
Informatica Economică vol. 13, no. 1/2009

64

Structure Refinement for Vulnerability Estimation Models
using Genetic Algorithm Based Model Generators

Adrian VIŞOIU

Economic Informatics Department,
Academy of Economic Studies, Bucharest, Romania

adrian.visoiu@csie.ase.ro

In this paper, a method for model structure refinement is proposed and applied in estimation
of cumulative number of vulnerabilities according to time. Security as a quality characteristic
is presented and defined. Vulnerabilities are defined and their importance is assessed. Exist-
ing models used for number of vulnerabilities estimation are enumerated, inspecting their
structure. The principles of genetic model generators are inspected. Model structure refine-
ment is defined in comparison with model refinement and a method for model structure re-
finement is proposed. A case study shows how the method is applied and the obtained results.
Keywords: model structure refinement, model generators, gene expression programming,
software vulnerabilities, performance criteria, software metrics.

Quality and Security Assessment
A software quality system is made up of

characteristics and attributes or subcharacte-
ristics. Consider the system containing m
characteristics CH1, CH2, …, CHm. For each
characteristic Cj models are built to estimate
its level. Such model takes the form:

Mjh:),...,(21 kjhjh XXXfy =
where
Mjh – the hth model for estimating the CHj
characteristic
yjh - estimated level of CHj through Mjh
X1, X2, .., Xk – independent variables asso-
ciated to the identified influence factors.
In ISO 9126 standard [1], security is defined
as an attribute of the functionality quality
characteristic, related to the ability of a soft-
ware product to prevent unauthorized access
intentional or unintentional to programs and
data.
For a proper software quality management,
indicators must be built and used to measure
different aspects of security. Also, models
are built in order to estimate the indicators
with respect to factors that influence the phe-
nomenon.
There are software categories for which secu-
rity is a very important aspect: operating sys-
tems, web servers, web browsers, application
servers, office suites, applications that offer
network services.
An important aspect in assessing security is

represented by vulnerabilities. Vulnerabilities
represent an important fraction of the soft-
ware flaws that need to be repaired.
In [2] the following definition is used: “A se-
curity vulnerability is a flaw in a product that
makes it infeasible – even when using the
product properly —to prevent an attacker
from usurping privileges on the user's sys-
tem, regulating its operation, compromising
data on it, or assuming ungranted trust”.
The vulnerability discovery process is very
important because any vulnerability permits
an attacker to cause important losses in terms
of data and money. The developer must patch
any vulnerability found in order to keep its
position on the market and gain the trust of
the users.
When a vulnerability is found, it is made
public and reported to public databases like
[3], [4] and [5] for further observation. The
fact the vulnerability is found and made pub-
lic does not guarantee that it hasn’t already
been found by possible attackers and hasn’t
already been used to produce damages.
The vulnerability discovery process is useful
also for managers. If the process follows a
definite law, models are developed to help
the decision making. It is useful to know that
there are moments after the release date of
the product when more resources must be al-
located for treating vulnerabilities, and mo-
ments, when such resources can be directed

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6612442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Informatica Economică vol. 13, no. 1/2009

65

to other purposes. For software users, the
number of vulnerabilities is important be-
cause it decides the number of patches they
have to apply to the product to keep it safe
from attackers and this is a time consuming
activity.
Recording the number of vulnerabilities dis-
covered for a certain software product helps
estimation of future values and also for com-
parison between products from the same de-
veloper or different developers.

2. Software Vulnerabilities Estimation
Models
When a phenomenon or a process is mod-
eled, the nature of the variables and factor in-
teraction are analyzed and a set of models is
identified, models which accurately represent
the structure, the dynamics and the behavior
of the phenomenon or the process. A crite-
rion for model ordering is defined, data is
recorded, model coefficients are estimated
and model quality assessed. From the ordered
list of models, only a few are chosen and
those are taken into account for validation.
After validating models, only a model is left
and this is subject for refinement.
In [6] are presented many models used for
estimating software vulnerabilities. They are
used for predicting the cumulative number of
vulnerabilities, at a certain moment in time,
denoted by Ω(t), starting with the moment of
the product release date:
• Anderson Thermodynamic Model:

)ln()(tCkt ⋅=Ω
γ

where k is a constant and γ is a weighting
factor;
• Alhazmi-Malaiya Logistic Model:

1
)(

+⋅⋅
=Ω −ABteCB

Bt ,

where A and C are constants and B is the to-
tal number of vulnerabilities estimated to be
found;
• Rescorla Linear Model:

tKtBt ⋅+
⋅

=Ω
2

)(
2

,

where B are K parameters;
• Rescorla Exponential Model:

)1()(teNt λ−−=Ω ,
where N is the total number of vulnerabilities
and λ is a rate;
• Logarithmic Poisson Model (LP):

)1ln()(10 tt ⋅+=Ω ββ ,
where β0 and β1 are coefficients.
Also, in [7], the linear model is presented and
tested for cumulative number of vulnerabili-
ties estimation:

ktSt +⋅=Ω)(,
where S is the slope and k is a constant.
Those models have been tested and applied
for operating systems, web servers and other
vulnerability prone software, both open
source and closed source. Those models have
different structures, and give different results
for different datasets. When analyzing a data-
set, it is useful to develop specific models
that work best with it, than using a model de-
veloped using another dataset having other
characteristics.

3. Genetic Algorithm Based Model Gene-
rators
Model generators are software instruments
for obtaining models from a certain model
class given the list of variables, the model
structure, existence restrictions and datasets.
Model classes group models with the same
structure, e.g. linear models, linear models
with lagged variables, nonlinear models. For
each class a model generator is developed as
a software module. Each dataset contains da-
ta series for the recorded variables. The en-
dogenous variable is specified and the gene-
rator builds analytical expressions using in-
fluence factors, coefficients, simple operators
and functions. For each model structure,
coefficients are estimated and a performance
indicator is computed. The resulting model
list is ordered by the performance indicator.
The analyst chooses between the best models
an appropriate form that later will be used in
estimating the studied characteristic.
In [8], linear model generators are presented.
In [9], linear model generators with lagged
variables are presented. Nonlinear model ge-
nerators based on combinatorial algorithms
are presented in [10]. Model generators based

Informatica Economică vol. 13, no. 1/2009

66

on genetic algorithms are presented in [11].
Those instruments are useful for obtaining
models that estimate the evolution of a cer-
tain phenomenon influenced by a list of fac-
tors. As seen, vulnerabilities are estimated
according to the time factor. Model genera-
tors are used to develop a model expression
taking into account time, operators, coeffi-
cients and functions.
When using genetic type algorithms, which
implement the model of population evolu-
tion, one important application is symbolic
regression. Symbolic regression evolved it-
self with the introduction of genetic pro-
gramming and later with the gene expression
programming as presented in [12]. Starting
from a dataset in which it is specified the de-
pendent variable and the independent va-
riables, an initial population of chromosomes
is built and then it is subject to a replication
process including specific rules.
These algorithms have a very specific way of
representing analytical expressions of mod-
els. The chromosome is a linear structure of
fixed length made up of genes. The role of
the chromosome is to code an analytical ex-
pression. A gene is also a linear structure and
corresponds to the syntax tree of the expres-
sion it represents and each entry in the gene
corresponds to a tree node. The tree nodes
are numbered starting from the root and then
level by level and from left to right obtaining
a linear structure. Each node contains an op-
erator, a constant or a variable. Like the non-
linear generator does, the domain for the
generated expressions depends on the ac-
cepted operators set and the set of operands
built up from variables and coefficients. To
create the final expression from the chromo-
some, the subexpressions derived from genes
are aggregated using a simple aggregation
function like summation of multiplication.
An initial population of chromosomes is ran-
domly generated. The evolution is obtained
through iteratively applying genetic opera-
tors:
- elitism implies extracting the best chromo-
some from the current population and its rep-
lication as is in the next generation;
- selection implies extracting a number of

individuals from the population based on a
measure for their fitting to the aimed objec-
tive
- mutation implies random changes of some
positions in the chromosome; a certain posi-
tion contains an operand or an operator and
its change leads to a new analytical form, dif-
fering from the initial one, when the expres-
sion is rebuilt; this genetic operator is essen-
tial to introduce a degree of variability in the
generation process
- transposition implies changing the position
of sequences of elements from a gene inside
a chromosome
- recombination implies pairing two parent
chromosomes and obtaining a new chromo-
some inheriting contents from both parents
The genetic operators are applied for a num-
ber of generations leading to a best fitting
model in the given hypothesis.
An issue in analytical expression generation
using gene expression programming is the
building of apparent high complexity expres-
sions in contrast with the objective of model
refinement. However, this is not the case as
simple operating the constants reduces the
model complexity to a simpler form.

4. Model Structure Refinement Using Ge-
netic Algorithms
In the context of model generation, refine-
ment is a procedure that takes a model M of
complexity C and transforms it to a model
M’ of complexity C’, such way that C>C’
and the fitness of M’ doesn’t differ substan-
tially from the fitness of M as presented in
[13]. The complexity indicator takes into ac-
count the number of operands and operators
and the fitness is chosen among the existing
statistical indicators that assess the quality of
a model. A comparison between software
metrics refinement techniques is included in
[14].
In [13] model refinement with linear model
generation was applied. The purpose of that
case study was creating a refined model to
estimate McCabe complexity of a module
according to a list of influence factors. A
model list was built containing the best gen-
erated models according to a statistical per-

Informatica Economică vol. 13, no. 1/2009

67

formance criterion. It was observed that cer-
tain variables had a higher frequency of ap-
parition than others, and also the associated
coefficients in the model kept the same sign
and similar values. This fact conducted to the
idea that when using model generators, the
analyst should pay attention to the distribu-
tion of generated model structures in order to
find patterns that indicate a model structure is
more fit for the purpose of the research.
A method is proposed for model structure re-
finement. In order to define model structure
refinement, consider a list of model struc-
tures S1, S2, …, SL, used to estimate the levels
of a certain dependent variable, according to
a list of factors. Refinement can be defined as
a procedure that takes the initial list of struc-
tures S1, S2, …, SL and retains a subset Si1,
Si2, …, SiL’ where L’<L, and the subset Si1,
Si2, …, SiL’ contains the best structures ac-
cording to a performance criterion.
There are peculiarities that make the evolu-
tionary algorithms fit for this approach. Ge-
netic algorithms in general, and gene expres-
sion programming used in the case study in
particular have a pseudorandom behavior.
Building the initial population is pseudoran-
dom: expression elements are randomly cho-
sen from a list of elements; variables are cho-
sen from the dataset and constants making up
coefficients are chosen from a random gener-
ated list of values. At each run, the constant
list is different. Also, the genetic operators
like selection, mutation, the exchange of ge-
netic material are applied randomly. When
running the algorithm for several times, using
the same dataset, the best generated models
are different regarding the apparent structure
and the coefficients. However, after applying
all operations between constants, it is ob-
served that the number of generated structure
types is small, the algorithm having a strong-
er preference for generating models from cer-
tain structures than from others.
The model structure obtained by applying a
genetic algorithm for model generation is
complex due to the way coefficients are es-
timated. A certain coefficient is estimated by
evolution, not by classical optimization me-
thods. The coefficient is estimated by a mod-

el expression part that contains operations
between initial constants. Through evolution,
the expression improves over the generations
and finally builds up, or approximate, the
coefficient. Suppose that the algorithm uses
random generated constants in [-1; 1] range.
This does not affect generality as expression
evolution also produces the generation of
other real constants. Consider that in the
model, the constant 9.7 is needed. Presuming
that constants 0.1 and 0.97 exist in the ran-
dom generated constant list, 9.7 is con-
structed using the division operator through
the expression 0.97/0.1.
The model given as output from a gene ex-
pression programming model generator,
where TIME is a variable
(0.1253548*(0.1253548/((0.3993210/0.7591

132)/TIME)))
has 5 operands and 4 operators and its appar-
ent complexity is 19.6. Note the way the ex-
pression can be further reduced. Step by step,
constants are operated:

(0.1253548*(0.1253548/
((0.5260361)/TIME)))

0.1253548*0.2383007*TIME
0.0298721*TIME.

The real model structure lying beneath the in-
itial expression is a*TIME. It has 2 operands
and 1 operator, its Halstead complexity is 2.
The a coefficient is approximated by operat-
ing the above constants.
When running the algorithm for a specified
number of times certain model structures ap-
pear with a higher frequency than others.
Consider the models M1, M2, …, Mr obtained
after r generation algorithm runs for a certain
dataset. A number of n model structures S1,
S2, …, Sn is obtained, having the relative ap-
parition frequency f1, f2, …, fn, respectively,
the number of runs being greater than the
number of structures. Each structure corres-
ponds to a model which was the best after
evolving a certain population.

∑
=

=
n

i
if

1

1.

The performance of a certain model Mi dif-
fers from the performance of the model ob-
tained by estimating the coefficients of the
corresponding structure Sj by using an opti-

Informatica Economică vol. 13, no. 1/2009

68

mization method like least squares. There are
models of type Sj1 that perform better than
the model of another type Sj2, as there are
models in Sj2 that estimate better than the
models in Sj1. At this moment it cannot be
decided which model class gives better re-
sults. It is assumed the performance of the
models is comparable. The list of model
structures is sorted in descending order ac-
cording to the frequency of apparition, ob-
taining the list Sk1,Sk2, …, Skn, where Sk1 is
the most frequent apparition and Skn is the
structure with the least frequent occurrence.
A threshold h is defined and the first s struc-
tures with respect to the relation

∑
=

<
S

i
ki hf

1
.

The models Mk1, Mk2, …, Mks are built, hav-
ing the corresponding chosen structures Sk1,
Sk2, …, Sks and their coefficients are esti-
mated using a least squares algorithm. For
each model complexity C is measured and
performance or fitness FIT is computed.
Structurally, a model is made up of expres-
sions containing operands and operators. The
model M has its complexity is assessed by an
indicator that emphases the operation vo-
lume:

222121 loglog)(nnnnMC += ,
where

n1 – the number of operands in the model
n2 – the number of operators in the model.
The fitness function that assesses the statis-
tical performance of a model M is

l

e
MFIT

l

i
i∑

== 1

2

)(,

where
l – the length of the dataset
ei – the difference between the actual value
of the dependent variable in the dataset and
the estimated value using the models
In order to achieve refinement, the complexi-
ty of the model is taken into account, when
evaluating model lists. A performance indi-
cator that takes into account both statistical
performance and complexity to assess a
model M is given by

qp MCMFITMAP)()()(⋅= ,

where
FIT(M)– statistical performance of model M
C(M) – complexity of M
p – importance coefficient for FIT
q - importance coefficient for C.
The properties of such aggregated perfor-
mance indicator are presented in [15].
A table is built containing information about
structures, models and indicators shown in
table 1.

Table 1. The refined structure list, the corresponding models and their characteristics

Structure Model Performance Complexity Aggregated performance
Sk1 Mk1 FIT(Mk1) C(Mk1) AP(Mk1)
Sk2 Mk2 FIT(Mk2) C(Mk2) AP(Mk2)
… … … … …
Sks Mks FIT(Mks) C(Mks) AP(Mks)

In the context of model generation, refine-
ment aims to choose a model with good sta-
tistical performance and a small complexity
from a list of models having different values
for those characteristics. The list in table 1 is
sorted ascending by the AP indicator and the
first model structure is further used. If the ob-
jective of the analysis is obtaining a very
precise model, then when evaluating the list
of models using AP, only the quality of the
fitness is taken into account, then q=0. If the
objective of the analysis is to obtain a good,

simple model, that is easy to apply and in-
terpret, the analyst chooses positive values
for q. The first model structure in the ordered
list is the refined model structure.

5. Experimental results
In order to test the proposed method, a case
study shows the results obtained in model
structure refinement.
Many open source projects have reached a
degree of maturity where software develop-
ment is under a well defined management.

Informatica Economică vol. 13, no. 1/2009

69

The development of a widely used web serv-
er, the Apache httpd project, is under such
strict management that assures consistent re-
sults and a sustainable development process.
Public information about the project is found
at [16]. For this project there is a public sec-
tion where all the security vulnerabilities are
presented [17]. It is intended to build a model
to estimate the number of cumulative vulne-

rabilities at a certain moment in time.
The raw data collected from the published
security reports [16] contains information
about the released version of the software,
the date of the release, the number of security
issues classified as low - LOW, moderate -
MOD, important -IMP and critical - CRI that
were fixed with that version of software. The
raw data is presented in table 2.

Table 2. Raw data collected from security reports

VERSION DATEFIXED LOW MOD IMP CRI TOTAL
Apache httpd 2.0.35 06.04.2002 0
Apache httpd 2.0.36 08.05.2002 1 1
Apache httpd 2.0.37 18.06.2002 1 1
Apache httpd 2.0.40 09.08.2002 1 1 2
Apache httpd 2.0.42 24.09.2002 1 1
Apache httpd 2.0.43 03.10.2002 1 1 2
Apache httpd 2.0.44 20.01.2003 1 1 2
Apache httpd 2.0.45 02.04.2003 1 1
Apache httpd 2.0.46 28.05.2003 1 2 1 4
Apache httpd 2.0.47 09.07.2003 1 1 1 3
Apache httpd 2.0.48 27.10.2003 1 1 2
Apache httpd 2.0.49 19.03.2004 1 2 3
Apache httpd 2.0.50 01.07.2004 1 1 2
Apache httpd 2.0.51 15.09.2004 3 1 1 5
Apache httpd 2.0.52 28.09.2004 1 1
Apache httpd 2.0.53 08.02.2005 1 1 1 3
Apache httpd 2.0.55 14.10.2005 3 2 1 6
Apache httpd 2.0.58 01.05.2006 1 1 2
Apache httpd 2.0.59 27.07.2006 1 1
Apache httpd 2.0.61 07.09.2007 4 4
Apache httpd 2.0.63 19.01.2008 1 2 3

A cumulative series is built for the total
number of vulnerabilities, denoted by CU-
MULATIVE, and also a cumulative series is
built for de difference measured in days be-

tween two version release dates, denoted by
TIME. Table 3 presents the dataset contain-
ing cumulative values.

Table 3. Cumulative series for the number of found vulnerabilities and the difference

VERSION TOTAL CUMULATIVE DATEFIXED DAYDIF TIME
Apache httpd 2.0.35 0 0 06.04.2002 0 0
Apache httpd 2.0.36 1 1 08.05.2002 32 32
Apache httpd 2.0.37 1 2 18.06.2002 41 73
Apache httpd 2.0.40 2 4 09.08.2002 52 125
Apache httpd 2.0.42 1 5 24.09.2002 46 171
Apache httpd 2.0.43 2 7 03.10.2002 9 180
Apache httpd 2.0.44 2 9 20.01.2003 109 289
Apache httpd 2.0.45 1 10 02.04.2003 72 361
Apache httpd 2.0.46 4 14 28.05.2003 56 417
Apache httpd 2.0.47 3 17 09.07.2003 42 459
Apache httpd 2.0.48 2 19 27.10.2003 110 569
Apache httpd 2.0.49 3 22 19.03.2004 144 713
Apache httpd 2.0.50 2 24 01.07.2004 104 817
Apache httpd 2.0.51 5 29 15.09.2004 76 893

Informatica Economică vol. 13, no. 1/2009

70

Apache httpd 2.0.52 1 30 28.09.2004 13 906
Apache httpd 2.0.53 3 33 08.02.2005 133 1039
Apache httpd 2.0.55 6 39 14.10.2005 248 1287
Apache httpd 2.0.58 2 41 01.05.2006 199 1486
Apache httpd 2.0.59 1 42 27.07.2006 87 1573
Apache httpd 2.0.61 4 46 07.09.2007 407 1980
Apache httpd 2.0.63 3 49 19.01.2008 134 2114

Note that the first release 2.0.35 does not
contain any security fixes. It is considered as
a starting point in our analysis.

The evolution of the cumulative number of
vulnerabilities with time is given in figure 1.

Fig. 1. The evolution number of fixed vulnerabilities in time

The needed model has to estimate the cumu-
lative number of vulnerabilities covered –
CUMULATIVE with respect to the number of
days elapsed from the launch of the product.
Using the gene expression programming ge-

nerator a sample of 23 models is generated.
Table 4 shows the list of generated models
accompanied by their statistical performance
indicator.

Table 4. Generated models output from the gene expression programming generator
Model ID EXPRESSION FIT

M1 (((TIME*(0.558161191436537*0.558161191436537))^(0.768022689394663^0
.72624326996796))^0.72624326996796)

12.6063424743838

M2 (0.0485667032415824*((TIME/(0.485911058953922+0.380868223673137))*0
.485911058953922))

13.361586437786

M3 (0.816733738322153*(((0.194515941755155/0.630825894247194)*TIME)^0.
630825894247194))

9.12573472267031

M4 ((TIME^0.517728796469853)+ln((0.233303776119511+(0.0070213712784561
2*0.00702137127845612))))

28.9973223280455

M5 (TIME*(0.0128907486856406^0.837603060453014)) 13.8676424057511
M6 (0.52023783536639+(TIME^0.52023783536639)) 56.5486463117635
M7 ((0.163407823146976*(TIME+0.976262840896967))*0.163407823146976) 13.2519176757507
M8 (TIME^(((0.859372181752404*0.680791525487225)/0.680791525487225)*0.

543734460856642))
45.6893294145408

M9 (TIME*(((0.846643705315256/0.127865843068746)/0.127865843068746)^ln(
0.403221100756536)))

13.890390795984

Informatica Economică vol. 13, no. 1/2009

71

M10 ((TIME*(0.877454309667207/(0.460519756404925/0.0257088388436049)))^0
.877454309667207)

10.6126614831786

M11 ((TIME*((0.0632099733050959*0.773589949018131)*(0.773589949018131*
0.773589949018131)))^0.998194032347851)

17.4135343874989

M12 ((0.702126900061093*TIME)^0.518656560461343) 20.6603265718446
M13 (0.560466382447847*(TIME^0.560466382447847)) 22.8284625410467
M14 (TIME^(0.39682478150205*((0.877461587487469/0.703766557250063)^0.87

7461587487469)))
19.6096404744368

M15 (TIME^(0.39682478150205*((0.877461587487469/0.703766557250063)^0.87
7461587487469)))

29.9609686522458

M16 (TIME^0.477832195105884) 33.2239762050619
M17 (TIME*0.0261055706190437) 13.9066543592166
M18 (TIME*(0.851695158449791^((0.726531111042263^0.298261328273574)/(0.

0120070627946439/0.298261328273574))))
13.3513484193383

M19 (TIME^0.508447564443782) 30.8635969349109
M20 (TIME^0.511974330764252) 35.0301571388812
M21 (ln((0.609602831122281+0.609602831122281))*((0.325523775688151^0.000

5415859634716)+(TIME^0.609602831122281)))
215.045427274938

M22 (TIME^((0.260342915197994+(0.169856560029954^0.260342915197994))*0.
544435880866105))

27.6292267234255

M23 (((TIME*0.539203863842042)^0.539203863842042)+0.0319035942814795) 18.0775110750353

The corresponding model structures for the
models in table 4 are shown in table 5.

Table 5. Models and their corresponding
structure

Model ID Structure
M1 A*TIMEB
M2 A*TIME
M3 A*TIMEB
M4 TIMEA+B
M5 A*TIME
M6 TIMEA+B
M7 A*TIME+B
M8 TIMEA
M9 A*TIME
M10 A*TIMEB
M11 A*TIMEB
M12 A*TIMEB
M13 A*TIMEB
M14 TIMEA
M15 TIMEA
M16 TIMEA
M17 TIMEA
M18 A*TIME
M19 TIMEA
M20 TIMEA
M21 A*TIMEB+C
M22 TIMEA
M23 A*TIMEB+C

The gene expression programming based
model generator has many parameters to be
set:
• size of the population

• length of a gene
• number of genes in a chromosome
• operator list to be used containing +,-,*/,
pow, ln, sin and other functions
• constant list length
• dataset variables specifying dependent and
independent variables
As presented above, a large diversity of op-
erators and functions used for generating
models creates the impression that the num-
ber of model structures that instantiate mod-
els is also large.
It is observed that certain model structures
appear with higher frequency and the struc-
ture diversity is small. The identified model
distribution is presented in table no 6.

Table 6. Model structure apparition frequen-
cy

Model
Structure

Absolute
frequency

Relative
frequency

A*TIMEB 6 0.26087
A*TIME 4 0.173913

TIMEA+B 2 0.086957
A*TIME+B 1 0.043478

TIMEA 8 0.347826
A*TIMEB+C 2 0.086957

TOTAL 23 1

Note that expressions containing TIME vari-
able as argument for ln function, or denomi-
nator of a fraction were not generated as ex-

Informatica Economică vol. 13, no. 1/2009

72

pected. Also, it is an interesting fact, that
models contain only positive constants. This
remained true for a larger number of algo-
rithm runs than the sample presented here.

Ordering in descending order the model
structures according to their relative frequen-
cy, table 7 is obtained, that also shows the
cumulative frequencies.

Table 7. Model structure list ordering
Structure ID Model Structure Absolute frequency Relative frequency Cumulative frequency

S1 TIMEA 8 0.347826 0.347826
S2 A*TIMEB 6 0.26087 0.608696
S3 A*TIME 4 0.173913 0.782609
S4 TIMEA+B 2 0.086957 0.869566
S5 A*TIMEB+C 2 0.086957 0.956523
S6 A*TIME+B 1 0.043478 1.000001

As a note, all the generated models take the
form or particular forms of A*TIMEB+C. If
threshold h=1 is chosen then all the struc-

tures are chosen for further processing. Based
on the chosen structures, models are built and
coefficients are estimated.

MS1: CUMULATIVE = TIME0.495 FIT=24.37 C=2

MS2: CUMULATIVE = 0.14 * TIME0.772 FIT= 4.36 C=6.75
MS3: CUMULATIVE = 0.027*TIME FIT = 13.28 C=2

MS4: CUMULATIVE = TIME0.527-7.796 FIT=6.89 C=6.75
MS5: CUMULATIVE = 0.264*TIME0.695-2.619 FIT=3.59 C=12.75

MS6: CUMULATIVE = 0.025*TIME+2.972 FIT=9.75 C=6.75

To evaluate the aggregated performance in-
dicator, different values for p and q are cho-

sen. The data about the models is structured
in table 8.

Table 8. Characteristics for models based on the structure list

Model ID FIT C AP(p=1;q=0) AP(p=0;q=1) AP(p=1;q=1) AP(p=2;q=1)
MS1 24.37 2 24.37 2 48.74 1187.794
MS2 4.36 6.75 4.36 6.75 29.43 128.3148
MS3 13.28 2 13.28 2 26.56 352.7168
MS4 6.89 6.75 6.89 6.75 46.5075 320.4367
MS5 3.59 12.75 3.59 12.75 45.7725 164.3233
MS6 9.75 6.75 9.75 6.75 65.8125 641.6719

Ordering the list by the AP(p=1;q=0) is the
same as ordering by FIT, obtaining: MS5,
MS2, MS4, MS6, MS3, MS1. This ordering pays
attention only to the statistical performance.
Ordering the list by the AP(p=0; q=1) is the
same as ordering by C obtaining: MS3, MS1,
MS2, MS4, MS6, MS5. This ordering pays atten-
tion only to the complexity of the expression.
Ordering the list by the AP(p=1; q=1) gives:
MS3, MS2, MS5, MS4, MS1, MS6. This ordering
pays attention to both statistical performance
and complexity.
Ordering the list by the AP(p=2; q=1) gives:
MS2, MS5, MS4, MS3, MS6, MS1. This ordering
pays more attention to the statistical perfor-

mance than to complexity.
The best performance in terms of fitting qual-
ity is given by the MS5 model. This also has
the most complex expression. At the oppo-
site, models MS1 and MS3 are the least com-
plex, but also have the worst statistical per-
formance. If performance has a greater im-
portance than complexity, as when using
AP(p=2; q=1), but both are taken into ac-
count, then models MS2 is chosen.
In the situation when MS2 is chosen to esti-
mate the number of vulnerabilities, there
must be a validation step, in which to apply a
statistical test.
The Chi Squared X2 test is applied and the

Informatica Economică vol. 13, no. 1/2009

73

computed value is 8.1399. The critical value
in this case, for a risk α=5%, the critical val-
ue is 27.58. As the computed value is less
than the critical value, the model is accepted.
Also, model MS2 has another advantage over
MS5. All the output values of MS2 can be in-
terpreted, such as the value at the initial mo-
ment, TIME=0, MS2(0)=0, which also corres-

ponds to the actual data. For MS5, MS5(0)=-
2.619 which apparently doesn’t have sense,
as the number of vulnerabilities cannot be
negative.
The graphic showing the actual recorded val-
ues versus the values given by MS2 are pre-
sented in figure 2.

Fig. 2. MS2 gives a good result in estimating the actual values

The statistical validation is always followed
by the validation in practice, where over a
period of time, model outputs are compared
with the real encountered values.

6. Conclusions
Model generators are useful instruments, au-
tomating important aspects of phenomena
modeling process. Models from different
classes are generated and selected according
to objective criteria.
Model refinement is necessary in order to ob-
tain models with a good explanation of the
studied phenomenon and, the same time,
with a small degree of complexity, which
makes them easy to interpret and with little
data collection effort.
Model structure refinement is necessary in
order to reduce the almost infinite solution
space containing models that estimate the
value of a dependent variable, to a small set.
When using nonlinear model generators
based on combinatorial algorithms, all model

structures based on the initial parameters are
built. When using genetic algorithms for
model generation, the initial population of
models evolves through generations. The
best model is recorded for a large number of
algorithm runs while observing if there are
model structures that have a higher frequency
of apparition. The set of selected structures
with higher occurrence is used to build mod-
els. The model built on the refined structure
can be further subject for model refinement.
The experimental results presented in this
paper, along with results obtained in [18] of-
fer an opening to using modern refinement
techniques and to further research.

References
[1] ISO/IEC 9126-1:2001, Software engi-

neering - Product quality - Part 1: Qual-
ity model, International Organization for
Standardization, 2001

[2] Scott Culp. (2008). Definition of a Secu-
rity Vulnerability. [Online] Available:

Informatica Economică vol. 13, no. 1/2009

74

http://technet.microsoft.com/ro-
ro/library/cc751383(en-us).aspx

[3] Common Vulnerabilities and Exposures
[Online], Available:
http://www.cve.mitre. org

[4] Security Focus [Online], Available:
http://www.securityfocus.com/bid

[5] The Open Source Vulnerability Database
[Online], Available: http://osvdb.org/

[6] O. H. Alhazmi and Y. K. Malaiya, "Mod-
eling the Vulnerability Discovery
Process," in Proc. 16th International
Symposium on Software Reliability En-
gineering, Chicago, USA, 2005, pp. 129-
138

[7] O. H. Alhazmi, Y. K. Malaiya and I. Ray,
Measuring, Analyzing and Predicting
Security Vulnerabilities in Software Sys-
tems. Computers and Security Journal,
vol. 26, issue 3, pp. 219-228,
[8] I. Ivan and A. Vişoiu. Generator de
structuri pentru modele economice şi
sociale. Revista Romana de Statistica.
no. 4, pp. 43 – 52

 [9] A. Vişoiu and I. Ivan. Generator de
modele liniare cu argument intarziat.
Revista de Comerţ. vol. 5, no.1, pp. 47-
50

[10] A. Vişoiu and G. Garais, “Nonlinear
model structure generator for software
metrics estimation,” in Proc. 37th Inter-
national Scientific Symposium of ME-
TRA, Bucharest, Romania, 2006, pub-
lished on CD

[11] A. Vişoiu, “Utilizarea algoritmilor

genetici pentru rafinarea metricilor soft-
ware”, in Proc. Simpozionul Internaţional
al Tinerilor Cercetători, Chişinău, 2008

[12] C. Ferreira, Gene Expression
Programming: Mathematical Modeling
by an Artificial Intelligence, 2nd ed.,
Springer Publishing, 2006

[13] I. Ivan, A. Vişoiu, Rafinarea metricilor
software, Economistul, supliment
Economie teoretică şi aplicativă.
no.1947(2973), pp. III

[14] I. Ivan, A. Vişoiu, “A Comparative
Analysis of Software Refinement Tech-
niques,” in Proc. Cybernetics and
Information Technologies, Systems and
Applications CITSA 2008, Orlando,
USA, 2008, pp. 235-239

[15] A. Vişoiu. (2007, March). Performance
Criteria for Software Metrics Model Re-
finement. Journal of Applied Quantita-
tive Methods [Online], vol. 2, issue 1, pp.
118-128. Available: http://www.jaqm.ro/
issues/volume-2,issue-1/ pdfs/visoiu.pdf

[16] The Apache httpd project [Online],
Available: http://httpd.apache.org/

[17] Apache httpd Security Report [Online],
Available:
http://httpd.apache.org/security_re
port.html

[18] A. Vişoiu.(2008). Neural Network
Based Model Refinement. Informatica
Economică Journal [Online], vol. 12, no.
1. Available: http://revistaie.ase.ro/ con-
tent/45/2%20-%20Adrian%20Visoiu.pdf

Adrian VIŞOIU graduated the Bucharest Academy of Economic Studies, the
Faculty of Cybernetics, Statistics and Economic Informatics. He has a master
degree in Project Management. He is a PhD student of the Doctoral School of
Bucharest Academy of Economic Studies in the field of Economic Informat-
ics. He is an assistant lecturer in the Economic Informatics Department of the
Bucharest Academy of Economic Studies and PhD candidate. He published
16 articles alone or in collaboration and he is coauthor of three books. His in-

terests include: object oriented programming, data structures, multimedia programming, soft-
ware quality management, software metrics refinement.

