
Revista Informatica Economică nr.2(46)/2008

66

Java ME Clients for XML Web Services

Paul POCATILU
Academy of Economic Studies, Bucharest

Using Web services in developing applications has many advantages like the existence

of standards, multiple software platforms that support them, and many areas of usage. These
advantages derive from the XML and Web technologies. This paper describes the stages in
the development of a Web service client for Java ME platform and presents examples based
on kSOAP and JSR 172.
Keywords: Web services, mobile applications, Java ME, SOAP, XML, m-learning.

Introduction
Web services are programmable units

that provide specific functionalities and are
accessible to a large number of consumers
using Internet protocols. XML Web services
are methods for stored objects on the server
to accept requests from the clients using

XML, usually over the HTTP protocol. The
requests from the clients are received using a
transport protocol (HTTP, TCP/IP, SMTP
etc). The response from the server is received
by the client using the same encoding and
transport protocol, figure 1.

Client

Server HTTP/TCP/SMTP

SOAP/HTML

Fig.1. Web Services

The supported requests types for the Web
services are (but not limited to) HTTP GET,
HTTP POST and SOAP. The Web services
consumers are the client applications that
access the Web services interface methods
initiated through TCP/IP or UDP protocols.
Developing and using XML Web services
can be done using many programming
languages and for various clients (mobile,
desktop, Web etc). Mobile applications are
used on various domains and their use is
growing each day and these can be easily
used as Web services clients. Using the
description of the Web service from a server
(based on WDSL and UDDI), a proxy server
is generated for an easier development.
In this paper the Java ME technologies for
XML Web services are briefly presented and
examples are provided for Java ME clients
for a XML Web service that performs
English to Romanian and Romanian to
English translations and is implemented
using .NET technologies.

This Dictionary Web Service is seen as a
starting point for an e-learning and m-
learning platform using desktop and mobile
clients.
Sun’s Java 2 Micro Edition platform runs on
many mobile devices, which have installed a
Java Virtual Machine. The biggest benefit of
using the Java platform for mobile device
development is that is possible to produce
portable code that can run on multiple
platforms. It is almost impossible to port the
complete functionalities of an application to
all mobile devices because wireless devices
have a vast range of capabilities in terms of
memory, processing power, battery life,
display size, and network bandwidth.
Java ME is divided into several different
configurations and profiles. Configurations
contain Java language core libraries for a
category of devices. In this moment there are
two configurations:
 Connected Limited Device Configuration

(CLDC) – designed for small, resource-

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6612415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Revista Informatica Economică nr.2(46)/2008 67

constrained devices (cell phones, low-end
PDAs);
 Connected Device Configuration (CDC) –

designed for relatively big and powerful

devices (high-end PDAs, set-top boxes,
network appliances); CDC has more
capabilities than CLDC in terms of security,
mathematical, and I/O functions.

CLDC CDC
JVM KVM

MIDP Foundation Profile

Personal Profile

Fig.2. Java 2 Micro Edition platform

On top of each configuration are several
profiles. A profile defines device-specific
API libraries, like GUI, networking, and
persistent-storage APIs. Each profile has its
own runtime environment and is suited for a
range of similar devices.
The two major profiles for the CLDC are
Mobile Information Device Profile (MIDP)
and PDA Profile. For the CDC there are two
important profiles: the Foundation Profile
and the Personal Profile (figure 2).
In [POCA02] is presented a Web service
Dictionary developed using .NET and C#
language. This Web service has two public
methods: Tradu (translate a word from
Romanian to English) and Translate
(translate a word from English to Romanian).
The service is published at the
http://pocatilu.ase.ro/dictionary/dservice.asm
x. DService supports all protocols for
communication (HTTP GET and POST and
SOAP). The supported protocols are obtained
through SDL (Service Descriptor Language)
that is based on XML.
Consuming Web Services from Java ME
applications can be done using at least two
approaches: WSA (JSR 172) or kSOAP
library.
JSR 172 defines the Web Services API
(WSA) and extends the web services
platform to include Java ME. J2ME Web
Services APIs enable J2ME devices to be
web services clients, providing a
programming model that is very similar with
the standard Web services platform.

If the mobile device does not implement this
optional standard (WSA), kSOAP library is
another solution to develop Web services
clients for Java ME platform.
In order to develop Java ME Web services
clients, the Dictionary Web Service is used
for test, published at
http://pocatilu.ase.ro/dictionary/dservice.asm
x. NetBeans IDE with Mobility Pack
(includes Sun’s Java Wireless Toolkit) was
used to develop the applications.

2. Consuming Web services using kSOAP
In order to develop Web services clients for
Java ME applications using kSOAP 2, the
libraries need to be added to the project
(downloadable from the project’s site
http://ksoap2.sourceforge.net/). This library
is based on the SOAP architecture and there
is no need to generate a proxy/stub to call
Web services methods.
A SOAP envelope is created using the
SoapSerializationEnvelope class
(specifying the SOAP version) and the
request details are added to the envelope
body (using SoapObject class). The
HttpTransport class is used to make the
actual call of the Web service method, the
envelope being passed as parameter. The
result is retrieving from the response part of
the envelope.
Figure 3 shows the code that initializes the
SOAP envelope, make the call and retrieve
the result.

Revista Informatica Economică nr.2(46)/2008

68

try {

//creare request, transport and envelope
SoapObject request = new SoapObject(namespace, metoda);
HttpTransport ht = new HttpTransport(url);
SoapSerializationEnvelope envelope = new

SoapSerializationEnvelope(SoapEnvelope.VER11);
//adaugare parametru + valoare
request.addProperty(parametru, parent.getTfCuvint().getString());
envelope.setOutputSoapObject(request);
envelope.dotNet = true;
ht.debug = true;

//apel metoda serviciu Web
ht.call(namespace + metoda, envelope);
//preluare rezultat
SoapPrimitive result = (SoapPrimitive)envelope.getResponse();
//afisare rezultat
parent.getTfTraducere().setString(result.toString());

 }
 catch(Exception ex)
 {

parent.getTfTraducere().setString("Exceptie: " + ex.getMessage() + "
" + ex.getClass().toString());

}

Fig.3. Translate method call code of Web Dictionary service using kSOAP 2

It is very important to send the right
parameters to the methods. In this example,
the parameters used in these calls are
initialized as follows:
• String namespace =
"http://tempuri.org/"; – Web service
namespace; in this example the default
namespace is used
• String url =
"http://pocatilu.ase.ro/dictionary/D
Service.asmx"; – Web service URL

• String metoda = "Translate"; – Web
service method name
String parametru = "word"; – the name
of the Translate method parameter. Using
wrong values for these parameters will lead
to Web service method call to fail.
Using wrong values for these parameters will
lead to Web service method call to fail.
kSOAP library includes kXML package, a
XML parser, also provided as an open
project (http://kxml.sourceforge.net).

try
{
 //creare request, transport and envelope

 DServiceSoap_Stub client = new DServiceSoap_Stub();
 //apel metoda serviciu Web si preluare rezultat
 String result = client.translate(parent.getTfCuvint().getString());
 //afisare rezultat
 parent.getTfTraducere().setString(result);

}
catch(Exception ex)
{
 parent.getTfTraducere().setString("Exceptie: " + ex.getMessage() + " "
+ ex.getClass().toString());
}

Fig.5. Translate method call code of Web Dictionary service using WSA

Revista Informatica Economică nr.2(46)/2008 69

3. JSR 172 standard for Web services
If the Java ME platform implements the JSR
172 standard on the mobile device, then the
WSA can be used to develop Web services
clients.

Fig.4. WTK’s Stub Generator Dialog

Fig.6. Dictionary Web Service client running

First step is to generate stub classes for the
Web service. This can be done easily using
Sun Java WTK. Figure 4 shows the Stub
Generator Dialog that generates the Java
classes for the Web service proxy. The URL
to the WDSL description of the Web service

(http://pocatilu.ase.ro/dictionary/dservice.as
mx?WDSL) and the name of the output
package are passed.
Using this tool, several Java classes are
generated by the JAXRPC SI and 172
StubGenerator. In this application
DServiceSoap_Stub it is used to instantiate
the client and to make the call to the Web
service method, as an ordinary Java class
method. Figure 5 shows the code used in
application to call the Translate method of
the Dictionary Web Service.
All these calls were integrated in Java ME
Midlet, and the result is shown in figure 6
(using WTK’s emulator).
In order to keep the user interface responsive
and not to block it during the network calls,
all the Web methods calls runs in a different
execution thread.

4. Conclusions and Future Work
Using XML Web Services has many
advantages for developers and for users: they
use simple protocols and the implementation
of the services and clients is easier than other
methods. The client application, for example,
could be based on Windows Forms, a native
application, a Java ME Midlet, Web based
etc.
This paper shows how easy Web services
client applications can be developed using
Sun’s NetBeans for Java ME applications.
The developer can better focus on the
application design and business logic, than to
the connections with the Web services.
The interface of these is very light, and it will
be improved, adding new functionalities and
provide a basis for m-learning applications.
Also, the Dictionary Web Service will
become more complex, by adding other
methods and new functionalities and can be
used as a framework for e-learning
applications.

References
[FOX02] Dan Fox, Jon Box – Building
Solutions with the Microsoft .NET Compact
Framework: Architecture and Best Practices
for Mobile Development, Addison Wesley,
ISBN : 0-321-19788-7, 2003

Revista Informatica Economică nr.2(46)/2008

70

[HASH05] Sayed Y. Hashimi, Scott J.
Steffan – Pro Service-Oriented Smart Clients
with .NET 2.0, Apress, ISBN 1-59059-551-3,
2005
[PLAT01] David Platt – Building reusable
Web Components with SOAP and ASP.NET,
in MSDN Magazine, February 2001, Vol. 16,
No 2, pp. 100-114.
[POCA02] Paul Pocatilu – Dictionary Web
Service, in Economy Informatics, vol. III, nr.
1, 2003, pp. 119-122,
[POCA04] Paul Pocatilu, Cristian Toma -
Dezvoltarea aplicaţiilor mobile în Java, în
Informatica Economica, vol. VIII, nr. 3(31),
2004
[POCA04a] Paul Pocatilu – Dezvoltarea
clientilor Java pentru servicii Web XML, în
Informatica Economica, vol. VIII, nr. 4(32),
2004, pp. 68-71
[POCA06] Paul POCATILU - Consuming
Web Services From .NET Compact
Framework Applications, Proceedings of the
6th Biennial International Symposium
SIMPEC 2006, vol 2, Braşov, 26-27 Mai
2006, pp. 288-292

[RUBI03] Erik Rubin, Ronnie Yates –
Microsoft .NET Compact Framework Kick
Start, Sams Publishing, ISBN 0-672-32570-
5, 2003
[WEI03] Lee Wei-Meng – Developing
Mobile Applications Using the Microsoft
Mobile Internet Toolkit,
http://www.devx.com/wireless/Article/10148
, 2003
[WIGL03] Andy Wigley, Stephen
Wheelwright – Microsoft .NET Compact
Framework , Microsoft Press, ISBN 0-7356-
1725-2, 2003
[YAO04] Paul Yao, David Durant –.NET
Compact Framework Programming with
Visual Basic .NET, Addison Wesley, ISBN
0-321-17404-6, 2004
[*****] http://sun.java.com/javame

