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In this paper, a method for model structure refinement is proposed and applied in estimation 
of cumulative number of vulnerabilities according to time. Security as a quality characteristic 
is presented and defined. Vulnerabilities are defined and their importance is assessed. Exist-
ing models used for number of vulnerabilities estimation are enumerated, inspecting their 
structure. The principles of genetic model generators are inspected. Model structure refine-
ment is defined in comparison with model refinement and a method for model structure re-
finement is proposed. A case study shows how the method is applied and the obtained results.  
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Quality and Security Assessment 
A software quality system is made up of 

characteristics and attributes or subcharacte-
ristics. Consider the system containing m 
characteristics CH1, CH2, …, CHm. For each 
characteristic Cj models are built to estimate 
its level. Such model takes the form: 

Mjh: ),...,( 21 kjhjh XXXfy =  
where  
Mjh – the hth model for estimating the CHj 
characteristic 
yjh  - estimated level of CHj through Mjh 
X1, X2, .., Xk – independent variables asso-
ciated to the identified influence factors. 
In ISO 9126 standard [1], security is defined 
as an attribute of the functionality quality 
characteristic, related to the ability of a soft-
ware product to prevent unauthorized access 
intentional or unintentional to programs and 
data. 
For a proper software quality management, 
indicators must be built and used to measure 
different aspects of security. Also, models 
are built in order to estimate the indicators 
with respect to factors that influence the phe-
nomenon. 
There are software categories for which secu-
rity is a very important aspect: operating sys-
tems, web servers, web browsers, application 
servers, office suites, applications that offer 
network services. 
An important aspect in assessing security is 

represented by vulnerabilities. Vulnerabilities 
represent an important fraction of the soft-
ware flaws that need to be repaired. 
In [2] the following definition is used: “A se-
curity vulnerability is a flaw in a product that 
makes it infeasible – even when using the 
product properly —to prevent an attacker 
from usurping privileges on the user's sys-
tem, regulating its operation, compromising 
data on it, or assuming ungranted trust”. 
The vulnerability discovery process is very 
important because any vulnerability permits 
an attacker to cause important losses in terms 
of data and money. The developer must patch 
any vulnerability found in order to keep its 
position on the market and gain the trust of 
the users. 
When a vulnerability is found, it is made 
public and reported to public databases like 
[3], [4] and [5] for further observation. The 
fact the vulnerability is found and made pub-
lic does not guarantee that it hasn’t already 
been found by possible attackers and hasn’t 
already been used to produce damages. 
The vulnerability discovery process is useful 
also for managers. If the process follows a 
definite law, models are developed to help 
the decision making. It is useful to know that 
there are moments after the release date of 
the product when more resources must be al-
located for treating vulnerabilities, and mo-
ments, when such resources can be directed 
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to other purposes. For software users, the 
number of vulnerabilities is important be-
cause it decides the number of patches they 
have to apply to the product to keep it safe 
from attackers and this is a time consuming 
activity. 
Recording the number of vulnerabilities dis-
covered for a certain software product helps 
estimation of future values and also for com-
parison between products from the same de-
veloper or different developers. 
 
2. Software Vulnerabilities Estimation 
Models 
When a phenomenon or a process is mod-
eled, the nature of the variables and factor in-
teraction are analyzed and a set of models is 
identified, models which accurately represent 
the structure, the dynamics and the behavior 
of the phenomenon or the process. A crite-
rion for model ordering is defined, data is 
recorded, model coefficients are estimated 
and model quality assessed. From the ordered 
list of models, only a few are chosen and 
those are taken into account for validation. 
After validating models, only a model is left 
and this is subject for refinement. 
In [6] are presented many models used for 
estimating software vulnerabilities. They are 
used for predicting the cumulative number of 
vulnerabilities, at a certain moment in time, 
denoted by Ω(t),  starting with the moment of 
the product release date: 
• Anderson Thermodynamic Model:  

)ln()( tCkt ⋅=Ω
γ

 

where k is a constant and γ is a weighting 
factor; 
• Alhazmi-Malaiya Logistic Model: 

1
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where A and C are constants and B is the to-
tal number of vulnerabilities estimated to be 
found; 
• Rescorla Linear Model: 
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where B are K parameters; 
• Rescorla Exponential Model: 

)1()( teNt λ−−=Ω , 
where N is the total number of vulnerabilities 
and λ is a rate; 
• Logarithmic Poisson Model (LP): 

)1ln()( 10 tt ⋅+=Ω ββ , 
where β0 and β1 are coefficients. 
Also, in [7], the linear model is presented and 
tested for cumulative number of vulnerabili-
ties estimation: 

ktSt +⋅=Ω )( , 
where S is the slope and k is a constant. 
Those models have been tested and applied 
for operating systems, web servers and other 
vulnerability prone software, both open 
source and closed source. Those models have 
different structures, and give different results 
for different datasets. When analyzing a data-
set, it is useful to develop specific models 
that work best with it, than using a model de-
veloped using another dataset having other 
characteristics. 
 
3. Genetic Algorithm Based Model Gene-
rators 
Model generators are software instruments 
for obtaining models from a certain model 
class given the list of variables, the model 
structure, existence restrictions and datasets.  
Model classes group models with the same 
structure, e.g. linear models, linear models 
with lagged variables, nonlinear models. For 
each class a model generator is developed as 
a software module. Each dataset contains da-
ta series for the recorded variables. The en-
dogenous variable is specified and the gene-
rator builds analytical expressions using in-
fluence factors, coefficients, simple operators 
and functions. For each model structure, 
coefficients are estimated and a performance 
indicator is computed. The resulting model 
list is ordered by the performance indicator. 
The analyst chooses between the best models 
an appropriate form that later will be used in 
estimating the studied characteristic. 
In [8], linear model generators are presented. 
In [9], linear model generators with lagged 
variables are presented. Nonlinear model ge-
nerators based on combinatorial algorithms 
are presented in [10]. Model generators based 
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on genetic algorithms are presented in [11]. 
Those instruments are useful for obtaining 
models that estimate the evolution of a cer-
tain phenomenon influenced by a list of fac-
tors. As seen, vulnerabilities are estimated 
according to the time factor. Model genera-
tors are used to develop a model expression 
taking into account time, operators, coeffi-
cients and functions. 
When using genetic type algorithms, which 
implement the model of population evolu-
tion, one important application is symbolic 
regression. Symbolic regression evolved it-
self with the introduction of genetic pro-
gramming and later with the gene expression 
programming as presented in [12]. Starting 
from a dataset in which it is specified the de-
pendent variable and the independent va-
riables, an initial population of chromosomes 
is built and then it is subject to a replication 
process including specific rules. 
These algorithms have a very specific way of 
representing analytical expressions of mod-
els. The chromosome is a linear structure of 
fixed length made up of genes. The role of 
the chromosome is to code an analytical ex-
pression. A gene is also a linear structure and 
corresponds to the syntax tree of the expres-
sion it represents and each entry in the gene 
corresponds to a tree node. The tree nodes 
are numbered starting from the root and then 
level by level and from left to right obtaining 
a linear structure. Each node contains an op-
erator, a constant or a variable. Like the non-
linear generator does, the domain for the 
generated expressions depends on the ac-
cepted operators set and the set of operands 
built up from variables and coefficients. To 
create the final expression from the chromo-
some, the subexpressions derived from genes 
are aggregated using a simple aggregation 
function like summation of multiplication. 
An initial population of chromosomes is ran-
domly generated. The evolution is obtained 
through iteratively applying genetic opera-
tors: 
- elitism implies extracting the best chromo-
some from the current population and its rep-
lication as is in the next generation; 
- selection implies extracting a number of 

individuals from the population based on a 
measure for their fitting to the aimed objec-
tive 
- mutation implies random changes of some 
positions in the chromosome; a certain posi-
tion contains an operand or an operator and 
its change leads to a new analytical form, dif-
fering from the initial one, when the expres-
sion is rebuilt; this genetic operator is essen-
tial to introduce a degree of variability in the 
generation process 
- transposition implies changing the position 
of sequences of elements from a gene inside 
a chromosome 
- recombination implies pairing two parent 
chromosomes and obtaining a new chromo-
some inheriting contents from both parents 
The genetic operators are applied for a num-
ber of generations leading to a best fitting 
model in the given hypothesis. 
An issue in analytical expression generation 
using gene expression programming is the 
building of apparent high complexity expres-
sions in contrast with the objective of model 
refinement. However, this is not the case as 
simple operating the constants reduces the 
model complexity to a simpler form. 
 
4. Model Structure Refinement Using Ge-
netic Algorithms 
In the context of model generation, refine-
ment is a procedure that takes a model M of 
complexity C and transforms it to a model 
M’ of complexity C’, such way that C>C’ 
and the fitness of M’ doesn’t differ substan-
tially from the fitness of M as presented in 
[13]. The complexity indicator takes into ac-
count the number of operands and operators 
and the fitness is chosen among the existing 
statistical indicators that assess the quality of 
a model. A comparison between software 
metrics refinement techniques is included in 
[14]. 
In [13] model refinement with linear model 
generation was applied. The purpose of that 
case study was creating a refined model to 
estimate McCabe complexity of a module 
according to a list of influence factors. A 
model list was built containing the best gen-
erated models according to a statistical per-
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formance criterion. It was observed that cer-
tain variables had a higher frequency of ap-
parition than others, and also the associated 
coefficients in the model kept the same sign 
and similar values. This fact conducted to the 
idea that when using model generators, the 
analyst should pay attention to the distribu-
tion of generated model structures in order to 
find patterns that indicate a model structure is 
more fit for the purpose of the research. 
A method is proposed for model structure re-
finement. In order to define model structure 
refinement, consider a list of model struc-
tures S1, S2, …, SL, used to estimate the levels 
of a certain dependent variable, according to 
a list of factors. Refinement can be defined as 
a procedure that takes the initial list of struc-
tures S1, S2, …, SL and retains a subset Si1, 
Si2, …, SiL’ where L’<L, and the subset Si1, 
Si2, …, SiL’ contains the best structures ac-
cording to a performance criterion. 
There are peculiarities that make the evolu-
tionary algorithms fit for this approach. Ge-
netic algorithms in general, and gene expres-
sion programming used in the case study in 
particular have a pseudorandom behavior. 
Building the initial population is pseudoran-
dom: expression elements are randomly cho-
sen from a list of elements; variables are cho-
sen from the dataset and constants making up 
coefficients are chosen from a random gener-
ated list of values. At each run, the constant 
list is different. Also, the genetic operators 
like selection, mutation, the exchange of ge-
netic material are applied randomly. When 
running the algorithm for several times, using 
the same dataset, the best generated models 
are different regarding the apparent structure 
and the coefficients. However, after applying 
all operations between constants, it is ob-
served that the number of generated structure 
types is small, the algorithm having a strong-
er preference for generating models from cer-
tain structures than from others. 
The model structure obtained by applying a 
genetic algorithm for model generation is 
complex due to the way coefficients are es-
timated. A certain coefficient is estimated by 
evolution, not by classical optimization me-
thods. The coefficient is estimated by a mod-

el expression part that contains operations 
between initial constants. Through evolution, 
the expression improves over the generations 
and finally builds up, or approximate, the 
coefficient. Suppose that the algorithm uses 
random generated constants in [-1; 1] range. 
This does not affect generality as expression 
evolution also produces the generation of 
other real constants. Consider that in the 
model, the constant 9.7 is needed. Presuming 
that constants 0.1 and 0.97 exist in the ran-
dom generated constant list, 9.7 is con-
structed using the division operator through 
the expression 0.97/0.1.  
The model given as output from a gene ex-
pression programming model generator, 
where TIME is a variable  
(0.1253548*(0.1253548/((0.3993210/0.7591

132)/TIME))) 
has 5 operands and 4 operators and its appar-
ent complexity is 19.6. Note the way the ex-
pression can be further reduced. Step by step, 
constants are operated: 

(0.1253548*(0.1253548/ 
((0.5260361)/TIME))) 

0.1253548*0.2383007*TIME 
0.0298721*TIME. 

The real model structure lying beneath the in-
itial expression is a*TIME. It has 2 operands 
and 1 operator, its Halstead complexity is 2. 
The a coefficient is approximated by operat-
ing the above constants. 
When running the algorithm for a specified 
number of times certain model structures ap-
pear with a higher frequency than others.  
Consider the models M1, M2, …, Mr obtained 
after r generation algorithm runs for a certain 
dataset. A number of n model structures S1, 
S2, …, Sn is obtained, having the relative ap-
parition frequency f1, f2, …, fn, respectively, 
the number of runs being greater than the 
number of structures. Each structure corres-
ponds to a model which was the best after 
evolving a certain population. 

∑
=

=
n

i
if

1

1. 

The performance of a certain model Mi dif-
fers from the performance of the model ob-
tained by estimating the coefficients of the 
corresponding structure Sj by using an opti-
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mization method like least squares. There are 
models of type Sj1 that perform better than 
the model of another type Sj2, as there are 
models in Sj2 that estimate better than the 
models in Sj1. At this moment it cannot be 
decided which model class gives better re-
sults. It is assumed the performance of the 
models is comparable. The list of model 
structures is sorted in descending order ac-
cording to the frequency of apparition, ob-
taining the list Sk1,Sk2, …, Skn, where Sk1 is 
the most frequent apparition and Skn is the 
structure with the least frequent occurrence. 
A threshold h is defined and the first s struc-
tures with respect to the relation 

∑
=

<
S

i
ki hf

1
. 

The models Mk1, Mk2, …, Mks are built, hav-
ing the corresponding chosen structures Sk1, 
Sk2, …, Sks and their coefficients are esti-
mated using a least squares algorithm.  For 
each model complexity C is measured and 
performance or fitness FIT is computed. 
Structurally, a model is made up of expres-
sions containing operands and operators. The 
model M has its complexity is assessed by an 
indicator that emphases the operation vo-
lume: 

222121 loglog)( nnnnMC += , 
where  

n1 – the number of operands in the model 
n2 – the number of operators in the model. 
The fitness function that assesses the statis-
tical performance of a model M is 

l

e
MFIT

l

i
i∑

== 1

2

)( , 

where 
l – the length of the dataset 
ei – the difference between the actual value 
of the dependent variable in the dataset  and 
the estimated value using the models 
In order to achieve refinement, the complexi-
ty of the model is taken into account, when 
evaluating model lists. A performance indi-
cator that takes into account both statistical 
performance and complexity to assess a 
model M is given by 

qp MCMFITMAP )()()( ⋅= , 

where 
FIT(M)– statistical performance of model M 
C(M) – complexity of M 
p – importance coefficient for FIT  
q - importance coefficient for C. 
The properties of such aggregated perfor-
mance indicator are presented in [15]. 
A table is built containing information about 
structures, models and indicators shown in 
table 1. 

 
Table 1. The refined structure list, the corresponding models and their characteristics 

Structure Model Performance Complexity Aggregated performance 
Sk1 Mk1 FIT(Mk1) C(Mk1) AP(Mk1) 
Sk2 Mk2 FIT(Mk2) C(Mk2) AP(Mk2) 
… … … … … 
Sks Mks FIT(Mks) C(Mks) AP(Mks) 

 
In the context of model generation, refine-
ment aims to choose a model with good sta-
tistical performance and a small complexity 
from a list of models having different values 
for those characteristics. The list in table 1 is 
sorted ascending by the AP indicator and the 
first model structure is further used. If the ob-
jective of the analysis is obtaining a very 
precise model, then when evaluating the list 
of models using AP, only the quality of the 
fitness is taken into account, then q=0. If the 
objective of the analysis is to obtain a good, 

simple model, that is easy to apply and in-
terpret, the analyst chooses positive values 
for q. The first model structure in the ordered 
list is the refined model structure.   

 
5. Experimental results 
In order to test the proposed method, a case 
study shows the results obtained in model 
structure refinement. 
Many open source projects have reached a 
degree of maturity where software develop-
ment is under a well defined management. 
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The development of a widely used web serv-
er, the Apache httpd project, is under such 
strict management that assures consistent re-
sults and a sustainable development process. 
Public information about the project is found 
at [16]. For this project there is a public sec-
tion where all the security vulnerabilities are 
presented [17]. It is intended to build a model 
to estimate the number of cumulative vulne-

rabilities at a certain moment in time. 
The raw data collected from the published 
security reports [16] contains information 
about the released version of the software, 
the date of the release, the number of security 
issues classified as low - LOW, moderate - 
MOD, important -IMP and critical - CRI that 
were fixed with that version of software. The 
raw data is presented in table 2. 

 
Table 2. Raw data collected from security reports 

VERSION DATEFIXED LOW MOD IMP CRI TOTAL 
Apache httpd 2.0.35 06.04.2002     0 
Apache httpd 2.0.36 08.05.2002 1    1 
Apache httpd 2.0.37 18.06.2002    1 1 
Apache httpd 2.0.40 09.08.2002 1  1  2 
Apache httpd 2.0.42 24.09.2002  1   1 
Apache httpd 2.0.43 03.10.2002 1 1   2 
Apache httpd 2.0.44 20.01.2003   1 1 2 
Apache httpd 2.0.45 02.04.2003   1  1 
Apache httpd 2.0.46 28.05.2003 1  2 1 4 
Apache httpd 2.0.47 09.07.2003 1 1 1  3 
Apache httpd 2.0.48 27.10.2003 1 1   2 
Apache httpd 2.0.49 19.03.2004 1  2  3 
Apache httpd 2.0.50 01.07.2004 1  1  2 
Apache httpd 2.0.51 15.09.2004 3  1 1 5 
Apache httpd 2.0.52 28.09.2004   1  1 
Apache httpd 2.0.53 08.02.2005 1 1 1  3 
Apache httpd 2.0.55 14.10.2005 3 2 1  6 
Apache httpd 2.0.58 01.05.2006 1 1   2 
Apache httpd 2.0.59 27.07.2006   1  1 
Apache httpd 2.0.61 07.09.2007  4   4 
Apache httpd 2.0.63 19.01.2008 1 2   3 

 
A cumulative series is built for the total 
number of vulnerabilities, denoted by CU-
MULATIVE, and also a cumulative series is 
built for de difference measured in days be-

tween two version release dates, denoted by 
TIME. Table 3 presents the dataset contain-
ing cumulative values. 

 
Table 3. Cumulative series for the number of found vulnerabilities and the difference 

VERSION TOTAL CUMULATIVE DATEFIXED DAYDIF TIME 
Apache httpd 2.0.35 0 0 06.04.2002 0 0 
Apache httpd 2.0.36 1 1 08.05.2002 32 32 
Apache httpd 2.0.37 1 2 18.06.2002 41 73 
Apache httpd 2.0.40 2 4 09.08.2002 52 125 
Apache httpd 2.0.42 1 5 24.09.2002 46 171 
Apache httpd 2.0.43 2 7 03.10.2002 9 180 
Apache httpd 2.0.44 2 9 20.01.2003 109 289 
Apache httpd 2.0.45 1 10 02.04.2003 72 361 
Apache httpd 2.0.46 4 14 28.05.2003 56 417 
Apache httpd 2.0.47 3 17 09.07.2003 42 459 
Apache httpd 2.0.48 2 19 27.10.2003 110 569 
Apache httpd 2.0.49 3 22 19.03.2004 144 713 
Apache httpd 2.0.50 2 24 01.07.2004 104 817 
Apache httpd 2.0.51 5 29 15.09.2004 76 893 



Informatica Economică vol. 13, no. 1/2009 
 

70

Apache httpd 2.0.52 1 30 28.09.2004 13 906 
Apache httpd 2.0.53 3 33 08.02.2005 133 1039 
Apache httpd 2.0.55 6 39 14.10.2005 248 1287 
Apache httpd 2.0.58 2 41 01.05.2006 199 1486 
Apache httpd 2.0.59 1 42 27.07.2006 87 1573 
Apache httpd 2.0.61 4 46 07.09.2007 407 1980 
Apache httpd 2.0.63 3 49 19.01.2008 134 2114 

 
Note that the first release 2.0.35 does not 
contain any security fixes. It is considered as 
a starting point in our analysis. 

The evolution of the cumulative number of 
vulnerabilities with time is given in figure 1. 

 

 
Fig. 1. The evolution number of fixed vulnerabilities in time 

 
The needed model has to estimate the cumu-
lative number of vulnerabilities covered – 
CUMULATIVE with respect to the number of 
days elapsed from the launch of the product. 
Using the gene expression programming ge-

nerator a sample of 23 models is generated. 
Table 4 shows the list of generated models 
accompanied by their statistical performance 
indicator.  

 
Table 4. Generated models output from the gene expression programming generator 
Model ID EXPRESSION FIT 

M1 (((TIME*(0.558161191436537*0.558161191436537))^(0.768022689394663^0
.72624326996796))^0.72624326996796) 

12.6063424743838

M2 (0.0485667032415824*((TIME/(0.485911058953922+0.380868223673137))*0
.485911058953922)) 

13.361586437786 

M3 (0.816733738322153*(((0.194515941755155/0.630825894247194)*TIME)^0.
630825894247194)) 

9.12573472267031

M4 ((TIME^0.517728796469853)+ln((0.233303776119511+(0.0070213712784561
2*0.00702137127845612)))) 

28.9973223280455

M5 (TIME*(0.0128907486856406^0.837603060453014)) 13.8676424057511
M6 (0.52023783536639+(TIME^0.52023783536639)) 56.5486463117635
M7 ((0.163407823146976*(TIME+0.976262840896967))*0.163407823146976) 13.2519176757507
M8 (TIME^(((0.859372181752404*0.680791525487225)/0.680791525487225)*0.

543734460856642)) 
45.6893294145408

M9 (TIME*(((0.846643705315256/0.127865843068746)/0.127865843068746)^ln(
0.403221100756536))) 

13.890390795984 
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M10 ((TIME*(0.877454309667207/(0.460519756404925/0.0257088388436049)))^0
.877454309667207) 

10.6126614831786

M11 ((TIME*((0.0632099733050959*0.773589949018131)*(0.773589949018131*
0.773589949018131)))^0.998194032347851) 

17.4135343874989

M12 ((0.702126900061093*TIME)^0.518656560461343) 20.6603265718446
M13 (0.560466382447847*(TIME^0.560466382447847)) 22.8284625410467
M14 (TIME^(0.39682478150205*((0.877461587487469/0.703766557250063)^0.87

7461587487469))) 
19.6096404744368

M15 (TIME^(0.39682478150205*((0.877461587487469/0.703766557250063)^0.87
7461587487469))) 

29.9609686522458

M16 (TIME^0.477832195105884) 33.2239762050619
M17 (TIME*0.0261055706190437) 13.9066543592166
M18 (TIME*(0.851695158449791^((0.726531111042263^0.298261328273574)/(0.

0120070627946439/0.298261328273574)))) 
13.3513484193383

M19 (TIME^0.508447564443782) 30.8635969349109
M20 (TIME^0.511974330764252) 35.0301571388812
M21 (ln((0.609602831122281+0.609602831122281))*((0.325523775688151^0.000

5415859634716)+(TIME^0.609602831122281))) 
215.045427274938

M22 (TIME^((0.260342915197994+(0.169856560029954^0.260342915197994))*0.
544435880866105)) 

27.6292267234255

M23 (((TIME*0.539203863842042)^0.539203863842042)+0.0319035942814795) 18.0775110750353
 

The corresponding model structures for the 
models in table 4 are shown in table 5. 
 
Table 5. Models and their corresponding 
structure 

Model ID Structure 
M1 A*TIMEB 
M2 A*TIME 
M3 A*TIMEB 
M4 TIMEA+B 
M5 A*TIME 
M6 TIMEA+B 
M7 A*TIME+B 
M8 TIMEA 
M9 A*TIME 
M10 A*TIMEB 
M11 A*TIMEB 
M12 A*TIMEB 
M13 A*TIMEB 
M14 TIMEA 
M15 TIMEA 
M16 TIMEA 
M17 TIMEA 
M18 A*TIME 
M19 TIMEA 
M20 TIMEA 
M21 A*TIMEB+C 
M22 TIMEA 
M23 A*TIMEB+C 

 
The gene expression programming based 
model generator has many parameters to be 
set: 
• size of the population 

• length of a gene 
• number of genes in a chromosome 
• operator list to be used containing +,-,*/, 
pow, ln, sin and other functions 
• constant list length 
• dataset variables specifying dependent and 
independent variables 
As presented above, a large diversity of op-
erators and functions used for generating 
models creates the impression that the num-
ber of model structures that instantiate mod-
els is also large. 
It is observed that certain model structures 
appear with higher frequency and the struc-
ture diversity is small. The identified model 
distribution is presented in table no 6. 

 
Table 6. Model structure apparition frequen-
cy 

Model  
Structure 

Absolute  
frequency 

Relative  
frequency 

A*TIMEB 6 0.26087 
A*TIME 4 0.173913 

TIMEA+B 2 0.086957 
A*TIME+B 1 0.043478 

TIMEA 8 0.347826 
A*TIMEB+C 2 0.086957 

TOTAL 23 1 
  
Note that expressions containing TIME vari-
able as argument for ln function, or denomi-
nator of a fraction were not generated as ex-
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pected. Also, it is an interesting fact, that 
models contain only positive constants. This 
remained true for a larger number of algo-
rithm runs than the sample presented here. 

Ordering in descending order the model 
structures according to their relative frequen-
cy, table 7 is obtained, that also shows the 
cumulative frequencies. 

 
Table 7. Model structure list ordering 
Structure ID Model Structure Absolute frequency Relative frequency Cumulative frequency 

S1 TIMEA 8 0.347826 0.347826 
S2 A*TIMEB 6 0.26087 0.608696 
S3 A*TIME 4 0.173913 0.782609 
S4 TIMEA+B 2 0.086957 0.869566 
S5 A*TIMEB+C 2 0.086957 0.956523 
S6 A*TIME+B 1 0.043478 1.000001 

 
As a note, all the generated models take the 
form or particular forms of A*TIMEB+C. If 
threshold h=1 is chosen then all the struc-

tures are chosen for further processing. Based 
on the chosen structures, models are built and 
coefficients are estimated. 

 
MS1: CUMULATIVE = TIME0.495 FIT=24.37 C=2 

MS2: CUMULATIVE = 0.14 * TIME0.772 FIT= 4.36 C=6.75 
MS3: CUMULATIVE = 0.027*TIME FIT = 13.28 C=2 

MS4:  CUMULATIVE = TIME0.527-7.796 FIT=6.89 C=6.75 
MS5: CUMULATIVE = 0.264*TIME0.695-2.619 FIT=3.59 C=12.75 

MS6: CUMULATIVE = 0.025*TIME+2.972 FIT=9.75 C=6.75 
 
To evaluate the aggregated performance in-
dicator, different values for p and q are cho-

sen. The data about the models is structured 
in table 8. 

 
Table 8. Characteristics for models based on the structure list 

Model ID FIT C AP(p=1;q=0) AP(p=0;q=1) AP(p=1;q=1) AP(p=2;q=1) 
MS1 24.37 2 24.37 2 48.74 1187.794 
MS2 4.36 6.75 4.36 6.75 29.43 128.3148 
MS3 13.28 2 13.28 2 26.56 352.7168 
MS4 6.89 6.75 6.89 6.75 46.5075 320.4367 
MS5 3.59 12.75 3.59 12.75 45.7725 164.3233 
MS6 9.75 6.75 9.75 6.75 65.8125 641.6719 

 
Ordering the list by the AP(p=1;q=0) is the 
same as ordering by FIT, obtaining: MS5, 
MS2, MS4, MS6, MS3, MS1. This ordering pays 
attention only to the statistical performance. 
Ordering the list by the AP(p=0; q=1) is the 
same as ordering by C obtaining: MS3, MS1, 
MS2, MS4, MS6, MS5. This ordering pays atten-
tion only to the complexity of the expression. 
Ordering the list by the AP(p=1; q=1) gives: 
MS3, MS2, MS5, MS4, MS1, MS6. This ordering 
pays attention to both statistical performance 
and complexity. 
Ordering the list by the AP(p=2; q=1) gives: 
MS2, MS5, MS4, MS3, MS6, MS1. This ordering 
pays more attention to the statistical perfor-

mance than to complexity. 
The best performance in terms of fitting qual-
ity is given by the MS5 model. This also has 
the most complex expression. At the oppo-
site, models MS1 and MS3 are the least com-
plex, but also have the worst statistical per-
formance. If performance has a greater im-
portance than complexity, as when using 
AP(p=2; q=1), but both are taken into ac-
count, then models MS2 is chosen. 
In the situation when MS2 is chosen to esti-
mate the number of vulnerabilities, there 
must be a validation step, in which to apply a 
statistical test. 
The Chi Squared X2 test is applied and the 
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computed value is 8.1399. The critical value 
in this case, for a risk α=5%, the critical val-
ue is 27.58. As the computed value is less 
than the critical value, the model is accepted. 
Also, model MS2 has another advantage over 
MS5. All the output values of MS2 can be in-
terpreted, such as the value at the initial mo-
ment, TIME=0, MS2(0)=0, which also corres-

ponds to  the actual data. For MS5, MS5(0)=-
2.619 which apparently doesn’t have sense, 
as the number of vulnerabilities cannot be 
negative. 
The graphic showing the actual recorded val-
ues versus the values given by MS2 are pre-
sented in figure 2. 

 

 
Fig. 2. MS2 gives a good result in estimating the actual values 

 
The statistical validation is always followed 
by the validation in practice, where over a 
period of time, model outputs are compared 
with the real encountered values.   
 
6. Conclusions 
Model generators are useful instruments, au-
tomating important aspects of phenomena 
modeling process. Models from different 
classes are generated and selected according 
to objective criteria. 
Model refinement is necessary in order to ob-
tain models with a good explanation of the 
studied phenomenon and, the same time, 
with a small degree of complexity, which 
makes them easy to interpret and with little 
data collection effort. 
Model structure refinement is necessary in 
order to reduce the almost infinite solution 
space containing models that estimate the 
value of a dependent variable, to a small set. 
When using nonlinear model generators 
based on combinatorial algorithms, all model 

structures based on the initial parameters are 
built. When using genetic algorithms for 
model generation, the initial population of 
models evolves through generations. The 
best model is recorded for a large number of 
algorithm runs while observing if there are 
model structures that have a higher frequency 
of apparition.  The set of selected structures 
with higher occurrence is used to build mod-
els. The model built on the refined structure 
can be further subject for model refinement. 
The experimental results presented in this 
paper, along with results obtained in [18] of-
fer an opening to using modern refinement 
techniques and to further research. 
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