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This communication gives some extensions of the original Biihlmann model. The paper
is devoted to semi-linear credibility, where one examines functions of the random variables
representing claim amounts, rather than the claim amounts themselves. The main purpose of

semi-linear credibility theory is the estimation of i, (9) =F [ fo (X Hllé’] (the net premium for
a contract with risk parameter: 6) by a linear combination of given functions of the observ-
able variables: X = (Xl,X ST, ¢ ,). So the estimators mainly considered here are linear
functions of several functions f, f,,..., f, of the observable random variables. The approxi-
mation to L, (6?) based on prescribed approximating functions f,, f,,..., f, leads to the opti-

mal non-homogeneous linearized estimator for the semi-linear credibility model. Also we dis-
cuss the case when taking f, = f for all: p, try to find the optimal function f . It should be

noted that the approximation to (0) based on a unique optimal approximating function f

is always better than the one furnished in the semi-linear credibility model based on pre-
scribed approximating functions: f, f,,..., f,. The usefulness of the latter approximation is

that it is easy to apply, since it is sufficient to know estimates for the structural parameters
appearing in the credibility factors. From this reason we give some unbiased estimators for
the structure parameters. For this purpose we embed the contract in a collective of contracts,
all providing independent information on the structure distribution. We close this paper by
giving the semi-linear hierarchical model used in the applications chapter.
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ntroduction

ductic o o X =(X,,X,,..X,). So our problem (from
In this article we first give the semi-linear

Section 1) is the determination of the linear

credibility model (see Section 1), which in-
volves only one isolated contract. Our prob-
lem (from Sectionl) is the estimation of

11,(0)= E[f, (XHJH] (the net premium for a
contract with risk parameter: #) by a linear
combination of given functions f, f,,..., f,
of the observable variables:

MinE [ﬂo(a)—ao—iiap,fp()(,) ,where: @ =(a, ) |

p=1lr=1

is the optimal non-homogeneous linearized
estimator (namely the semi-linear credibility
result). In Section 2 we discuss the case
when taking f, = f for all: p, try to find

combination of 1 and the random variables:
f,(X,), r=1¢ closest to
yo(e)zE[fo(XHl)W] in the least squares

sense, where @ is the structure variable. The
solution of this problem:

p=1Ln,

2
p.r

the unique optimal function 7. It should be
noted that the approximation to () based

on a unique optimal approximating function
f is always better than the one furnished in
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the semi-linear credibility model based on
prescribed approximating functions:
fis for f, - The usefulness of the latter ap-

proximation is that it is easy to apply, since it
is sufficient to know estimates for the struc-
tural parameters: a b (with  p,

rq’ pq
g =0,n) appearing in the credibility factors
z, (where p =1,7). To obtain estimates for

these structure parameters from the semi-
linear credibility model, in Section 3 we em-
bed the contract in a collective of contracts,
all providing independent information on the
structure distribution. We close this paper by
giving the semi-linear hierarchical model
used in the applications chapter (see Section
4).

Section 1 (The approximation to z,(6)
based on prescribed approximating func-

tions: f,, f5,u f))
We use the notation:
0)=Elf,(x,)6]

(p:(),_n;rzl,t+1)

In this section, we consider one contract with
unknown and fixed risk parameter: &, during
a period of ¢ years. The yearly claim
amounts are denoted by: X,,..., X,. The risk
parameter & is supposed to be drawn from
some structure distribution function: U(-). It
is assumed that, for given: @, the claims are
conditionally independent and identically dis-
tributed (conditionally i.i.d.) with known
common distribution function £, (x,6). The
random variables X,,..., X, are observable,
and the random variable X, , is considered
as being not (yet) observable. We assume
that: £,(X,), p=0,n, r=1¢+1 have finite
variance. For: f,, we take the function of
X,,, we want to forecast.

t+1

(1.1)

This expression does not depend on'r.
We define the following structure parameters:

m :El,up 6)|= E{E[f
= E{Cov fp( )
b —COVlﬂ 0) 1,0 )J
, = Corlf, (x,). £, (x,)
, = Covlf, (X, ) 1,(0)]
for: p, qu,n A r=1t+1. These expres-

sions do not depend on: r=1¢+1. The
structure parameters are connected by the fol-
lowing relations:

CP‘I = al’q T qu

qu = qu

)1e)

for: p,qg =0,n. This follows from the covari-
ance relations obtained in the probability the-
ory where they are very well-known. Just as
in the case of considering linear combina-
tions of the observable variables themselves,

M = Zzi +mo Zz

r l

Jleli=£lr, (x,)]

(1.2),
(1.3),
(1.4),
(1.5),
(1.6),

we can also obtain non-homogeneous credi-
bility estimates, taking as estimators the class
of linear combinations of given functions of
the observable variables, as shown in the fol-
lowing theorem:

Theorem 1.1 (Optimal non- homoéér?é@us lin-
earized estimators) (1.8),

The linear combination of 1 and the random

variables £, (X, ), p=Lnr=1t closest to

,Uo(e):E[ O(Xt+1)| ‘9] and to fo(Xz+1) in
the least squares sense equals:

m (1.9),

P
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where z,,z,,...,z

i [cpq + (t - 1)dpq ]Zp

p=1

:tqu(q :ﬂ)

or to the equivalent linear system of equations:

n

Z (apq

p=1

+tb, f, =th, (g=1n)

, Is asolution to the linear system of equations:

(1.10)

(1.11)

Proof: we have to examine the solution of the problem:

=X Y, f, (X

p=1lr=1

%@%Po }?

Taking the derivative with respect to ¢, gives:

|- > a, £, (x

p=1r=1

E [/uo

a, into (1.12) leads to the following problem:

=i

. equal to zero, we get the following system of

M ZZ%(

p=1 r=1

ME{

On putting the derivatives with respect to «,,

equations (¢ =1,n; r'=11¢):

(x,)]= 33 a, colf,(x

p=1r=1
Because of the symmetry in time clearly:
a,=a,=.=a,=a, S0 using the co-

Corly (6).f,

pl p2
variance results, for ¢ =11 this system of

equations can be written as:

Oq 20{ [pq d
Now (1.15) and (1.13) lead to (1.9) with:

a,= Tp, p=Ln.
Section 2 (The approximation to z,(8)

based on a unique optimal approximating
function: 1)

The estimator M for 1,(8) of Theorem 1.1
can be displayed as:
M= f(X)+..+ f(X)

(2.1),
where:

Zz

l n
+ mo —;Zmep .
p=1

(X))

(1.12)

=y, o g =mg — ZZaW , - Inserting this expression for

p=lr=1

(1.13)

(1.14)

Let us forget now about this structure of f
and look for any function f such that (2.1)
is closest to: u,(@). If are considered only

functions £ such that f(X,) has finite vari-

ance, then the optimal approxm@f:l{\gr) func-
tion f results from the following théorem

Theorem 2.1 (Optimal approximating func-

tion)

f(x,)+...+ f(X,) is closest to z,(6) and to

fo(X,,,) in the least squares sense, if and

only if f is a solution of the equation:

£(6)+ (= DE[r(x, )X, - 7 (x, o ]=0
(2.2)

Proof: we have to solve the following mini-
mization problem:

A/gnE{ O(XHl)_g(Xl)_"'_g(Xt)]z} (2.3)
Suppose that f denotes the solution to this
problem, then we consider:
g(X)=f(X)+an(X), with A() arbitrary,
like in variational calculus. Let:
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ola)= E{fo(X,0) - £(X,)~ .~ £ (X,) - ah(x,)~..~ ah(x, T | (2.4)
Clearly for f to be optimal, ¢ (O) 0, so for every choice of 4:
E{fo(X0)= F(X ) == £(X)IA(0 ) + o+ 1(X, )] = 0 (2.5),
must hold. This can be rewritten as:
Eltfo (X, n(X,) = of (X )n(x )= o(e =) (X, n(X, )] = 0 (2.6),
or:
E[h(Xl){_f(Xl)_(t_l)E[f(XZXXl]"‘E[fo( ]} =0 (2-7)
Because this equation has to be satisfied for -0, then f(X,)+..+ f(X,) is closest

every choice of the function % one obtains,
the expression in brackets in (2.7) must be
identical to zero, which proves (2.2).

An application of Theorem 2.1:

If X,..X,, can only take the values

01..,n and p,, = P[X, =q,X, =r] for: ¢,
@Y, + =1 f(r)p, =3 £,(r)p,,
r=0 r=0 r=0

f(q)
X, =

et F(5): (P( j f(q)

)= ()
r=0 zpqr r=0
r=0

fx),
X, into (2.2)

Inserting these expressions for:

E[f(x,)x.] and E[f,(x,)
leads to (2.8).

Section 3 (Parameter estimation)

It should be noted that the approximation to
1,(0) based on a unique optimal approxi-
mating function f is always better than the

one furnished in Section 1 based on pre-
scribed approximating functions:
fis for f, - The usefulness of the latter ap-

proximation is that it is easy to apply, since it
is sufficient to know estimates for the struc-

tural parameters @, , b, (with p, ¢ =0,n)
appearing in the credibility factors z, (where

p =1,n). From this reason we give some un-
biased estimators for the structure parame-

= rep e 1

qu ; E[ o(leXl]:Zn:fo(’”)P(X

X1 —}X”j

to u,(@) and to £,(X,,,) in the least squares

sense, if and only if for ¢=0,7, f(g) isa
solution of the linear system:

(2.8)

b ’qzo’_”;E[f(X21X1]=§f(r)P(Xz=r|X1=

¢)=2 folr) Lo
=0 qur

ters. For this purpose we consider k£ con-
tracts, j =1k, and k£ (>2) independent and
identically distributed vectors
(9./’1;'):(91")(./1' X_/z)’ for j=1,_k. The
contract indexed j is a random vector consist-
ing of a random structure parameter ¢, and

2:’”|X1:

observations: X ,,..., X ,, where j=1k. For

jt?
every contract j =1k and for g, fixed, the
variables: X ..., X, are conditionally inde-

pendent and identically distributed.
Theorem 3.1 (Unbiased estimators for the

Structure parameters)
Let:

n

p_ikt
=X =YY @)

j=1 r=1

(3.2)
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A

A k a
p -1 (lxe_ixpj(lxa_ixqj—ﬂ (3.3),
k=159 " ke Nt ket t
, then: E( j m,, E[apq):apq, E(bmj— L.+ Where: X"—ZX”, X‘I—ZX”,

X' =YYxr, x=YYxt, with x2=r(x,). (j=Lk ad r=ir)

j=1 r=1 j=1 r=1
X0 =f(x,), =1k and r=17),for p, g=0,n,suchthat p<gq.
Proof: note that the usual definitions of the structure parameters apply, with &, replacing &

and X, replacing X, so: E[ ) )—%z [ ( )] Zm —m ,=m,;
E(a:m):ﬁ;[Cov(Xﬁ,Xq )+ E(x 7 )E(xe )~ Cov(Xj,’,lX;’)—E( _/”,)E(%Xj_j—

—Cov(lX‘.’,Xij—E(lX"j +Cov(1X j (1X”jE(1X‘.’j = 1 .

e t t t )| k(t-1)
(a,,+2,,) ! b, b LS

Z a, +b, )+m,m, — 4 + —m,m, — ;aqur —m,m, + ;apq+ e | m,m,

J.r
t-1)

1 1 1 2 1 1
_MZ(G!JCI +bpq __apq _bqu :k(t—l)kt ¢ Qpg = Gpg E(bqu :m ; |:C0V(;
xr j ( XPJEGX j— ( » 1 XQJ—EGX%’]E(inj—Cov(iX”,

t ’ t Tkt t ) Nkt kt -
Exq} ( jE( ]+c0v( xr 2 X"J+E(1 ijE(l Xq} w1
t t "kt k kt t k-1
1 1 1 1 1 1
; ;apq +b,, |+ m,m, = Eapq +szq —m,m, = Eam +;blﬂl —m,m, + Ea!’q +
1 a 1 1 1 1 a 1 k-1
+Eb"4j+m”mq}ﬂ:m;(?a”" o = _Eb"qj_ P LT

1 k-1

P el VRN S R
rq g IZn
k-1 kt t t t

Section 4 (Applications of semi-linear v(@ ): E[X
credibility theory) ’
We close this paper by giving the semi-
linear hierarchical model used in the appli- /o (Xp,j,Hl)’

cations chapter. Like in Jewell’s hierarchical _

model we consider a portfolio of contracts, '~ (0 o )_Elfo ””Je”’e”fj (the pure
which can be broken up into P sectors each net risk premium of the contract (p, /)),

sector p consisting of k, groups of con- Vo E[fo p/tul J (the pure net risk
tracts. Instead of estimating: X . ., premium of the sector p), where p=1P
ﬂ(epﬂpj)ZElX Hpﬁ,,jJ (the pure net and =1k, . In semi-linear credibility the-
risk premium of the contract (p,j)), ory the following class of estimators is con-

HPJ (the pure net risk pre-

p.jt+l
mium of the sector p), we now estimate:

p.jit+l
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n ky ¢

sidered: oy + ) ZP: S>Na,, f,(X,.),

p=1g=1 i=1 r=1
where  £,()...., f,(-) are functions given in
advance. Let us consider the case of one
given function f, in order to approximate
fO(Xp,j,H—l) or vo(ap) andyo(ep,epj). We
formulate the following theorem:
Theorem 4.1 (Hierarchical
credibility)
Using the same notations as introduced for
the hierarchical model of Jewell and denoting
X0 = fO(X p,-s) and X, = fl(X pj_y) one ob-

tains the following least squares estimates for
the pure net risk premiums:

semi-linear

n

VO(Hp)z(mo —mel)+sz1

pzw !

/;0 (ﬁp : Gpj): (mo - ijml)+ z, X, (3.1)

t w .
where: X7 => X7
L,
1 & ij 1
O =

j=1 Zp.

z, =w,dy /lc11 + (ij_ —l)dMJ
(the credibility factor on contract level), with:

do, = COV(X o X ;jr')’ dy = COV(X e X i )
r#r, Cpy = Cov(Xll,j, , Xlly.,): Var(Xlly., ),
and:  z, =z, D, /|C, +(z, ~1)D,| (the

credibility factor at sector level), with:

Dy, = COV(X ij X ;j'w )

Dy, :Cov(Xl Xll,j-w), J#J Cy=

piw?
= COV(X oo X ;jw): Var (X ;jw)-
Remark 4.1: the linear combination of 1 and

- 1 P
the random variables X, (p=L1P,
Jj=Lk,, r=11¢) closest to fo(Xp,j,Hl) and
to vo(ep) in the least squares sense equals

n

vo(ep), and the linear combination of 1 and

. _
the X, (p=LP,
J=Lk,, r=1¢) closest to yo(ep,epj) in

random variables

the least squares sense equals 1, (6’p : ij).
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