
Informatica Economică vol. 14, no. 2/2010 55

Improving SQL Server Performance

 Nicolae MERCIOIU1, Victor VLADUCU2
1Prosecutor's Office attached to the High Court of Cassation and Justice

2Prosecutor's Office attached to Vîlcea Court
nicu.mercioiu@gmail.com, vladucuvictor@yahoo.com

With the development of client server technology and multilayer architectures the systems ef-
ficiency issue has been increasingly discussed. Lacking knowledge in optimization methods
and tools offered by DBMS's, database administrators and developers of applications based
on Microsoft technologies cannot optimally design and service performing systems. In this ar-
ticle we review the objectives that should be considered (in order) to improve performance of
SQL Server instances and we describe the techniques used to optimize queries. Also, we ex-
plain and illustrate the new optimization features offered by SQL Server 2008.
Keywords: Query, Optimization, SQL Server

Introduction
There are many situations in which effi-

ciency and performance are the last criteria
considered when designing and developing
new applications using a database.
These criteria become important only after
the system goes into production. Sometimes
it appears that the application does not dis-
play the information requested to the data-
base in a reasonable time or completely fails
to display it, the set timeout being exceeded.
The reasons may be related to the application
design, but in many cases the DBMS does
not return the data quickly enough, due to the
nonuse of indexes, deficient design of the
queries and/or database schema, excessive
fragmentation, use of inaccurate statistics,
failure to reuse the execution plans or impro-
per use of cursors.
Improve performance of SQL Server in-
stances, involves identifying and their caus-
es, using appropriate techniques and tools for
solving them and evaluating the added per-
formance obtained. It is generally accepted
that aiming to achieve maximum theoretical
performance is unrealistic and counterpro-
ductive, as the investment cost beyond reach-
ing the "good enough" time increases expo-
nentially with the performance gain.
Once the full set of running SQL queries cap-
tured, one should identify the queries exert-
ing high pressure on system resources and
those running the slowest. The component
dealing with optimizing queries in SQL

Server attempts to determine the most effi-
cient way to execute a query, taking into ac-
count possible plans, and decides which one
is the best. The optimization based on actual
cost strategy involves the estimation of a run-
time "cost" for every possible plan, allowing
choosing the execution plan with the lowest
“cost” in terms of disk I/O operations, CPU
load, memory load etc.

2 Improving the performance of SQL
Server instances – Objectives
Even from the beginnings of the client-server
technology, one could notice that the ele-
ments to be focused on for increasing per-
formance have been found to be, in ascend-
ing order of importance: Windows operation
system, SQL Server instance, hardware, da-
tabase and application.
The most important objectives to be consi-
dered in order to improve the performance of
SQL Server are:
 Designing an efficient data schema
 Optimizing indexes, stored procedures

and transactions
 Analyzing execution plans and avoiding

recompiling them
 Monitoring access to data
 Optimizing queries.
Designing an efficient data schema requires
initial normalization and subsequent de-
normalization (e.g. persons/institutions ad-
dress), if necessary. A reverse approach
would involve additional activities meant to

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6612512?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

56 Informatica Economică vol. 14, no. 2/2010

insure the data consistency. Another issue to
be considered is the use of the declarative re-
ferential integrity. This approach is more ef-
ficient than using triggers employing system
temporary tables. The use of primary, foreign
and unique key constraints contributes to the
creation of effective execution plans. It is al-
so recommended to define data types as close
as possible to the real ones, given that impli-
cit and explicit conversions are intensive
consumers of computational resources.
A very important aspect comes from the need
to use indexed views, when the information
is not frequently updated, as indexed views
are stored physically as a table.
In optimizing indexes and stored procedures
the fact that they allow a rapid response to
selection operations but slow down insert,
update and delete operations should be taken
into consideration. Generally, the creation
and use of indexes should be balanced among
read and write operations i.e. indexes im-
prove read operations but may positively or
negatively alter write operations. Indexes
have to be also created for all foreign keys on
tables that are often queried and do not con-
tain image or bit type fields.
As regards transactions, they should be kept
as short as possible. Transactions requiring
user intervention are to be avoided and data
validation is recommended before starting
the transaction.
Stored procedures must include the SET
NOCOUNT ON command. This command
prevents sending the message regarding the
number of affected records for each opera-
tion carried out within this procedure.
It is important to analyze and run execution
plans on representative data so that the best
plan suggested by the optimizer may be cho-
sen. In this regard, plans involving scanning
tables and indexes should be avoided. Scan-
ning is worthy only for tables containing up
to hundreds of records. Also, major CPU and
memory resources consumers are the records
sorting and filtering operations.
In general, recompiling execution plans
should be avoided due to the loss in perfor-
mance. This can be avoided by using para-
meterized queries and stored procedures and

avoiding cursors over temporary tables.
However, recompiling plans may bring bene-
fits when the optimizer is able create a more
efficient execution plan.
It is very important to monitor through statis-
tics (if they are kept up to date) and use the
profiler for queries running a long time, as
well as for scanning and monitoring the use
of resources.
The queries optimization will be tackled in
detail below.

3 Queries optimization – working tech-
niques
Analysis and optimization techniques require
individual approach but also of the whole set
of queries, on the premise that although indi-
vidual queries can be optimized enough, the
whole set performance may be poor.
The most important optimization technique
supposes limiting the amount of returned da-
ta by limiting the number of records (the
WHERE clause) and fields specified in the
SELECT list. This will lead to an efficient
use of the indexes. In principle, a WHERE
clause should be selective as it is the one es-
tablishing the use of indexes on columns.
For an efficient use of indexes, according to
the utilization requirements for the system,
the SQL Server provides clustered and non-
clustered type indexes. Within the Online
Transaction Processing schemes — whose
tables are frequently updated — the clustered
indexes are recommended, but on as few col-
umns as possible. A large number of indexes
in these systems will affect the performance
of the INSERT, UPDATE, DELETE and
MERGE commands, as all indexes must be
accordingly adjusted when data in the tables
are modified. Clustered type indexes are ef-
fective when operators like BETWEEN, >,
>=, < and <= are used, because after the
record containing the first value is found,
subsequent records with indexed values are
physically adjacent. Also, if the query con-
tains clauses like JOIN, ORDER BY or
GROUP BY, the clustered type indexes are
most appropriate. Non-clustered indexes use
is recommended only for databases where
updates are infrequent and gives the optimal

Informatica Economică vol. 14, no. 2/2010 57

solution for the "exact match" type queries.
Queries can effectively use indexes only if
within the WHERE clause functions and
arithmetic operations are as much as possible
avoided. For example, using the LIKE clause
instead of the SUBSTRING function will
cause the optimizer to use the index on the
Name column:

SELECT Name
FROM AdventureWorks.Production.Location
WHERE SUBSTRING(Name,1,1) ='P'

The recommended option is:

SELECT Name
FROM AdventureWorks.Production.Location
WHERE Name LIKE 'P%'

Likewise, the exclusion conditions <>, ! =,
!>, !<, NOT EXISTS, NOT IN, NOT LIKE
IN, OR or the LIKE example '% <literal>'
will determine the DBMS's optimizer not to
use the indexes on columns in the WHERE
clause. Instead, the inclusion conditions,
BETWEEN and the LIKE example
'<literal>%', allow the optimizer to increase
query performance because the SQL Server
will find the record in the index and will re-
turn the adjacent records too, as long as the
condition in the WHERE clause remains
true.
Another optimization method is using, where
possible, the BETWEEN clause instead the
IN or OR conditions. The SQL Server 2008
will resolve the IN condition by accessing the
index for a number of times equal to the
number of values by which to search. Using
the BETWEEN clause, the optimizer will
turn it into a pair of conditions >= <=, the in-
dex being accessed once.

SELECT *
FROM Adventure-
Works.Purchasing.PurchaseOrderDetail
WHERE PurchaseOrderID IN (651,652,653)

The recommended option is:

SELECT *
FROM Adventure-
Works.Purchasing.PurchaseOrderDetail
WHERE PurchaseOrderID BETWEEN 651 AND
653

While the two previous examples have the
same execution plan and use the clustered
type index, in the first case the SQL Server
version will resolve the IN clause using three
values in three OR conditions and the index
will be accessed three times. In the second
option, the index will be accessed once, from
the first to the last record satisfying the con-
dition in the WHERE clause. In general, us-
ing the BETWEEN clause instead of the
IN/OR conditions will reduce the number of
logical reads. Using arithmetic operators on a
column in the WHERE clause will make the
optimizer not to use the column index.

SELECT PurchaseOrderID
FROM Adventure-
Works.Purchasing.PurchaseOrderDetail
WHERE PurchaseOrderID * 3 =1953

The recommended option is:

SELECT PurchaseOrderID
FROM Adventure-
Works.Purchasing.PurchaseOrderDetail
WHERE PurchaseOrderID =1953/3

The difference in actual cost for the previous
queries, run on a SQL Server 2008 Express,
is about 70 percent. The SQL Server 2008
optimizer dynamically determines a query
processing strategy based on the current
structure of the table and indexes, as well as
on the existing data. However, this process
can be overwritten if the optimizer sugges-
tions are used, its behavior becoming static
as the query processing strategy will not be
permanently updated and self-
parameterization will be omitted. In general,
the cost-effective strategy based on the data
distribution, indexes and other factors is effi-
cient and it is not recommended to force the
optimizer to execute specific strategies, due
to potential loss of performance.
In order to avoid the execution of queries in-
volving intensive resource consumption, it is
recommended to verify the existence of data
using the EXISTS () function instead of the
COUNT (*) function. In the first version, the
SQL Server 2008 will scan and stop at the
first record meeting the criterion between the

58 Informatica Economică vol. 14, no. 2/2010

EXISTS brackets, while using COUNT (*),
the DBMS will scan all table records.
Implicit data type conversion is to be
avoided, meaning that variables declared in
the query must be of the same type with the
columns to be compared with. In the SQL
Server, implicit data conversion is done fol-
lowing the rules for data types precedence.
Normally, the low precedence data type is
converted into a higher precedence data type.
Implicit conversion worsens the query per-
formance duet o the inefficient execution
plan, materialized additional CPU load. An
alternative is using the CAST and CON-
VERT functions. It is recommended to avoid
local variables in scripts containing multiple
queries, especially when the variable values
are transmitted from one query to another.
The SQL Server optimizer will generate an
inefficient execution plan if the WHERE
clause contains local variables. Between que-
ries in the following script the performance
difference is about 50%.

USE AdventureWorks
DECLARE @id INT = 1
SELECT *
FROM Sales.SalesOrderDetail
JOIN Sales.SalesOrderHeader
ON Sales.SalesOrderHeader.SalesOrderID =
Sales.SalesOrderDetail.SalesOrderID
WHERE
Sales.SalesOrderHeader.SalesOrderID >=
@id
SELECT *
FROM Sales.SalesOrderDetail
JOIN Sales.SalesOrderHeader
ON Sales.SalesOrderHeader.SalesOrderID =
Sales.SalesOrderDetail.SalesOrderID
WHERE
Sales.SalesOrderHeader.SalesOrderID >=1

For each query in an executed stored proce-
dure or script, the SQL Server will return the
number of affected records (2323333
row(s) affected).To save resources, it is
preferable to use the SET NOCOUNT ON
<Queries> SET NOCOUNT OFF sequence.

4 SQL Server 2008 – new optimizing op-
tions
Some applications run scripts once in a ses-
sion (ad hoc workloads). The fact that the
SQL Server stores each execution plan for a
possible reuse results in an excessive in-

crease of the used memory, leading to a low-
er efficiency of the instance. In order to solve
this problem, Microsoft introduced the option
of optimizing this kind of queries — optimize
for ad hoc workload — for all its variants of
SQL Server 2008. Once this option activated,
when the script is compiled for the first time,
the DBMS will save only a small part of the
ad hoc query execution plan. This part will
help in a later phase to determine whether
that script has been compiled. If the script is
re-executed, the SQL Server 2008 removes
that small part of the originally compiled
plan and will recompile the script in order to
get the complete execution plan. On first
running of the following script, the second
query will return a single result, showing that
the first query execution plan was memo-
rized.

DBCC FREEPROCCACHE
DBCC DROPCLEANBUFFERS
GO
USE AdventureWorks
GO
SELECT * FROM Person.Contact
GO
SELECT usecounts, cacheobjtype, objtype,
text
FROM sys.dm_exec_cached_plans
CROSS APPLY
sys.dm_exec_sql_text(plan_handle)
WHERE usecounts > 0 AND
text like '%SELECT * FROM Per-
son.Contact%'
ORDER BY usecounts DESC;
GO

Before re-executing the script, we activate
the optimization option and change slightly
the LIKE clause in the second query (text
like 'SELECT * FROM Per-

son.Contact%')

SP_CONFIGURE 'show advanced options',1
RECONFIGURE
GO
SP_CONFIGURE 'optimize for ad hoc work-
loads',1 RECONFIGURE
GO

In this case, the second query will not return
any results, reflecting the fact that no execu-
tion plan has been memorized for the first
query.

Informatica Economică vol. 14, no. 2/2010 59

If we went on re-executing the script, we
would notice that the SQL Server 2008 is
saving the query execution plan, regardless
of the state of the discussed option. Thus we
can conclude that after activating the optim-
ize for ad hoc workload option only new ex-
ecution plans are affected and those already
memorized are not affected.
Another feature introduced in the SQL Serv-
er 2008 version is the one allowing a direct
creation of the guide (Plan Freezing) for any
execution plan for a query existing in the
SQL Server memory. This feature adds to the
support extension for the execution plans
guides for all DML commands. Note that in
the 2005 version of the SQL Server, this fea-
ture was available only for the SELECT
command and involved the possibility to
specify suggestions (guides) for the queries
that cannot be changed directly from the ap-
plication.
In the following example we will run a query
first in order to get the execution plan that
will later be "frozen."

USE AdventureWorks
GO
DBCC FREEPROCCACHE
GO
SET STATISTICS XML ON
EXEC sp_executesql
N'SELECT *
FROM Sales.SalesOrderDetail
 JOIN Sales.SalesOrderHeader
 ON
Sales.SalesOrderHeader.SalesOrderID =
Sales.SalesOrderDetail.SalesOrderID'
SET STATISTICS XML OFF
GO

Next we will "freeze" the previously created
execution plan.

DECLARE @plan_handle varbinary(1000)
SELECT @plan_handle = plan_handle
FROM sys.dm_exec_query_stats qs
cross apply
sys.dm_exec_sql_text(qs.sql_handle) sqt
WHERE text like '%SalesOrderDetail%'
SELECT @plan_handle
EXEC sp_create_plan_guide_from_handle
'TEST_Plan_Guide_1',
@plan_handle=@plan_handle

The sp_create_plan_guide_from_handle
procedure allows us to ensure that the opti-

mizer will always use the same plan for a
specific query.
We’ll use the “frozen” execution plan and
run the query again:

SET STATISTICS XML ON
EXEC sp_executesql
N'SELECT *
FROM Sales.SalesOrderDetail
 JOIN Sales.SalesOrderHeader
 ON
Sales.SalesOrderHeader.SalesOrderID =
Sales.SalesOrderDetail.SalesOrderID'
SET STATISTICS XML OFF
GO

We can easily see that the plan used is the
one previously created.
The Optimize for unknown option causes the
optimizer to use a standard algorithm to be
permanently employed to generate a query
plan. Instead of using the actual values of the
parameters submitted by the application, the
optimizer will consult all the statistical data
to determine which values could be used to
generate an effective plan.
The approach known from the earlier ver-
sions of SQL Server was to use paramete-
rized queries which allowed saving and reus-
ing the execution plans, avoiding recompila-
tion. The problem arose when the parameters
values sent in recalling queries were not
comparable to those originally transmitted.
On the first execution, the SQL Server would
compile and save an effective plan for those
values. Subsequently, the same plan would
cause a suboptimal query execution.

DECLARE @C1 INT
DECLARE @C2 INT
SET @C1 = 5000000
SET @C2 = 400
SELECT * FROM TEST WHERE COL1 > @C1 or
COL2 > @C2 ORDER BY COL1;

When the plan created by the previous query
is deleted and the non-typical values 1 and 90
are given to the two variables C1 and C2, the
optimizer creates, upon the re-execution of
the query, a plan that may be different from
the first. In practice, as the query is the same,
the optimizer will keep and use the plan orig-
inally created, with the corresponding loss of
performance, for the subsequent values of the

60 Informatica Economică vol. 14, no. 2/2010

C1 and C2 variables. In order to avoid this
situation and benefit of the query parameteri-
zation, the previous query may be rewritten
as:

SELECT * FROM TEST WHERE COL1 > @C1 or
COL2 > @C2 ORDER BY COL1
OPTION (OPTIMIZE FOR (@C1 UNKNOWN, @C2
UNKNOWN))

5 Conclusions
Optimization is a iterative process and in-
cludes identifying bottlenecks, solving them,
measuring the impact of changes and reas-
sessing the system from the first step as to
determine if satisfactory performance is
achieved. This process allows a gradual im-
provement of the performance but we should
always keep in mind that performance de-
pends on the amount of data and the distribu-
tion of users’ activities within the applica-

tion. These elements are dynamic in time so
regular performance review is needed.
There are many aspects that should be ad-
dressed in order to achieve optimal perfor-
mance of queries and SQL instance. Howev-
er, we have to highlight the fact that a supe-
rior performance can be obtained by writing
an efficient code at the application level and
properly using the design and database de-
velopment techniques. Nevertheless, chang-
ing the SQL Server configuration will not re-
sult in a significant improvement of the per-
formance.

References
[1] G. Fritchey and S. Dam, SQL Server

2008 Query Performance Tuning Distill-
ed, Apress, 2009;

[2] MSDN, Data Type Conversion
[3] MSDN, Microsoft Patterns & Practices
[4] P. Dave, Journey to SQL Authority

Nicolae MERCIOIU is a graduate of the Faculty of Economic Sciences,
specialization in Accounting and Management Informatics, within the West
University of Timişoara and got a master degree in Computer Networks at
the Faculty of Computer Science within the University of Bucharest. He is
currently the head of the Software Development, Implementation and Man-
agement Service within the Information Technology Operation Division of
the Prosecutor's Office attached to the High Court of Cassation and Justice.

Subjects of his current interest are Data Warehouse, OLAP, distributed architectures and Li-
nux systems.

Victor VLADUCU is a graduate of the Faculty of Cybernetics, Statistics and
Informatics, within the Academy Of Economic Studies, Bucharest, and Fac-
ulty of Precision Mechanics, within the Polytechnic University of Bucharest.
He is currently the head of the Software Development, Implementation and
Management Service within the Information Technology Operation Division
of the Prosecutor's Office of Valcea county. Subjects of his current interest
are Data Warehouse, OLAP, distributed architectures and Unix systems.

