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Preliminaries 
More than hundred years ago, the 

American physicist Willard GIBBS (1839 - 
1903) launched a sentence which now is 
adopted by most of modern engineers and 
economist as an axiom: “The whole is 
simpler than the sum of its parts”. He was 
quite a visionary since the huge development 
of technology and industrial production we 
are facing nowadays, proved that even a 
“simple” component of a space rocket (for 
instance) may be regarded as a complex 
system itself.  
No matter of its simplicity or complexity, a 
technical entity is created in order to perform 
failure free at least a given period some 
specific tasks and at a desirable level of 
performance. This set of quality features are 
united under a general concept called 
reliability. A man-in-the street definition 
states that reliability of a given product 
(which may be a desk stapler or a 
sophisticated limousine) is a probability - 
that is the probability of the underling item to 
perform its intended functions at least a given 
time To without failure and in known 
conditions of usage. 
Formally, if T is the variable representing the 
time-to-failure of the object, then one may 
write: 

   00 TTobPrTR:T    (1) 

Here R(t) - in our case for t = T0 - stands for 

the reliability function associated to the 
variable T. Consequently, the complement of 
R is the so-called non-survival (non-
reliability) function: F(t) = 1 - R (t), which 
represents from statistical viewpoint, the 
distribution function (df) of T. 
Straightforward consequences: 
a) the reliability function R(t) is a decreasing 
one, that is in time, the intrinsic capacities of 
the item to fulfill its operating duties will 
diminish; 
b) if 0t  , then R(0) = 1, that is at the initial 
moment the entity has to be operational; 
c) if t , then   0R  , that is from 
practical point of view after a very large 
period of time the item will fail for good. 
As Blischke and Murthy [3] wrote, there are 
no means (at least human means!) to stop the 
process of an “ultimate failure” of any living 
being or engineered object. Sooner or later - 
in spite of the best project (design), 
production process or maintenance activities, 
a man-made entity will fail. 
 

 

 Fig. 1. Process of “ultimate failure” 
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The theory of reliability deals with all aspects 
of this process of failure, trying to construct 
formal/mathematical models for this random 
phenomenon. 
In a broader sense, a failure may be defined 
as an incident or a situation/condition that 
causes for a product a process or a service an 
undesired status when the intended purposes 
are not performed safely, secure and cost-
effectively [21]. In fewer words, the entity is 
out of order!  
The time element is usually considered as the 
main parameter in describing the reliability 
behavior of an object, but sometimes the 
cycles of operation may reflect better this 

behavior - especially for items/systems which 
operate intermittently. 
Inspired by the domain of demography, 
reliability theory adopted and adapted the 
main indicator used there, namely the rate of 
mortality which is in fact the ratio between 
the number of deceased persons at the time 
(t) and the number of survivors at the same 
moment (t). In a reliability framework, the 
mortality rate became hazard or failure rate 
where the “persons” (living beings) are 
replaced by objects (components, 
subassemblies a.s.o.). Its analytical 
expression is: 

 

) t (  R

) t (  f
 = 

) t (  F - 1

) t (  f
 = ) t (  Z   (2) 

 
where f(t) is so-called density function 
(probability density function) of T and where 
   tTobPrtF   and    tF1tR   have 

been presented above. Since it is known that 

   tFtf   (the first derivative of F) and 

   tRtF   one may write immediately: 

 

   
    


 tRln
tR

tR
tZ   (3) 

 
which provides a general expression of R(t) if z(t) is known: 
 

    0u,duuzexptR
t

0









   (4) 

  
This formula (4) is important from a practical 
viewpoint since we can observe and record the 
failure rate of a given kind of objects, 
expressed usually in failures per hour.  
 

 
Fig. 2. Graphical image of the hazard rate 

 
The graphical image of the hazard rate (Figure 
2) has the same bath-tube form - as in 
demography, the mortality rate - the difference 

being of interpretation. 
Let us comment now the above curve: the 
region between O and A point is typical for 
what is called early (or even instant) failures 
which in demography is known as infant 
mortality. From A to B, we have the so-
called normal life period where “accidents” 
or failures may occur only due to a “bad 
luck” or due to some unexpected technical or 
misoperational causes. In this period (A to B) 
one may observe an almost constant failure 
rate (the curve is nearly parallel to the 
horizontal (time) axis. The next (and last) 
period (B to +∞) is characteristic to the wear-
out (or aging) phenomenon, the hazard rate 
being increasing. 
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2 Some Elementary Theoretical Results 
If T is the random variable describing the 

time-to-failure of a given technical entity, a 
time-to-failure model for reliability is the 
following abstract object: 

 
 
  mjR

ttfT

jm 



1,,,,,

,0,0;

21 



(5) 

 
where  ;tf  is the p.d.f. of T - that is: 

  



0

1dt;tf    (6) 
The links between f and F or R are the 
following: 

xd ) θ  ; x  (  f   = θ)  ; t  (  F
t

0
    (7) 

     



t

dx;xf;tF1;tR  (8) 

      ;tR;tF;tf tt    (9) 

 
The vector of parameters  m21 ,,,    
individualizes the form of f. Usually, a p.d.f. 
contains two or three such parameters  j , 

which are usually location, scale and 
power/shape ones. To involve more 
components of   means to complicate the 
inference on f. 
Figure 3 shows a common form of a p.d.f. 
which has one modal value (a maximum of 
f). 

 
Fig. 3. A common form of a p.d.f. 

 
Figures 4a and 4b show the forms of non-
survival and the reliability functions. 

 
Fig. 4. The forms of non-survival and the reliability functions 

 
 
 
 



10  Informatica Economică vol. 14, no. 4/2010 
 

Table 1. Some characteristics of the random variable T used in a reliability model 
Nr. crt. Characteristic Analytic representation 

1  The distribution function of (T)  F(t) = Prob { T < t },     t ≥ 0 

2 The probability density function of T (p.d.f.) 





  

  td

) t (  F  d
 =   ) t (  F = ) t (  f t

 
3  The reliability function  R(t) = Prob { T  t } 

4 
 The average life be derived easily, using 
(durability) 




dt  ) t (  f     t    = ) T (  E
0  

5  The variance of T  Var ( T ) = E ( T2 ) - [ E ( T )]2      < + ∞ 

6  The variation coefficient of T 
) T (  E

) T (  Var
 = ) T (  V  C

 
 
In the Table 1 we shall present the most 
important characteristics related to the T 
variable in a time-to-failure frame. As we 
stated before, if one knows one of functions, 
the rest may be derived easily, using their 
mutual relationship. 
For instance, f(t) will provide F(t), R(t) = 1 - 
F(t), the hazard rate z(t) = f(t)/R(t) a.s.o. The 
knowledge of f means the knowledge of the 
analytical form of (f), of its parameters 

m,1j,j   (the value of t = t0 for which we 

wish to evaluate the reliability, is an 

additional but an important element of the 
analysis).  
 
3 Reliability Indicators 
The process of reliability evaluation may be 
done using two major groups of statistical 
indicators: 
a) one, based on the so-called non-parametric 
indices provided by the descriptive      
statistics; 
b) one, based on parametric indices deduced 
by the aid of probability models (Table 2). 

 
Table 2. Dependent reliability indicators 

 F(t) R(t) f(t) e(t) 

F(t) - 1 - F(t) 
t d

) t (  F  d
t  d

) t (  F  d
  

) t (  F  -  1

1


R(t) 1 - R(t) - 
t d

) t (  R  d
 -

t  d

) t (  R  d
  

) t (  R

1
 - 

f(t) dx  ) x (  f  
t

0


 

dx  ) x (  f  
0



 

- 
dx  ) x (  f  

) t (  f

0



 
 
It is important to notice the information on 
the product reliability are obtained either 
from an actual operation either from 
experimental tests or trials. Each procedure 
has its own advantages and disadvantages. 
For instance, if we study the behavior of the 
items in their field exploitation one may 
observe all events which appear during the 
operation. 
The trial method tries - if it is possible, to 
simulate the actual exploitation conditions - 

namely to reproduce some internal stress 
factors as well as the future environmental 
conditions in which the item will perform its 
tasks. Usually, a reliability/durability test 
consists in the following: a given sample of n 
elements is subjected to a specified operation 
and the experimenter waits until all elements 
of the sample fail. This procedure is known 
as a “n from n” test. At the end, the time-to-
failure data are obtained  ni1it  : the 
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information is complete but sometimes the 
test is not economical from cost and/or time 
viewpoint: the objects under the test may be 
expensive and/or their “natural failure-free 
life” may by large and  
therefore it is unpractical to wait until all 
these items fail. To avoid these situations, 
there have been imagined two kinds of tests, 
namely: 
a) censored tests - which specify previously 

a number (r), r < n of items allowed to 
fail; when these (r) objects have failed, 
then the test is interrupted: hence, at the 
end, the experimenter obtained t1, t2, … tr 
(r < n) failure times instead of all data 
  ni1it  ; 

b) truncated tests - in which the 
experimenter is allowed to perform the 
test only during a specified period of time 
(T0); when this period is consumed, the 
experiments is ceased; at the end of kind 
of test one may obtain a given number of 
failure times which may be less or even 
equal to n - the total number of elements 
subjected to the trial. 

It is important to notice that in the case (a), 
the duration of the experiment is random 
(we do not know in which moment the last rth 
elements will fail); in the case (b), the 
number of failed objects is random (we do 
not know in advance how many elements 
will fail during the test period T0) – see [11]. 
As it is well known, the majority of 
consumer goods may be divided into two 
large categories: 
a) durable consumer goods (usually having 

the possibility to be restored or repaired); 
b) items which can be used only once - that 

is they are not repairable (as for instance 
electric bulbs). 

Taking into account these two classes of 
products, their reliability may be investigated 
as follows: 
1. If the item can be 
repaired/restored/renewed, its operational 
status may be expressed via three kinds of 

indicators: 
- first ones which describes failure-free 

functionality; 
- second ones describing the restoring 

situations; 
- third ones providing a measure of  

availability. 
2. If the product is non-restorable, its 
functionality is described only by failure-free 
metrics or indices. 
The analysis begins usually with some 
computations regarding the failure structure 
on operational time intervals, such as: 
a) relative frequency of failures: 

r  

r = ) t (  f̂

i

m

1  =  i

i
i


  (10) 

as the ratio between the recorded number of 
failures occurred in the ith interval and the 
total number of failures. Using these relative 
frequencies, one may compute: 
b) cumulative relative frequency of 

failures: 

               r   
N

1
 = ) t (  F̂ i

i

1  =  j
i    (11) 

which exhibits the magnitude of failed items 
at the end of the ith interval (of time); this 
indicator is an increasing function and 
becomes 1 for the last interval of the series . 
c) relative frequency of operating items: 

 
N
N = ) t (  F̂ - 1 = ) t (  R̂ i

ii  (12) 

which is in fact the complement of the above 
indicator and it is known as the so-called 
experimental reliability function since it 
shows the weight of still operating 
elements/items at the end of  ith time interval 
and which will fail during the next time 
intervals. There are necessary also same 
numerical elements to characterize the 
central tendency of failures and the spread 
around this value: 
d) average number of failures on a given 

time interval: 
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that is the ratio between the total number of 

failures 






  r   = N i

i

1  

 and the total failure-free 

operational time of all items of the sample. 
e) MTBF - Mean Time Between Failures 
(or average durability, if the item is non-
repairable): 

N

r t  

 = 

r  

rt
 = t

ii

m

1  =  i

i

m

1  =  i

ii

m

1  =  i

 




  (14) 

This MTBF is a straightforward indicator 
since its magnitude is directly related to the 
reliability degree of the underlying object: if 
the reliability is high, it is natural that the 
average operational span to be large. Lower 
reliability means a smaller MTBF. 
f) Hazard (or failure) rate which is the ratio 
between the number of failed elements in a 

given time interval and the number of 
surviving ones in the same interval 

) r   -n    (   
r = ) t (  Z

i

i


   (15) 

where Ni = n - ri is the number of operational 
item sat the starting point of the ith interval. 
g) Standard derivation of raw data, given by 
the expression: 

n

r   ) t  -  t(  
  = ) t (Var  ˆ ii

2 
    (16) 

 
This indicator is a measure of spread in the 
sample, taking as a “milestone” the sample 
mean, t . 
h) Coefficient of variation - defined as the 
ratio between standard deviation and the 
mean. This is an indicator of the relative 
spread of the raw data: 

100     
MTBF

) T (  Var
   =CVor  

x
 = V C 
















%
̂

  (17) 

 
Observations. It is important to notice that 
the indices presented above are the sample 
ones or empirical ones (as for instance

.o.s.aCV,ˆors,x  ). They are estimators 
(from experimental data) of their theoretical 
correspondents - these later ones being 
calculated via a statistical model 
personalized by a certain probability density 
function f. 
Some (most usual) statistical models will be 
presented in the next paragraph.  
 
4 Statistical Models in Reliability 
There exists a large variety of reliability - 
related problems as regards the operational 
behavior of a given complex item. 
To find solutions for these problems one 
needs the so-called system approach which 
implies the use of mathematical models. The 
main critical factor in the construction of 
these models is modeling the system (item, 

product) failures. 
It is a trivial statement to say that a system is 
in general a “reunion” of some several parts 
(components) and the system failure is 
directly related to their part failures. 
It follows hence that the first task of the 
experimenter is the modeling of part failures. 
We encounter have two situations: 
(i) if the part is non-repairable we have to 

take into account only the first failure: in 
this instance, the first failure is also the 
last one and the overused indicator MTBF 
becomes actual part durability (“Between 
Failures” - has no sense in this case since 
we deal only with first and “lethal” failure 
of the element). 

(ii) if the item is repairable, we have to treat 
separately  the first failure since the later 
ones will depend on the type of 
maintenance action taken in the field. 

The mathematical framework appropriate for 
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modeling the failure event is a distribution 
function F(t) defined as Prob {T < t} - this 
quantity leading to density, reliability and 
other related functions. As has been shown in 
table 1, it is sufficient to know one of these 
functions in order to construct completely a 
reliability model based on the concept of 
time-to-failure. The relationship (5) from §1 
shows that a time-to-failure model can be 
relatively easily constructed if we know the 
p.d.f. - of the underlying variable T and its 
characterizing parameters. 
Various data obtained from laboratory or 
workshop experiments and also field data 
could suggest - by using classical procedures 
of descriptive statistics - such as drawing 
histograms, computing several indicators 
(coefficient of variation, skewness, kurtosis 
a.s.o.) - a possible form of the p.d.f. 
associated to the failure phenomenon. 
William Edwards DEMING (1900 - 1993) 
wrote in one of his books [4] that the object 
of taking data is to provide a basis for 
action. These data must be analyzed in the 
frame of a statistical model - otherwise we 
deal only with “a pure raw material” whose 
generating mechanisms are unknown to us. 
In a later work [5], he said that such a model 
has to be a statistical distribution 
personalized by a specific function which 
describes the behavior of the considered 
characteristic of interest. Most of these 
characteristic are measurable ones: “static” 

product quality characteristics such as 
hardness, strength, geometric features 
weights a.s.o. or dynamic ones as for 
instance durability or time-to-failure of a 
technical component or system. 
Nowadays, the specific literature devoted to 
statistical distributions, especially to those 
modeling various measurable variables, is 
extremely large. We have now the second 
expanded edition of a four volume collection 
of the most used distributions (first volume 
in 1994 - see [14]) and some specialized 
monographs such as that of Patel and Read 
[17] about the classical normal (Gauss - 
Laplace) distribution and the pioneering 
work of Pollard and Rivoire [18] on the 
graphical procedures to validate the Weibull 
reliability model. 
For the Romanian speaking readers we 
mention some useful monographs such as 
that of Isaic-Maniu [9] on “Weibull method” 
(which is in fact the first monograph on this 
distribution we talk about later), and Bârsan-
Pipu et al [1] on the failure modeling in 
general. 
From a statistical (theoretical) viewpoint a 
certain p.d.f. may be obtained in various 
ways - one of them being to ask for a so-
called “system of frequency curves” - the 
best known being probably that of the British 
scientist Karl PEARSON (1857 - 1936), 
derived in 1895 which is a quite simple 
differential equation: 

     
2

210 bbb
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xx
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

     (18) 

where f(x) is the p.d.f. which will be deduced 
by some particularization of the parameters a, 

b0, b1 and b2. 
The above relationship may be written:  
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or    x
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x
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which provides immediately (by integration): 
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    (21) 

If we take for instance b2 = 0, b0 = a, b1 = -1 we get 
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which is in fact the expression given by (10) 
for θ = 1, that is a peculiar case of the 
exponential law. Other details on p.d.f. (s) 
which could be obtained from Pearson`s 

equation (20) are given in [22]. 
In the reliability context we shall use formula 
(4) from § 1 which by taking the derivative, 
we obtain 

     







 

t

0

duuzexptztf   (23) 

The EXPONENTIAL statistical law gives 
the distribution of time between independent 
events occurring at a constant rate. 
Similarly/equivalently, gives the probability 
distribution of life, assuming or presuming a 
constant hazard rate. 
Therefore, it can describe the usage life of 
some entities - in particular when these are 
exposed to initial burn-in, and preventive 
maintenance eliminates some 
parts/components before their wear-out. 
Due to this property of having a constant 
failure rate, the exponential model reliability 
is applicable mainly to those products 
(usually complex one) which have 
“genetically” a long life span. 
It is important to notice that there are a lot of 
processes and situations when the assumption 

of a constant hazard rate is not realistic. For 
instance, in the domain of cutting and 
grinding tool durability, generally in 
metalworking, we are facing the irreversible 
wear-out phenomenon of the items involved: 
consequently, an increasing failure rate will 
be adequate. 
One of the alternatives to the exponential 
model was that proposed in 1880 by John 
William Strutt (1842 - 1919) - better known 
as Lord RAYLEIGH (Nobel Prize in Physies, 
1904) - as the distribution the amplitude 
resulting from the harmonic oscillations 
obviously, in those times, no reliability 
aspects were taken into consideration. 
The RAYLEIGH statistical law has the 
p.d.f. and df defined as: 

     
   22

222

2/xexp1;

;2/exp/;









tF

tttf
 (24) 

with 0,0t  which provide a reliability function and a hazard rates as below: 

   
  2

22

/;

;2/exp;





ttz

ttR




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The form of   ;tz  shows that it is linearly 

increasing  21 tt   implies    21 tztz   and 
hence, the model is useful to describe the 
aging or wear-out processes. 
The main characteristics of Rayleigh variable 
(T) are: 
Mean      253314.12/TE 2/1 ; 
Variance 

    22 429204.02/4TVar  ; 

Model value (mode) = θ; 
Skewness coefficient 631111.0 ; 
Kurtosis coefficient 245089.3 . 
Remark. A more complex statistical model 
in reliability has been proposed in 1951 by 
the Swedish military engineer, Waloddi 
WEIBULL (see [9]). 
The WEIBULL statistical law is defined by 
the following p.d.f.: 
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where 0,k,0t  . Here,   is called a location parameter, θ - a 
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scale one and k - shape (or power) parameter. If 0  we obtain a reduced model: 

   




















 
k

1kk t
expt/k,k;tf  (27) 

with 0k,,0t  . 
The form (26) or (27) provides a more 

realistic hazard rate function - namely: 

    0k,,t,/tktz k1k     (28) 
which depends on time (t) and due to the 
power parameter (k), it can exhibit an 
increasing, decreasing or a constant behavior. 
That is, (28) covers the whole range of the 
classical bath-tub hazard rate shape. 
It is important to notice Weibull`s law 
includes as peculiar cases the exponential 
one (for k = 1) and the Rayleigh one (for k = 
2). 

As Gertsbahh remarks (see [6]) a logarithmic 
transformation of the Weibull random 
variable produces a random variable which 
belongs to the so-called location-scale family 
which has several very good features for 
statistical analysis. 
Indeed, if T is Weibull variable, denoted 

 ,W  where p.d.f. of T is: 

      texpt,;tf 1s  (29) 
then x = log T has the below p.d.f: 

    



 


b

at
exp1tFtxobPr ,   (30) 

where  loga  and  /1b . For the form (29), the failure rate is: 

  0,,0t,ttz 1    (31) 
and has the following characteristics: 
(i) for  tz,1  is increasing in t (that is 
we have an IFR type); 
(ii)for  tz,1  is constant   tz  
which means that we deal with the 

exponential law; 
(iii)for  tz,1  is decreasing in t (that is 
we have a DFR type). 
The mean - value and the variance of a 
Weibull variable are 

     /11TE 1  and 

      sTVar /11/21 22     (32) 

where    is the well-known Gamma 
function proposed by the famous Swiss 
mathematician Leonhard EULER (1707 - 
1783): the so-called CLT (Central Limit 
Theorem) which states that the average value 
of n  
The NORMAL or GAUSS-LAPLACE law 
represents - as it is known - a basic 
distribution in statistical theory and practice. 

Many of its applications arise from an 
important theorem - that is 
observations/measurements approaches 
normal distribution - irrespective of the form 
of initial/original distribution of those 
measurements, under quite general 
conditions. The p.d.f. of a normal variable T 
is: 

   

0σR,μR,t

,
2σ

μt
exp

2πσ

1
σμ,t;f:T

2
2







 


(33) 

where   and 2  have special significances, 

namely  TE  - the theoretical mean-

value and  TVar2   - the theoretical 
variance. 

As Ireson states in [13], in reliability theory, 
the normal model in used to approximate the 
wear-out failure, since its hazard rate 
increases with time. One of the advantages of 
T as a normal variable lies in the fact that   
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and 2  can be immediately estimated by their sample correspondents, namely 


n

1
it

n

1
t  and  

2n

1
i

2 tt
n

1
s     (36) 

If 0  and 1  we are dealing with the 
nor med or standardized Gauss-Laplace 

variable for which p.d.f. and c.d.f. are: 
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

t

t

duutF

andetf

2/exp
2

1

2

1

2
0

2/
0

2




 (37) 

All useful indicators presented in Table 3.  
 

Table 3. Key indicators of reliability for the models shown 

 
The  model 

Exponential Weibull Normal 
1 2 3 4 
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
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5 Final Comments 
All elements on reliability presented in the 
above paragraphs concern the hardware 
reliability - that is time to failure, modeling 
at the component and system levels, 
evaluation/calculation of reliability indicators 
a.s.o. 
As a consequence of its historical 
development, reliability theory and practice 
has its roots in this “hardware framework”: 
basic definitions, terms, methods a.s.o. arose 
in this hardware context, 
Software reliability has its own 
characteristics but many of terms and 
procedures may be translated (with an 
appropriate interpretation) from hardware 
reliability theory to the software one. 
In spite of the fact that there is no unanimity 

amongst the authors dealing with this subject 
matter, software reliability theory is 
nowadays an important chapter of the general 
reliability theory (see [19]). 
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