
Revista Informatica Economică, nr. 4 (44)/2007 99

Optimization of Antivirus Software

Catalin BOJA, Bucharest , Romania
Adrian VIŞOIU, Bucharest , Romania

The paper describes the main techniques used in development of computer antivirus software
applications. For this particular category of software, are identified and defined optimum cri-
teria that helps determine which solution is better and what are the objectives of the optimiza-
tion process. From the general viewpoint of software optimization are presented methods and
techniques that are applied at code development level. Regarding the particularities of anti-
virus software, the paper analyzes some of the optimization concepts applied to this category
of applications.
Key words: optimization, software, antivirus, optimum, criteria.

nti-Virus Techniques
Th

gram is
e scope of an antivirus software pro-
 to identify and to stop other applica-

tions that might in a way or another affect the
integrity of user data without its acceptance
or agreement. In other words, the antivirus
represents one of components of the system
defense mechanism It protects system and
user data. The techniques that are used to
check for software viruses in a software envi-
ronment define the strategies that the applica-
tion implement in order to warn the user
about malicious activities that takes place on
his machine. These techniques include meth-
ods for preventing, detecting, and repairing
viruses in files or file system areas and are
based on:
 scanning; the core routine of the antivirus

application scans the file system on regular
basis or on user demand and searches inside
each file for a virus signature; the signature
of a virus represents a sequence of bytes that
best describes the virus and its versions; in
many cases this string if defined by the ma-
chine internal format of assembly instruc-
tions found in the virus source code, instruc-
tions that are not likely to be located in the
clear code of usual applications; for example
one of the most successful boot sector virus
was named Stoned and it was capable to in-
fect boot sector of both floppy disks and hard
disks; despite its many versions, it signature
was defined by the starting sequence which it
uses to infects the floppy in the A: drive:

BE 0400 B801 020E 07BB 0002 33C9 8BD1 419C
this sequence represents the machine internal

format for the assembler code:
mov SI,4

mov ax,
201h

push cs

pop es

mov
bx,200h

xor cx,cx

mov dx,cx

inc cx,

pushf

mov SI,4

mov ax,
201h

push cs

pop es

mov
bx,200h

xor cx,cx

mov dx,cx

inc cx,

pushf

and is part of the virus routine that it uses to
write itself to cylinder 0, header 0, sector 1 on
the floppy disk; based on the scanning tech-
nique the antivirus will do a string search in
target files, mainly executables; if it finds the
sequence or part of it, it will announce the
user or it will try disinfect the file; despite its
history and its known drawbacks regarding
polymorphic and stealth viruses, this method
has an important advantage over other ap-
proaches in that it catch the virus before it is
executed;
 behavior checking; the antivirus software

contains a monitor component which is a rou-
tine that is executed in the background by the
system; this routine is a terminate and stay
resident program which hooks important
BIOS interrupts, like 13h or 21h; every time
an application calls these interrupts, the anti-

A

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6612447?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Revista Informatica Economică, nr. 4 (44)/2007 100

virus routine checks the function parameters
and it request user to accept or to deny the
execution;
 integrity checking; this method is based on

the fact that an infected file looks different
than the original one; not taking into consid-
eration the name of the file, as in case of
companion viruses, the file data represents
the main objective; as results, the infected
file will have a different size, date/time
modified stamp or it will generate a different
checksum, CRC; once it is installed the anti-
virus will generate and it will manage a data-
base that records all these information about
files; the scan routine compares, for target
files, the recorded information with the actual
data and it alerts users about situations in
which files have been modified since last
check; because most of the executable files
does not change at runtime their content, this
represents a valid approach.
Despite the evolution of virus types and the
methods used to deliver them, the antivirus
software contains a mixture of techniques
and particular methods in order to maximize
their efficiency and to minimize resources
and their impact.
2. Optimum criteria
The software application used as defense
against computer viruses is defined in the
category of daily used software as email cli-
ents, messaging and Internet browsers. Based
on this fact, this software must provide a high
security level and in the same time it must
have a low profile. The degree in which it af-
fects user actions must be at the lowest level
because if it generates discomfort to users by
affecting other applications response time, it
might get uninstalled or turn off.
In order to develop an antivirus application it
is important to define the characteristics con-
sidered important by producers and users. By
setting target levels for these criteria, there
are described the premises for a more clear
development and qualitative analysis proc-
esses.
Space minimization refers to the dimension
of the memory zone that the application re-
quires on the hard disk or in RAM. Every
antivirus application uses for the scanning

routine a database of strings or virus signa-
tures in order to correctly identify malicious
code. Because the strings are small sized, as
in most cases a 16 or 32 byte sequence is
enough to conduct a search, the database size
depends mainly on the number of known vi-
ruses. If it has an integrity checking routine,
then the application must generate a log da-
tabase in which it records the parameters of
all the files in the protected zone. For a large
file system this may requires more space on
the hard disk. If it is taken into consideration
an activity monitor, then the objective is de-
fined by the amount of virtual memory it re-
quires to be active in the system and to scan
real time network traffic or accessed files.
Speed maximization is a criterion that is di-
rectly correlated with the effort, measured in
time, of the antivirus software to scan mem-
ory or a drive for infected files. This charac-
teristic is important for scanners and integrity
checkers because these components must
analyze each file in the protected zone. The
effort consists in string search inside file data
or in computing different types of checksums
for the file content.
Low profile describes the impact of the anti-
virus application on user activities. During
the scanning or the monitor process, the user
must be affected in a limited way that will al-
low continuing his work without any discom-
fort. The antivirus activities must have a low
profile, making them unobservable by users.
The worst case scenario is the situation in
which the system crashes, is not responding
any more to command, or current applica-
tions loose data.
Minimize used resources refers to the maxi-
mum level of needed resources. In order to
be an efficient application, the antivirus must
run on different hardware and software archi-
tectures with minimum requirements. Also
the level of needed resources affects the
characteristics measured levels during the
execution. Being part of a required system
configuration next to operating system and a
office suite, the antivirus software must use
in an efficient manner existing resources
without imposing a minimum configuration
that will limit its implementation.

Revista Informatica Economică, nr. 4 (44)/2007 101

3. Software optimization
The evolution of software and hardware
technologies permits for complex software
applications in the present, but also with
great requirements for processing speed and
memory usage. Software applications in-
cluded in this category are operating systems,
entertainment applications and multimedia
applications.
With all this waste of resources, transparent
to the user, the developer gives particular
importance to the optimization process, look-
ing to maximize the performance of the final
product.
Another category of software products is
constrained from the start to be efficient with
respect to the system resources used. In this
category are included antivirus applications,
drivers, viruses, applications implemented in
microcontrollers or smartcards, function li-
braries, applications for mobile devices.
The objective of software optimization is to
obtain a new product or a new version of an
existing product, which presents a higher
quality level. This grade is worked out based
on the levels obtained from the set of soft-
ware characteristics or the established opti-
mum criteria. By direct comparison to the
base levels or by determining aggregated
values based on the way multi-criteria mod-
els are composed, the level of improvement
is obtained.
The optimization process implements tech-
niques and methods used in:
 problem analysis; this implies that a lot of

the problems in software optimization are
generated in stages before the development
of the source code; the implementation of an
inefficient analysis leads to defining a solu-
tion that isn’t characterized by a required
quality level;
 source code; if this is based on a bad im-

plementation of an algorithm, it will lead to
obtaining inefficient results in most situa-
tions, even if the complexity of the source
code may be reduced, or if it is of high qual-
ity; the main cause of problems at source
code level lies in a low level of its experi-
ence, and last but not least in the mistakes it
makes; the primary methods, [10], used at

this level are based on the elimination of re-
peating sub-expressions, instructions without
any meaning, sequences in which instruc-
tions with opposite effect appear, invaria-
tions, by substituting complex reference ex-
pressions with simpler ones and by regroup-
ing control structures;
 compiler; this component is responsible for

transforming source code in the form associ-
ated with the high level language into ma-
chine code; as this form is directly processed
by the microprocessor, it greatly influences
the way in which resources are used and es-
pecially the total processing time; using a
good complier that contains a lot of tech-
niques for optimizing memory usage and
processing speed leads to optimizing the ap-
plication without the need for any other addi-
tional effort; the second solution for getting
optimized machine code is to write the
source code in assembler languages; analyz-
ing the efficiency of using an optimization
routine for the compiler or writing the appli-
cation in assembler languages leads to defin-
ing two approaches; in the case of routines
with a high level of importance for applica-
tion performance, the programmer can gen-
erate , in particular situations, machine code
more efficiently than the compiler; despite
this, the solution of developing the whole ap-
plication in machine code is not viable be-
cause the effort and time resources are too
great;
4. Specific optimization methods
This category of software product has unique
characteristics that required a particular ap-
proach when defining optimization methods
that will increase the quality level.
In order to reduce the influence on other ap-
plications or on users’ sessions, the antivirus
software must be activated when the system
is in idle state or when the level of available
resources is enough to scan the system with-
out affecting the conditions in which users
interact with others applications. If the main
objective is to scan the system and this task
does not have a time limit, the antivirus ap-
plication must schedule its scanning and in-
tegrity checking routines depending on the
user current activities.

Revista Informatica Economică, nr. 4 (44)/2007 102

Between the components of an antivirus
software application, the routine that scans
the file system for infected files continues to
be reliable and to represent the major com-
ponent. It also has the greatest impact on the
application behavior and consumed resources
because of the effort to search string se-
quences in a large number of files. From this
point of view, particular optimization meth-
ods target to define a faster and a more reli-
able string searching mechanism:
 wildcards allows scanners to ignore some

characters or sequences from the target
string; this will speed up the search operation
because it is not required a one to one identi-
fication;
 generic degree is strictly related to differ-

ent versions of a virus; the developer identi-
fies a signature that is common to all the ver-
sions of a virus; in this way , the generic sig-
nature helps reduce the number of search
strings;
 mismatches is a method introduced first in

the IBM antivirus and it allows a finite num-
ber of bytes in the string to be any value, re-
gardless of their position;
 Top-and-Tail scanning; because most of

the viruses place their code at the end or the
beginning of the infected file, the scanners
will search only in this zones; this will re-
duce the scanning effort but may affect the
precision;
 Entry-Point and Fixed-Point scanning de-

fines a method in which the search begins at
a certain point in the file, the entry point; in
order to manage the execution of a file, the
virus must take control from the start and to
pass it to the infected file after it terminates
its routine; this is achieved by redefining the
entry point of the executable by placing viral
code at the beginning of the file or by placing
a jump instruction to the virus sequence;
based on that, the antivirus will begin the
search from the entry point of the file by fol-
lowing jump or call instructions;
 hashing is used as a data storage structure

in order to have fast access to elements based
on nonnumeric or large value keys; for anti-
virus scanners is used to reduce the number
of strings that are searched inside the file; the

methods uses 16-bit or 32-bit words of the
scan strings to generate a hash value that
have the role of the index in the hash table;
 smart scanning represents a countermea-

sure to viruses that try to hide their code in-
side sequences of no value instructions such
as do-nothing NOP instructions;
 skeleton detection is a method defined by

Eugene Kaspersky and it reduce the search-
ing zone inside a target file; the idea is to
eliminate all the instructions that are not
likely to be part of the virus code before
starting the scanning routine.
5. Conclusions
In today information society, the information
represents the most important good. With the
growing number of data communication ser-
vices, channels and available software appli-
cations, data are processed in large quantities
in a more efficient manner. This will also in-
crease the vulnerable spots of the computer
system and in order to protect data, an anti-
virus system becomes a must have integrated
component of the system. That is not enough,
because to provide valid protection against
known and future viruses, the application
must be continuous updated with better ver-
sions of the database but also of the scanning
and monitoring routines.
References
[BOJA05] Cătălin BOJA – Software Multicriterial
Optimization, The Proceedings of the Seventh Interna-
tional Conference of Informatics in Economy, May
2005, Academy of Economic Studies, Bucharest, Ro-
mania, Inforec Printing House, pp. 1068 – 1074, ISBN
973-8360-04-8.
[IBM00] IBM Corporation – Antivirus Research Pro-
ject http://www.research.ibm.com/antivirus/index.htm,
2000.
[IVAN05a] Ion IVAN, Cătălin BOJA – Empirical
Software Optimization, Revista Informatică
Economică, vol. IX, nr. 2/2005, Editura Inforec, Bu-
cureşti, 2005, ISSN 1453 – 1305, pp 43 – 50.
[IVAN07] Ion IVAN, Cătălin BOJA – Practica opti-
mizării aplicaţiilor informatice, Editura ASE, 2007, în
curs de apariţie.
[LUDW95] Mark LUDWIG – The giant black book
of computer viruses, American Eagle Publications
INC, Arizona, USA, 1995.
[SZOR05] Peter Szor – The art of computer virus re-
search and defense, Addison Wesley Professional,
ISBN 0-321-30454-3, 2005.

