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This communication gives some extensions of the original Bühlmann model. The paper 
is devoted to semi-linear credibility, where one examines functions of the random variables 
representing claim amounts, rather than the claim amounts themselves. The main purpose of 
semi-linear credibility theory is the estimation of ( ) ( )[ ]θθμ 100 += tXfE  (the net premium for 
a contract with risk parameter: θ ) by a linear combination of given functions of the observ-
able variables: ( tXXXX ,...,, 21

' = ). So the estimators mainly considered here are linear 
functions of several functions  of the observable random variables. The approxi-
mation to 

nfff ,...,, 21

( )θμ0  based on prescribed approximating functions  leads to the opti-
mal non-homogeneous linearized estimator for the semi-linear credibility model. Also we dis-
cuss the case when taking  for all: 

nfff ,...,, 21

ff p = p , try to find the optimal function . It should be 
noted that the approximation to 

f
( )θμ0  based on a unique optimal approximating function  

is always better than the one furnished in the semi-linear credibility model based on pre-
scribed approximating functions: . The usefulness of the latter approximation is 
that it is easy to apply, since it is sufficient to know estimates for the structural parameters 
appearing in the credibility factors. From this reason we give some unbiased estimators for 
the structure parameters. For this purpose we embed the contract in a collective of contracts, 
all providing independent information on the structure distribution. We close this paper by 
giving the semi-linear hierarchical model used in the applications chapter. 

f

nfff ,...,, 21
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ntroduction 
In

credi
 this article we first give the semi-linear 
bility model (see Section 1), which in-

volves only one isolated contract. Our prob-
lem (from Section1) is the estimation of 

( ) ( )[ ]θθμ 100 += tXfE  (the net premium for a 
contract with risk parameter: 

 ( )tXXXX ,...,, 21
' = . So our problem (from 

Section 1) is the determination of the linear 
combination of 1 and the random variables: 

( )rp Xf , np ,1= , tr ,1=  closest to 

( ) ( )[ ]θθμ 100 += tXfE  in the least squares 
sense, where θ  is the structure variable. The 
solution of this problem: 

θ ) by a linear 
combination of given functions  
of the observable variables: 

nfff ,...,, 21
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is the optimal non-homogeneous linearized 
estimator (namely the semi-linear credibility 
result). In Section 2 we discuss the case 
when taking  for all: ff p = p , try to find 

the unique optimal function . It should be 
noted that the approximation to 

I 

f
( )μ θ0

f

 based 
on a unique optimal approximating function 

 is always better than the one furnished in 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6612526?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Informatica Economică, nr. 2 (42)/2007 
 

127

the semi-linear credibility model based on 
prescribed approximating functions: 

. The usefulness of the latter ap-
proximation is that it is easy to apply, since it 
is sufficient to know estimates for the struc-
tural parameters: ,  (with 

nfff ,...,, 21

pqa pqb p , 

q n,0= ) appearing in the credibility factors 
 (where pz np ,1= ). To obtain estimates for 

these structure parameters from the semi-
linear credibility model, in Section 3 we em-
bed the contract in a collective of contracts, 
all providing independent information on the 
structure distribution. We close this paper by 
giving the semi-linear hierarchical model 
used in the applications chapter (see Section 
4). 
 
Section 1 (The approximation to ( )θμ0  
based on prescribed approximating func-
tions: ) nfff ,...,, 21

In this section, we consider one contract with 
unknown and fixed risk parameter: θ , during 
a period of t  years. The yearly claim 
amounts are denoted by: . The risk 
parameter 

tXX ,...,1

θ  is supposed to be drawn from 
some structure distribution function: ( )⋅U . It 
is assumed that, for given: θ , the claims are 
conditionally independent and identically dis-
tributed (conditionally i.i.d.) with known 
common distribution function ( )θθ ,xFX . The 

random variables  are observable, 
and the random variable  is considered 
as being not (yet) observable. We assume 
that: 

tXX ,...,1

1+tX

( )rp Xf , np ,0= , 1,1 += tr  have finite 
variance. For: , we take the function of 

 we want to forecast.  
0f

1+tX

We use the notation: 
( ) ( )[ ]θθμ |rpp XfE=   (1.1) 

( )1,1;,0 +== trnp  
This expression does not depend on r. 
We define the following structure parameters: 

( )[ ] ( )[ ]{ } ( )[ ]rprppp XfEXfEEEm === θθμ |   (1.2), 
( ) ( )[ ]{ }θ|, rqrppq XfXfCovEa =   (1.3), 

( ) ( )[ ]θμθμ qppq Covb ,=   (1.4), 
( ) ( )[ ]rqrppq XfXfCovc ,=   (1.5), 
( ) ( )[ ]θμqrppq XfCovd ,=   (1.6), 

for: , p nq ,0=   ∧ 1,1 += tr . These expres-
sions do not depend on: 1,1 += tr . The 
structure parameters are connected by the fol-
lowing relations: 

pqpqpq bac +=   (1.7), 

pqpq bd =   (1.8), 

for: nqp ,0, = . This follows from the covari-
ance relations obtained in the probability the-
ory where they are very well-known. Just as 
in the case of considering linear combina-
tions of the observable variables themselves, 

we can also obtain non-homogeneous credi-
bility estimates, taking as estimators the class 
of linear combinations of given functions of 
the observable variables, as shown in the fol-
lowing theorem: 
Theorem 1.1 (Optimal non-homogeneous lin-
earized estimators) 
The linear combination of 1 and the random 
variables ( ) trnpXf rp ,1;,1, ==  closest to 

( ) ( )[ ]θθμ |100 += tXfE  and to ( )10 +tXf  in 
the least squares sense equals: 

( ) ∑∑ ∑
== =

−+=
n

p
pp

n

p

t

r
rpp mzmXf

t
zM

1
0

1 1
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where  is a solution to the linear system of equations: nzzz ,...,, 21

( )[ ] qp

n
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or to the equivalent linear system of equations: 
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Proof: we have to examine the solution of the problem: 

( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−− ∑∑

= =

2

1 1
00,0

n

p

t

r
rppr XfEMin ααθμ

αα
  (1.12) 

Taking the derivative with respect to 0α  gives: 
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On putting the derivatives with respect to 'qrα  equal to zero, we get the following system of 

equations ( nq ,1= ; tr ,1'= ): 

( ) ( )[ ] ( ) ( )[∑∑
= =

=
n

p

t

r
rqrpprrq XfXfCovXfCov

1 1
''0 ,, αθμ ]  (1.14) 

Because of the symmetry in time clearly: 
pptpp αααα ==== ...21 , so using the co-

variance results, for nq ,1=  this system of 
equations can be written as: 

( )[∑
=

−+=
n

p
pqpqpq dtcb

1
0 1α ]  (1.15) 

Now (1.15) and (1.13) lead to (1.9) with: 

t
z p

p =α , np ,1= . 

 
Section 2 (The approximation to ( )θμ0  
based on a unique optimal approximating 
function: ) f
The estimator M  for ( )θμ0  of Theorem 1.1 
can be displayed as: 

( ) ( tXfXfM ++= ...1 )    
     (2.1), 
where: 

( ) ( ) ∑∑
==

−+=
n
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1
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111 . 

Let us forget now about this structure of  
and look for any function  such that (2.1) 
is closest to:

f
f

( )θμ0 . If are considered only 
functions  such that f ( )1Xf  has finite vari-
ance, then the optimal approximating func-
tion  results from the following theorem: f
Theorem 2.1 (Optimal approximating func-
tion) 
( ) ( )tXfXf ++ ...1  is closest to ( )θμ0  and to 
( )10 +tXf  in the least squares sense, if and 

only if  is a solution of the equation: f
( ) ( ) ( )[ ] ( )[ ] 01 120121 ≡−−+ XXfEXXfEtXf

     (2.2) 
Proof: we have to solve the following mini-
mization problem: 

( ) ( ) ( )[ ]{ }2
110 ... ttg

XgXgXfEMin −−−+   (2.3) 

Suppose that  denotes the solution to this 
problem, then we consider: 

f

( ) ( ) ( )XhXfXg α+= , with  arbitrary, 
like in variational calculus. Let: 

( )⋅h
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( ) ( ) ( ) ( ) ( ) ( )[ ]{ }2
1110 ...... ttt XhXhXfXfXfE αααϕ −−−−−−= +    (2.4) 

Clearly for  to be optimal, f ( ) 00' =ϕ , so for every choice of h : 
( ) ( ) ( )[ ] ( ) ( )[{ } 0...... 1110 ] =++−−−+ ttt XhXhXfXfXfE     (2.5), 

must hold. This can be rewritten as: 
( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] 01 1211120 =−−− XhXfttXhXtfXhXtfE     (2.6), 

or: 
( ) ( ) ( ) ( )[ ] ( )[ ]{ }[ ] 01 1201211 =+−−− XXfEXXfEtXfXhE     (2.7) 

Because this equation has to be satisfied for 
every choice of the function  one obtains, 
the expression in brackets in (2.7) must be 
identical to zero, which proves (2.2). 

h

An application of Theorem 2.1: 
If  can only take the values 

 and 
11 ,..., +tXX

n,...,1,0 [ ]rXqXPpqr === 21 ,  for: q , 

nr ,0= , then ( ) ( tXfXf ++ ...1 )  is closest 
to ( )θμ0  and to ( )10 +tXf  in the least squares 

sense, if and only if for nq ,0= , ( )qf  is a 
solution of the linear system: 
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Inserting these expressions for: ( )1Xf , 
( )[ ]12 XXfE  and ( )[ 120 XXfE ] into (2.2) 

leads to (2.8). 
 
Section 3 (Parameter estimation) 
It should be noted that the approximation to 

( )θμ0  based on a unique optimal approxi-
mating function  is always better than the 
one furnished in Section 1 based on pre-
scribed approximating functions: 

. The usefulness of the latter ap-
proximation is that it is easy to apply, since it 
is sufficient to know estimates for the struc-
tural parameters ,  (with 

f

nfff ,...,, 21

pqa pqb p , q n,0= ) 
appearing in the credibility factors  (where pz

np ,1= ). From this reason we give some un-
biased estimators for the structure parame-

ters. For this purpose we consider  con-
tracts,

k
kj ,1= , and   independent and 

identically distributed vectors 
k ( 2≥ )

( ) ( )jtjjjj XXX ,...,,, 1
' θθ = , for kj ,1= . The 

contract indexed j is a random vector consist-
ing of a random structure parameter jθ  and 

observations: , where jtj XX ,...,1 kj ,1= . For 

every contract kj ,1=  and for jθ  fixed, the 
variables:  are conditionally inde-
pendent and identically distributed.  

jtj XX ,...,1

Theorem 3.1 (Unbiased estimators for the 
structure parameters) 
Let: 
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Section 4 (Applications of semi-linear 
credibility theory) 
We close this paper by giving the semi-
linear hierarchical model used in the appli-
cations chapter. Like in Jewell’s hierarchical 
model we consider a portfolio of contracts, 
which can be broken up into P  sectors each 
sector  consisting of  groups of con-
tracts. Instead of estimating: , 

p pk

1,, +tjpX

( ) [ ]
jpptjpjpp XE θθθθμ ,, 1,, +=  (the pure net 

risk premium of the contract ), ( )jp,

( ) [ ]ptjpp XE θθν 1,, +=  (the pure net risk pre-
mium of the sector ), we now estimate: p

( )1,,0 +tjpXf , 

( ) ( )[ ]
jpptjpjpp XfE θθθθμ ,, 1,,00 +=  (the pure 

net risk premium of the contract ), ( )jp,
( ) ( )[ ]ptjpp XfE θθν 1,,00 +=  (the pure net risk 

premium of the sector p ), where Pp ,1=  
and pkj ,1= . In semi-linear credibility the-
ory the following class of estimators is con-
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sidered: , 

where  are functions given in 
advance. Let us consider the case of one 
given function  in order to approximate 

( )qirp

n
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= = = =

+
1 1 1 1

0 αα

( ) ( )⋅⋅ nff ,...,1

1f
( )1,,0 +tjpXf  or ( )pθν 0  and ( )

jpp θθμ ,0 . We 

formulate the following theorem: 
Theorem 4.1 (Hierarchical semi-linear 
credibility) 
Using the same notations as introduced for 
the hierarchical model of Jewell and denoting 

( )pjspjs XfX 0
0 =  and ( )pjspjs XfX 1

1 =  one ob-
tains the following least squares estimates for 
the pure net risk premiums: 

( ) ( ) 1
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( )[ ]11.1101. 1/ dwcdwz pjpjpj −+=  
(the credibility factor on contract level), with: 

( )1
'

0
01 , pjrpjr XXCovd = , ( )1

'
1

11 , pjrpjr XXCovd = , 

'rr ≠ , ( ) ( )111
11 , pjrpjrpjr XVarXXCovc == , 

and: ( )[ ]11.1101. 1/ DzCDzz ppp −+=  (the 
credibility factor at sector level), with: 

( )1
'

0
01 , wpjpjw XXCovD = , 

( )1
'

1
11 , wpjpjw XXCovD = , , 'jj ≠ =11C  

( ) ( )111 , pjwpjwpjw XVarXXCov == . 
Remark 4.1: the linear combination of 1 and 
the random variables  (1

pjrX Pp ,1= , 

pkj ,1= , tr ,1= ) closest to ( )1,,0 +tjpXf  and 
to ( )pθν 0  in the least squares sense equals 

( )pθν
^

0 , and the linear combination of 1 and 

the random variables  (1
pjrX Pp ,1= , 

pkj ,1= , tr ,1= ) closest to ( )
jpp θθμ ,0  in 

the least squares sense equals . ( )pjp θθμ ,
^

0
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