6612566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Informatica Economică vol. 13, no. 1/2009 48

software system designed to support intero-
perable machine-to-machine interaction over
a network". Web Services are frequently just
Web APIs that can be accessed over a net-
work, such as the Internet, and executed on a
remote system hosting the requested services.
SOAP, originally defined as Simple Object
Access Protocol, is a protocol specification
for exchanging structured information in the
implementation of Web Services in computer
networks. It relies on Extensible Markup
Language (XML) as its message format and
usually relies on other Application Layer
protocols, most notably Remote Procedure
Call (RPC) and HTTP for message negotia-
tion and transmission. SOAP forms the foun-
dation layer of the Web Services protocol
stack providing a basic messaging framework
upon which abstract layers can be built [1].
The Web Services Description Language is
an XML-based language that provides a
model for describing Web Services. The
WSDL defines services as collections of
network endpoints, or ports. The WSDL spe-
cification provides an XML format for doc-
uments for this purpose. The abstract defini-
tion of ports and messages are separated from
their concrete use or instance, allowing the
reuse of these definitions [6].
The Web Services Interoperability Organ-
ization (WS-I) is an industry consortium
chartered to promote interoperability
amongst the stack of Web Services specifica-
tions. WS-I does not define standards for
Web Services; rather, it creates guidelines
and tests for interoperability.
The [2] Web service definition encompasses
many different systems, but in common
usage the term refers to clients and servers
that communicate over the HTTP protocol
used on the Web. Such services tend to fall
into one of two camps: Big Web Services and
RESTful Web Services.
"Big Web Services" use XML messages that
follow the SOAP standard and have been
popular with traditional enterprise. In such
systems, there is often machine-readable de-
scription of the operations offered by the ser-
vice written in the Web Services Description
Language (WSDL). The latter is not a re-

quirement of a SOAP endpoint, but it is a
prerequisite for automated client-side code
generation in many Java and .NET SOAP
frameworks (frameworks such as Spring,
Apache Axis2 and Apache CXF being nota-
ble exceptions). Some industry organizations,
such as the WS-I, mandate both SOAP and
WSDL in their definition of a Web Service.
More recently, “RESTful Web Services”
have been regaining popularity, particularly
with Internet companies. These also meet the
W3C definition, and are often better inte-
grated with HTTP than SOAP-based servic-
es. They do not require XML messages or
WSDL service-API definitions.
WS-Security (Web Services Security) is
defined in [1] as a communications protocol
providing a means for applying security to
Web Services. On April 19, 2004 the WS-
Security 1.0 standard was released by Oasis-
Open. On February 17, 2006 they released
version 1.1. Originally developed by IBM,
Microsoft, and VeriSign, the protocol is now
officially called WSS and developed via
committee in Oasis-Open.
The protocol contains specifications on how
integrity and confidentiality can be enforced
on Web Services messaging. The WSS pro-
tocol includes details on the use of SAML
and Kerberos, and certificate formats such as
X.509.
WS-Security describes how to attach signa-
tures and encryption headers to SOAP mes-
sages. In addition, it describes how to attach
security tokens, including binary security to-
kens such as X.509 certificates and Kerberos
tickets, to messages. WS-Security incorpo-
rates security features in the header of a
SOAP message, working in the application
layer. Thus it ensures end-to-end security.
A business process is a collection of related,
structured activities or tasks that produce a
specific service or product (serve a particular
goal) for a particular customer or customers.
Business Process Execution Language
(BPEL), short for Web Services Business
Process Execution Language (WS-BPEL) is
an executable language for specifying inte-
ractions with Web Services Processes in
Business Process Execution Language export

Informatica Economică vol. 13, no. 1/2009

49

and import information by using Web Ser-
vice interfaces exclusively [3].
Business Process Modeling (BPM) in sys-
tems engineering and software engineering is
the activity of representing processes of an
enterprise, so that the current ("as is")
process may be analyzed and improved in fu-
ture ("to be"). BPM is typically performed by
business analysts and managers who are
seeking to improve process efficiency and
quality. The process improvements identified
by BPM may or may not require Information
Technology involvement, although that is a
common driver for the need to model a busi-
ness process, by creating a process master
[7].
Service-oriented architecture (SOA) pro-
vides, according to [4], methods for systems
development and integration where systems
group functionality around business
processes and package these as interoperable
services. SOA also describes IT infrastruc-
ture which allows different applications to
exchange data with one another as they par-
ticipate in business processes. Service-
orientation aims at a loose coupling of ser-
vices with operating systems, programming
languages and other technologies which un-
derlie applications. SOA separates functions
into distinct units, or services, which devel-
opers make accessible over a network in or-
der that users can combine and reuse them in
the production of business applications.
These services communicate with each other
by passing data from one service to another,
or by coordinating an activity between two or
more services.

3. Business Processes Execution and Mod-
eling
Web Service interactions can be described in
two ways [3]:

 Executable business processes model ac-
tual behavior of a participant in a business in-
teraction;

 Abstract business processes are partially
specified processes that are not intended to
be executed. An Abstract Process may hide
some of the required concrete operational de-
tails. Abstract Processes serve a descriptive

role, with more than one possible use case,
including observable behavior and process
template.
WS-BPEL is meant to be used to model the
behavior of both Executable and Abstract
Processes. WS-BPEL provides a language
for the specification of Executable and Ab-
stract business processes. By doing so, it ex-
tends the Web Services interaction model
and enables it to support business transac-
tions. WS-BPEL defines an interoperable in-
tegration model that should facilitate the ex-
pansion of automated process integration in
both the intra-corporate and the business-to-
business spaces.
The origins of BPEL can be traced to WSFL
and XLANG. It is serialized in XML and
aims to enable programming in the large.
The concepts of programming in the large
and programming in the small distinguish be-
tween two aspects of writing the type of
long-running asynchronous processes that
one typically sees in business processes.
Programming in the large generally refers to
the high-level state transition interactions of
a process - BPEL refers to this concept as an
Abstract Process. A BPEL Abstract Process
represents a set of publicly observable beha-
viors in a standardized fashion. An Abstract
Process includes information such as when to
wait for messages, when to send messages,
when to compensate for failed transactions,
etc. Programming in the small, in contrast,
deals with short-lived programmatic beha-
vior, often executed as a single transaction
and involving access to local logic and re-
sources such as files, databases, etc. BPEL's
development came out of the notion that pro-
gramming in the large and programming in
the small required different types of languag-
es.
BPEL is an orchestration language, not a
choreography language. The primary differ-
ence between orchestration and choreogra-
phy is executability and control. An orches-
tration specifies an executable process that
involves message exchanges with other sys-
tems, such that the message exchange se-
quences are controlled by the orchestration
designer. Choreography specifies a protocol

Informatica Economică vol. 13, no. 1/2009 50

for peer-to-peer interactions, defining, e.g.,
the legal sequences of messages exchanged
with the purpose of guaranteeing interopera-
bility. Such a protocol is not directly execut-
able, as it allows many different realizations
(processes that comply with it). A choreogra-
phy can be realized by writing an orchestra-
tion (e.g. in the form of a BPEL process) for
each peer involved in it. The orchestration
and the choreography distinctions are based
on analogies: orchestration refers to the cen-
tral control (by the conductor) of the beha-
vior of a distributed system (the orchestra
consisting of many players), while choreo-
graphy refers to a distributed system (the
dancing team) without centralized control.
BPEL's focus on modern business processes,
plus the histories of WSFL and XLANG, led
BPEL to adopt Web Services as its external
communication mechanism. Thus BPEL's
messaging facilities depend on the use of the
Web Services Description Language
(WSDL) 1.1 to describe outgoing and incom-
ing messages.
In addition to providing facilities to enable
sending and receiving messages, the BPEL
programming language also supports:

 A property-based message correlation
mechanism;

 XML and WSDL typed variables;
 An extensible language plug-in model to

allow writing expressions and queries in mul-
tiple languages: BPEL supports XPath 1.0 by
default;

 Structured-programming constructs in-
cluding if-then-elseif-else, while, sequence
(to enable executing commands in order) and
flow (to enable executing commands in pa-
rallel);

 A scoping system to allow the encapsula-
tion of logic with local variables, fault-
handlers, compensation-handlers and event-
handlers;

 Serialized scopes to control concurrent
access to variables.

Relationship of BPEL to BPMN
There is no standard graphical notation for
WS-BPEL, as the OASIS technical commit-
tee decided this was out of scope. Some ven-

dors have invented their own notations.
These notations take advantage of the fact
that most constructs in BPEL are block-
structured (e.g. sequence, while, pick, scope,
etc.). This feature enables a direct visual re-
presentation of BPEL process descriptions in
the form of structograms.
Others have proposed to use a substantially
different business process modeling lan-
guage, namely Business Process Modeling
Notation (BPMN), as a graphical front-end to
capture BPEL process descriptions. As an il-
lustration of the feasibility of this approach,
the BPMN specification includes an informal
and partial mapping from BPMN to BPEL
1.1. A more detailed mapping of BPMN to
BPEL has been implemented in a number of
tools, including an open-source tool known
as BPMN2BPEL. However, the development
of these tools has exposed fundamental dif-
ferences between BPMN and BPEL, which
make it very difficult, and in some cases im-
possible, to generate human-readable BPEL
code from BPMN models. Even more diffi-
cult is the problem of BPMN-to-BPEL
round-trip engineering: generating BPEL
code from BPMN diagrams and maintaining
the original BPMN model and the generated
BPEL code synchronized, in the sense that
any modification to one is propagated to the
other.

4. Service-oriented architecture
According to [4], companies have long
sought to integrate existing systems in order
to implement information technology (IT)
support for business processes that cover all
present and prospective systems require-
ments needed to run the business end-to-end.
A variety of designs serve this end, ranging
from rigid point-to-point electronic data in-
terchange (EDI) interactions to web auctions.
By updating older technologies, for example
by Internet-enabling EDI-based systems,
companies can make their IT systems availa-
ble to internal or external customers; but the
resulting systems have not proven flexible
enough to meet business demands, which re-
quire a flexible, standardized architecture to
better support the connection of various ap-

Informatica Economică vol. 13, no. 1/2009

51

plications and the sharing of data.
SOA offers such architecture. It unifies busi-
ness processes by structuring large applica-
tions as an ad hoc collection of smaller mod-
ules called "services". Different groups of
people both inside and outside an organiza-
tion can use these applications, and new ap-
plications built from a mix of services from
the global pool exhibit greater flexibility and
uniformity. One should not, for example,
have to provide redundantly the same per-
sonal information to open an online check-
ing, savings or Individual Retirement Ar-
rangement (IRA) account, and further, the in-
terfaces one interacts with should have the
same look and feel and use the same level
and type of input data validation. Building all
applications from the same pool of services
makes achieving this goal much easier and
more deployable to affiliate companies.
Service Oriented Architecture (SOA) pro-
vides a design framework for realizing rapid
and low-cost system development and im-
proving total system quality. SOA uses the
Web Services standards and technologies and
is rapidly becoming a standard approach for
enterprise information systems.
Web Services face significant challenges be-
cause of particular requirements. Applying
the SOA paradigm to a real-time system
throws up many problems, which include re-
sponse time, support of event-driven, asyn-
chronous parallel applications, complicated
human interface support, reliability, etc. This
article defines SOA and includes detailed
discussion on several issues that arise when
applying SOA to industrial systems.
One can define a service-oriented architec-
ture (SOA) as a group of services that com-
municate with each other. The process of
communication involves either simple data-
passing or two or more services coordinating
some activity. Intercommunication implies
the need for some means of connecting ser-
vices to each other.
SOAs build applications out of software ser-
vices. Services comprise intrinsically unasso-
ciated units of functionality that have no calls
to each other embedded in them. They typi-
cally implement functionality most humans

would recognize as a service, such as filling
out an online application for an account,
viewing an online bank-statement, or placing
an online booking or airline ticket order. In-
stead of services embedding calls to each
other in their source code, they use defined
protocols which describe how one or more
services can talk to each other. This architec-
ture then relies on a business process expert
to link and sequence services, in a process
known as orchestration, to meet a new or ex-
isting business system requirement.
Relative to typical practices of earlier at-
tempts to promote software reuse via mod-
ularity of functions, or by use of predefined
groups of functions known as classes, SOA's
atomic-level objects are often 100 to 1,000
times larger.
An application designer or engineer asso-
ciates SOA objects by using orchestration. In
the process of orchestration, a software engi-
neer or process engineer associates relatively
large chunks of software functionality (ser-
vices) in a non-hierarchical arrangement (in
contrast to a class hierarchy) by using a spe-
cial software tool which contains an exhaus-
tive list of all of the services, their characte-
ristics, and a means to record the designer's
choices which the designer can manage and
the software system can consume and use at
run-time.
Underlying and enabling all of these, one re-
quires metadata in sufficient detail to de-
scribe not only the characteristics of these
services, but also the data that drives them.
Programmers have made extensive use of
XML in SOA to create data which is
wrapped in a nearly exhaustive description
container. Analogously, the services them-
selves are typically described by WSDL, and
communications protocols by SOAP. Wheth-
er these description languages are the best
possible for the job, and whether they will
remain the favorites in the future, remains an
open question. In the meantime, SOA de-
pends on data and services that are described
using some implementation of metadata
which meets the following two criteria:

 the metadata must be in a form which
software systems can use to configure them-

Informatica Economică vol. 13, no. 1/2009 52

selves dynamically by discovery and incor-
poration of defined services, and also to
maintain coherence and integrity;

 the metadata must also be in a form
which system designers can understand and
manage at a reasonable cost and effort.
SOA has the goal of allowing fairly large
chunks of functionality to be strung together
to form ad hoc applications which are built
almost entirely from existing software ser-
vices. The larger the chunks, the fewer the
interface points required implementing any
given set of functionality; however, very
large chunks of functionality may not prove
granular for easy reuse. Each interface brings
with it some amount of processing overhead,
so there is a performance consideration in
choosing the granularity of services. The
great promise of SOA suggests that the mar-
ginal cost of creating the n-th application is
zero, as all of the software required already
exists to satisfy the requirements of other ap-
plications. Ideally, one requires only orches-
tration to produce a new application.
For this to operate, no interactions must exist
between the chunks specified or within the
chunks themselves. Instead, the interaction of
services (all of which are unassociated peers)
is specified by humans in a relatively ad hoc
way with the intent driven by newly emer-
gent business requirements. Thus, the need
for services with larger units of functionality
than traditional functions or classes and the
sheer complexity of thousands of such granu-
lar objects, overwhelm the application de-
signer. Programmers develop the services
themselves using traditional languages like
Java, C#, C++, C or COBOL.
SOA services feature loose coupling, in con-
trast to the functions a linker binds together
to form an executable, a dynamically linked
library, or an assembly. SOA services also
run in "safe" wrappers such as Java or .NET,
and other programming languages that man-
age memory allocation and reclamation, al-
low ad hoc and late binding, and provide
some degree of indeterminate data typing.
As of 2008, increasing numbers of third-

party software companies offer software ser-
vices for a fee. In the future, SOA systems
may consist of such third-party services
combined with others created in-house. This
has the potential to spread costs over many
customers, and customer uses, and promotes
standardization both in and across industries.
In particular, the travel industry now has a
well-defined and documented set of both ser-
vices and data, sufficient to allow any rea-
sonably competent software engineer to
create travel-agency software using entirely
off-the-shelf software services. Other indus-
tries, such as the finance industry, have also
started making significant progress in this di-
rection.
As architecture, SOA relies on service-
orientation as its fundamental design prin-
ciple. In a SOA environment, users can
access independent services without know-
ledge of their underlying platform implemen-
tation. SOA relies on services exposing their
functionality via interfaces which other ap-
plications and services can read to under-
stand how to utilize those services.

The layers of a service-oriented architec-
ture
An abstract view of SOA depicts it as a par-
tially layered architecture of composite ser-
vices that align with business processes. Fig-
ure 1 depicts a representation of this type of
architecture, as described in [5].
The relationship between services and com-
ponents is that enterprise-scale components
(large-grained enterprise or business line
components) realize the services and are re-
sponsible for providing their functionality
and maintaining their quality of service.
Business process flows can be supported by
choreography of these exposed services into
composite applications. Integration architec-
ture supports the routing, mediation, and
translation of these services, components,
and flows using an Enterprise Service Bus
(ESB). The deployed services must be moni-
tored and managed for quality of service and
adherence to non-functional requirements.

Informatica Economică vol. 13, no. 1/2009

53

Fig. 1. The layers of a service-oriented architecture

Layer 1: Operational systems layer. This
consists of existing custom built applications,
otherwise called legacy systems, including
existing CRM and ERP packaged applica-
tions, and older object-oriented system im-
plementations, as well as business intelli-
gence applications. The composite layered
architecture of an SOA can leverage existing
systems and integrate them using service-
oriented integration techniques.
Layer 2: Enterprise components layer.
This is the layer of enterprise components
that are responsible for realizing functionality
and maintaining the quality of exposed ser-
vices. These special components are a ma-
naged, governed set of enterprise assets that
are funded at the enterprise or the business
unit level. As enterprise-scale assets, they are
responsible for ensuring conformance to
SLAs through the application of architectural
best practices. This layer typically uses con-
tainer-based technologies such as application
servers to implement the components, work-
load management, high-availability, and load
balancing.
Layer 3: Services layer. The services the
business chooses to fund and expose reside in
this layer. They can be discovered or be stati-
cally bound and then invoked, or possibly,
choreographed into a composite service. This
service exposure layer also provides for the
mechanism to take enterprise scale compo-
nents, business unit specific components, and
in some cases, project-specific components,
and externalizes a subset of their interfaces in
the form of service descriptions. Thus, the

enterprise components provide service reali-
zation at runtime using the functionality pro-
vided by their interfaces. The interfaces get
exported out as service descriptions in this
layer, where they are exposed for use. They
can exist in isolation or as a composite ser-
vice.
Level 4: Business process composition or
choreography layer. Compositions and cho-
reographies of services exposed in Layer 3
are defined in this layer. Services are bundled
into a flow through orchestration or choreo-
graphy, and thus act together as a single ap-
plication. These applications support specific
use cases and business processes. Here, visu-
al flow composition tools can be used for the
design of application flow.
Layer 5: Access or presentation layer. Al-
though this layer is usually out of scope for
discussions around a SOA, it is gradually be-
coming more relevant. It was depicted here
because there is an increasing convergence of
standards, such as Web Services for Remote
Portlets Version 2.0 and other technologies,
that seek to leverage Web Services at the ap-
plication interface or presentation level. We
can think of it as a future layer that should be
taken into account for future solutions. It is
also important to note that SOA decouples
the user interface from the components, and
that we ultimately need to provide an end-to-
end solution from an access channel to a ser-
vice or composition of services.
Level 6: Integration (ESB). This layer
enables the integration of services through
the introduction of a reliable set of capabili-

Informatica Economică vol. 13, no. 1/2009 54

ties, such as intelligent routing, protocol
mediation, and other transformation mechan-
isms, often described as the ESB. Web Ser-
vices Description Language (WSDL) speci-
fies a binding, which implies a location
where the service is provided. On the other
hand, an ESB provides a location indepen-
dent mechanism for integration.
Level 7: Quality of Services (QoS). This
layer provides the capabilities required to
monitor, manage, and maintain QoS such as
security, performance, and availability. This
is a background process through sense-and-
respond mechanisms and tools that monitor
the health of SOA applications, including the
all important standards implementations of
WS-Management and other relevant proto-
cols and standards that implement quality of
service for a SOA.

5. Business process management in finan-
cial institutions
On one side of the chasm there is the busi-
ness need (and the process to satisfy it) as
modeled by the business analyst. On the oth-
er side of the chasm is the application devel-
opment resource needed to deliver a system
solution. The key is to create a conversation
between the two sides. For a conversation to
make sense we need a common language.
The emerging standard for that language of
process execution is BPEL - Business
Process Execution Language.
According to [7], BPEL allows an organiza-
tion to treat processes and the applications
that underpin them as utilities: to define,
translate and transpose a business process,
and make the applications which Web Ser-
vices expose available to build a new
process. Using the BPEL tools allows an or-
ganization to effectively orchestrate (or man-
age) Web Services and the integration archi-
tecture as a whole.
A recent Forrester Research note crystallizes
why BPEL moves the integration story for-
ward so significantly: “BPEL will provide
not only a way to integrate applications, but
also a way to create services from them and
put them into business processes”.
Just as HTML allows content to make sense

and to be published and used by anyone who
has a web browser, BPEL allows processes
to make sense, and for new processes to be
planned, developed and deployed with exact-
ly the same universal simplicity and ease of
use.
Gartner recently commented: “BPEL will
emerge as the leading industry standard for
Web Service orchestration and coordination
of business processes.”
For financial service companies with en-
trenched legacy systems, and departmental
silos based around proprietary or highly spe-
cialized applications, the opportunity offered
by BPEL has one other major advantage: it
does not add more software to the inventory.
In fact, it enables the organization to get
more from its existing investment in applica-
tions and processes. Not only more value in
terms of more process development potential,
but more competitive benefit from faster time
to market for new products and services
through more effective service provisioning.
The standards emerging around Web Service
orchestration such as SOAP, WSDL, XML
Schema and BPEL enable financial institu-
tions to address their integration and business
process management requirements in a ven-
dor independent fashion.
It also makes sense for financial institutions
to build their systems with a loosely coupled,
service-oriented architecture so that they will
be able to get the efficiency of highly inte-
grated systems while minimizing the cost,
time and resources required building and
maintaining them.
Using a BPEL approach allows financial in-
stitutions to model business processes very
quickly, connecting together the applications
and partners that support it, and to deploy the
process directly. They can then test and re-
fine these business processes more effective-
ly. Finally using BPEL they can monitor the
effectiveness of this process, and draw intel-
ligence from the information running through
it. In other words they obtain real time busi-
ness intelligence to refine the process and va-
lidate it.
In most of the cases it is required both inte-
gration of existing functionality and new ap-

Informatica Economică vol. 13, no. 1/2009

55

plication development. It incorporates both
Internet/B2B (business to business) style in-
tegration and Intranet/A2A (application to
application) integration.
Implementing the system requires to inte-
grate disparate developer skills, methodolo-
gies and infrastructures into a maintainable
application.
The approach - using Web Services as a
standard service interface and BPEL for
process orchestration – works equally well
for enterprise-wide Intranet-based integration
or for collaboration beyond the organization.
Key issues for financial services organiza-
tions seeking to leverage a process-centric
approach are:

 Extract functionality efficiently using
Web Services;

 Reduce the set up costs of new processes;
 Bring new services to market as quickly

as possible;
 Increase standardization and interopera-

bility;
 Enhance application reliability;
 Ensure security.

More effective business process delivery
If business analysts can leverage the power
of BPEL by operating a dashboard to control
activities and create a new business process
on their own desktop, they will be more pro-
ductive and the business will be more agile.
If at the same time if a developer can rapidly

implement a new service using the building
blocks of existing processes which have al-
ready been published as Web Services, or us-
ing other components and metadata within
the Service Oriented Architecture, they will
be able to deliver against demanding time
and cost targets.
The challenge for financial services organiza-
tions is rapidly leverage their own applica-
tions, systems and processes, and also those
of trading partners and customers, to bring
about business process optimization.
As described in figure 2, Business Process
Management supports each stage of the
process optimization lifecycle:

 Model - It provides business analysts
with a GUI console to model new processes,
referencing existing Web Services and appli-
cations;

 Deploy - This standard process model
can then be run directly on any Application
Server using the Process Manager Console;

 Manage - The processes can thus be mo-
nitored, refined and re-run quickly and effec-
tively;

 Integrate - Business Process Manage-
ment also allows the developer community to
manage or ‘orchestrate’ the Web Services al-
ready being developed and which are availa-
ble within and beyond the enterprise. Until
now, these have been ‘hard wired’ together
using traditional coding techniques.

Fig. 2. Business Process Management – A Collaborative and Dynamic Cycle

The benefits are clear:

 Far shorter timescales to delivering and
running processes;

 Closing the communication gap between

the business and IT;
 Delivering a single consistent view of the

process that both business and developers
can understand;

Informatica Economică vol. 13, no. 1/2009 56

 Effectively orchestrating integration be-
tween services and applications within the
enterprise.
The largest prize is that by adopting this ap-
proach to integration, organizations can start
to understand their processes and applica-
tions far better. They gain visibility of the re-
sources they need, of the efficiency of
processes, and of the dependencies and con-
straints that make or break process effective-
ness.
Finally organizations can start to track in-
formation flows within transactions and ser-
vices, responding to events, applying current
information to historic overviews, and deli-
vering true real-time business intelligence.

6. Conclusions
Success in highly competitive global finan-
cial services markets comes to those who are
differentiated by virtue of their ability to in-
novate with new products, services and al-
liances, characterized by their speed to mar-
ket, their responsiveness to change, their ca-
pacity to reduce costs, their excellence of
customer service, and their control of risk
and uncertainty. Process execution underpins
all those ambitions.
A process-centric approach to developing the
business and its underlying information man-
agement systems and applications will pay
immediate dividends: performance will im-
prove, costs will drop, and profits will rise.
Modeling and delivering new or modified
processes becomes a single integrated corpo-
rate task. This is because there is a common
standard language – BPEL – to support a uni-
fied conversation between the business need

and the business solution. It ensures that de-
lays and costs are slashed, while services and
business activities in front and back office
are optimized.
Business Process Management is a key to
winning the benefits of process execution
speed and differentiation. It links seamlessly
with companies’ current Web Services and
SOA approach to accelerate their business, to
ensure they lead the pace in a dynamic, fast
moving world.

References
[1] S. Buraga, L. Alboaie, Servicii Web.

Concepte de bază şi implementări, Iasi :
Polirom, 2006

[2] W3C Working Group, Web Services Ar-
chitecture, 2004, http://www.w3.org/TR/
2004/NOTE-ws-arch-20040211/

[3] Web Services Business Process Execution
Language Version 2.0, 2007, http://
docs.oasis-open.org/wsbpel/2.0/wsbpel -
v2.0.pdf

[4] Reference Architecture for Service
Oriented Architecture Version 1.0, 2008,
http://docs.oasis-open.org/soa-rm/soa-ra/
v1.0 /soa-ra-pr-01.pdf

[5] Service-oriented modeling and architec-
ture, 2004, http://www.ibm.com/developr
works/library/ws-soa-design1/

[6] E. Christensen, F. Curbera, G. Meredith and
S. Weerawarana, Web Services Description
Language (WSDL) 1.1, 2001,
http://www.w3.org/TR/2001/NOTE-wsdl-
200103 15

[7] Business Process Management in the
Finance Sector, 2004, http://www.oracle.
com/industries/financial_services/BPM
_WP_final .pdf

Silviu Florin TEODORU has a background in computer science and is in-
terested in business intelligence and data warehouse related issues. He has
graduated the Faculty of Economic Cybernetics, Statistics and Informatics
from the Bucharest Academy of Economic Studies in 2002. He is currently
conducting doctoral research in Economic Informatics at the Academy of
Economic Studies. Other fields of interest include data modeling, manage-
ment information systems, systems architecture and financial services.

