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According to traditional option pricing models,1 fi nancial markets underestimate the impact of tail risk.

In this article, we put forward a European option pricing model based on a set of assumptions that ensure, 
inter alia, that extreme events are better taken into account. Using simulations, we compare the option 
prices obtained from the standard Black and Scholes model with those resulting from our model. We show 
that the traditional model leads to an overvaluation of  at-the-money options, which are the most traded 
options, while the less liquid in-the-money and out-of-the-money options are undervalued.
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The literature on the theory of fi nancial asset 
pricing is mainly developed by Merton (1973a, 
1973b, 1974, 1976), Black and Scholes (1973) 

and Cox, Ingersoll and Ross (1985a, 1985b). As regards 
option pricing, the reference model is still that
of Black and Scholes (BS) (1973). However, the 
assumptions of this model are inappropriate and 
largely rejected by the data. For example, in the 
initial formulation of the model, the volatility of 
the rate of return on the risky asset underlying 
the option is assumed to be constant. This is not 
verifi ed empirically. In addition, the rate of return 
of the underlying asset is assumed to follow a 
normal distribution. Yet, the assumption of a normal 
distribution of the rates of return on fi nancial 
variables is largely contested, even rejected, in 
particular because it underestimates the frequency 
of extreme events.2

In this article, we mainly focus on this last criticism 
of the Black and Scholes model and put forward an 
option pricing model for European options based on 
more realistic assumptions.

Our model fi ts into the more general framework 
of discrete-time factor models for fi nancial
or physical asset pricing3 according to the
no-arbitrage principle.

Under the no-arbitrage assumption, the price of a 
fi nancial asset is equal to expected future cash fl ows 
discounted by a discount factor representing both risk 
aversion and preference for the present. This principle 
implies two types of modelling approaches:

• fi rst, defi ne factors that represent the information 
held by investors and model the dynamics of 
these factors;

• second, select a model of the discount factor 
according to these factors.

In particular, these two elements are used to defi ne 
the “virtual” dynamics of the factors (the so-called 
“risk-neutral” dynamics) for which the asset price 

becomes equal to the expected future cash fl ows 
discounted by the risk-free rate.

In this article, we show how these general principles can 
be applied to calculate the price of a European option. 
More specifi cally, one of the key assumptions of the 
model is linked to the defi nition of the factor’s historical 
dynamics, which are supposed to be a mixture of 
Gaussian distributions. This assumption ensures 
a better modelling of extreme events. To simplify the 
presentation, we choose a static framework. We show 
that the model presented here expands on the Black 
and Scholes model (See Box 1) and enables us to take 
better account of tail risk. It emerges that at-the-money 
options are overpriced while in-the-money and 
out-of-the-money options are underpriced.

1| DEFINITION 
 OF THE INFORMATION SET 
 AND ITS PROBABILITY 
 DISTRIBUTION

In order to price an asset, the investor defi nes 
a set of fundamental factors that are likely to 
have an effect on the price. wt denotes the value
of the factors at date t and wt its historical dynamics.4 
The future cash fl ows generated by the asset are 
assumed to depend on the future realisations
of these factors.

In the option pricing model presented in this article, 
the information available to investors at every date 
is the rate of return on the underlying asset. It is an 
observable factor for which the historical dynamics 
can be derived from a sample of observations.

A commonly used –albeit widely contested– 
assumption is that the rate of return on the risky 
asset follows a Gaussian distribution.5 We discuss 
this assumption and make an alternative proposal.

2 See Mandelbrot (1962, 1963, 1967); Fama (1965).
3 See Bertholon, Monfort and Pegoraro (2006) and Pegoraro (2006).
4 This factor can be considered to be the information available to the investor at date t. This information may be observable (the yield on an underlying asset, 

macroeconomic factors), partially or totally unobservable (volatility regimes) by the econometrician.
5 See Black and Scholes (1973).
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Box 1
The Black and Scholes model

Assumptions

• The price of the underlying asset St follows a geometric Brownian motion:

dSt = μStdt + σStdWt

where μ and σ are constant.

The rate of return on the underlying asset, xt+1 = In(St+1 / St) therefore follows a Gaussian distribution with a mean of  µ –
σ 

2

2
 

and a standard deviation of σ;

• there are no restrictions on short-selling;
• no commissions or taxes are charged;
• all the underlying assets are perfectly divisible;
• the underlying asset pays no dividends;
• there are no arbitrage opportunities;
• the market operates continuously;
• the risk-free interest rate, rƒ, is constant.

The Black and Scholes formula

It is used to calculate the theoretical value Ct of a European option at date t with the fi ve following variables:

• St the price of the underlying asset at date t;
• T the expiration date of the option;
• K the option exercise price;
• rƒ the risk-free interest rate;
• σ the volatility of the price of the underlying asset.

The relative theoretical price at date t  Ct  of a call option, denoted ct with maturity at t and relative exercice price κ = K is:

ct = N(d1) – κe – rƒ (T–t) N(d2).

Similarly, the relative price of a put option is:

pt = κe – rƒ (T–t) N(– d2) – N(– d1),

where:

• N is the standard normal cumulative distribution function,
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1|1 Stylised facts and limitations 

 of the Gaussian distribution

To illustrate the limitations of the normal distribution 
assumption, we take a look at the weekly rate of 
return on the CAC40 between 3 January 1996 and 
30 April 2008.

Chart 1 shows the empirical distribution of this rate 
of return. We fi rst approximate this distribution to a 
Gaussian distribution N(µ,σ2). The estimated values 
of µ and σ2 are respectively the mean and empirical 
variance of the rates of return.

The theoretical distribution, thus estimated, provides 
for an exact reproduction of the observed mean and 
variance. However, some empirical characteristics 
of the distribution of returns cannot be reproduced 
with a Gaussian distribution (see Table 1):

• the empirical distribution tails are thicker than the 
Gaussian distribution tails: high returns (positive or 
negative) are more frequent than what the Gaussian 
distribution would predict.  The kurtosis coeffi cient 
is thus above 3, which is that of a normal distribution. 
Furthermore, it has a more acute “peak” around 
zero and fat tails (see Table 1). Consequently, the 
theoretical probability of an extreme value occurring 

is underestimated when the rate of return is assumed 
to follow a Gaussian distribution;

• the empirical distribution is not symmetrical, unlike 
the Gaussian distribution: negative returns are more 
frequent than what the Gaussian distribution would 
predict. The skewness coeffi cient is negative for the 
empirical distribution, refl ecting a longer left-hand 
tail, and equal to zero for the Gaussian distribution.

1|2 Mixtures of Gaussian distributions: 
 defi nition and interpretation

In the literature, several categories of distributions 
have been put forward to compensate for the 
shortcomings of the Gaussian distribution: alpha-stable
distributions;6 fi nite mixtures of distributions, such as 
Gaussian mixtures;7 simple and generalised Student 
distributions;8 hyperbolic distributions.9

In this article, we focus on the mixture of Gaussian 
distributions for several reasons:

• it is an adequate proxy for all of the alternative 
distributions mentioned above;

• its theoretical properties are such as to facilitate 
manipulations in the framework of a theoretical asset 
pricing model, such as an option pricing model;

• it is very easy to simulate;

• it enables us to reproduce various characteristics 
(mean, variance, skewness and kurtosis) observed 
in the data, including in the simplest case where the 
mixture only includes two Gaussian distributions.

Chart 1
Empirical distribution of weekly rate
of return on the CAC40 and Gaussian distribution
(X-axis: rate of return on the CAC40; Y-axis: probability density)
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Table 1

Empirical 
distribution

Gaussian 
distribution

Mean 0.13% 0.13%
Standard deviation 2.48% 2.48%
Skewness -0.41 0
Kurtosis 6.61 3

Note: The mean and standard deviation are calculated relative to the weekly rate 
of return on the CAC 40 (03.01.96 to 30.04.08).

6 See Mandelbrot (1997); Mittnick and Rachev (1993); Adler et al. (1998).
7 See Kon (1984); Akgiray and Booth (1987); Tucker and Pond (1988).
8 See Bollerslev (1987); Baillie and Bollerslev (1989); Lambert and Laurent (2000, 2001).
9 See Barndorff-Nielsen (1994); Eberlein and Keller (1995); Kuechler et al. (1999).
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More formally, making the assumption that the 
distribution is a mixture of two Gaussian distributions 
amounts to assuming that the random variable x (the 
rate of return for example) can take on values from 
two different regimes: regime 1 with a probability 
of occurrence equal to p and regime 2 with a 
probability of occurrence of 1 – p. The probability 
distribution under regime 1 is a Gaussian distribution, 
with a mean of µ1 and a variance of σ1

2, denoted 
N(µ1, σ1

2). Under regime 2, the probability distribution 
is a Gaussian distribution with a mean of µ2 and 
a variance of σ2

2, denoted N(µ2, σ2
2). Overall, the 

probability distribution of the random variable x 
(a mixture of two Gaussian distributions) depends on 
fi ve parameters, µ1, σ1

2, µ2, σ2
2 and p. The probability 

density of the mixture of two Gaussian distributions 
can be written as:

 f(x)=pn(x;µ1, σ1
2)+(1–p)n(x;µ2, σ2

2) (1)

with n(x;µi, σi
2)= 1

σi√2π
e

(x–u
i
)21

σ
i

22
–

,

the probability density of a Gaussian distribution 
with a mean of µi and a variance of σi

2. This type of 
reasoning may be applied to more than two regimes, 
the distribution being a Gaussian distribution under 
each regime (see Assumption 1 in Box 2).

Another advantage of a mixture of Gaussian 
distributions relates to its interpretation, which is 
not always the case with other distributions, such as 
hyperbolic distributions or Student distributions. For 
example, in the case of a mixture of two Gaussian 
distributions, each regime may represent market 
states with different levels of volatility. The regime 
with the highest volatility may be interpreted as a 
fi nancial crisis regime.

We have shown that a Gaussian distribution cannot 
reproduce the entire empirical distribution of returns 
(see Chart 1).

To obtain a better estimation of the empirical 
distribution of the rate of return on the CAC40, we 
estimate the parameters of the above-mentioned 
mixture of two Gaussian distributions.10 The 
estimated values of the parameters are shown in 
Table 2. In this example, the probability of being 
in regime 1, i.e. the high-volatility regime, is 0.12. 

In this regime, the volatility is 4.96% and the mean 
0.34%, i.e. an annualised volatility and mean of 
35.7% and -17.7% respectively. This regime may be 
considered as a fi nancial crisis regime. In regime 2, 
the volatility and the mean are 1.91% and 0.19%,
i.e. 13.7% and 9.88% in annualised terms.

Chart 2 shows the empirical data distribution and 
its approximations via the mixture of Gaussian 
distributions (full line) and the Gaussian distribution 
(dotted line). The mixture of Gaussian distributions 
is better able to reproduce the distribution of data. In 
particular, it provides a better estimate of the tails and 
asymmetry of the empirical distribution. For example, 
a rate of return of three standard deviations (extreme 
event) is observed on average every 24 weeks. This 
event is forecasted on average every 160 weeks with 
the Gaussian distribution and on average every 
22 weeks with the Gaussian mixture.

10 To do this we use maximum likelihood method.

Table 2

Gaussian 
distribution
Regime 1

Gaussian 
distribution
Regime 2

Mixture of 
Gaussian 

distributions

Empirical 
distribution

Mean -0.34% 0.19% 0.08% 0.13%

Standard 
deviation

4.96% 1.91% 2.96% 2.48%

Skewness 0 0 -0.21 -0.41
Kurtosis 3 3 5.42 6.61

Note: p=0,12 is the probability of occurrence of regime 1, a high-volatility regime. 
The mean and standard deviation are calculated relative to the weekly rate of return 
on the CAC 40 (03.01.96 to 30.04.08).

Chart 2
Empirical distribution of the rate of return 
on the CAC 40 and approximation 
by a mixture of Gaussian distributions
(X-axis: rate of return on the CAC40; Y-axis: probability density)
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Box 2

The option pricing model of Bertholon, Monfort, Pegoraro (2006)

Assumptions

• H1: the historical distribution of the rate of return on the underlying asset, ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= +
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t

t
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1 ln  where St is the price 

at date t of the underlying asset, is a mixture of J Gaussian distributions. Its probability density is given by.
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• H2: the stochastic discount factor is exponential-affi ne  )exp( 11, ttttt xM βα += ++ .

Results

Result 1: under assumptions H1 and H2, the stochastic discount factor allows for a unique solution for (αt, βt), denoted (α, 
β) that meets the two no-arbitrage conditions:
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where  
ƒ

tr 1+  is the risk-free interest rate between t and t+1 (known at t).
The fi rst condition is the no-arbitrage condition applied to the risk-free asset. The second is the no-arbitrage condition 
applied to the underlying asset.

Result 2: under assumptions H1 et H2, the risk-neutral distribution of the factor is unique; it is also a mixture of Gaussian 

distributions. Its probability density, )(xƒ
Q , is given by: ∑
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Result 3: under assumptions H1 et H2, the theoretical price of a European call option with a one-period maturity is:
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where cBS (.,.) is the Black-Scholes formula with a period defi ned in Box 1 and ⎟
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The mixture of Gaussian distributions is clearly more 
appropriate for modelling the historical dynamics of 
the rate of return on the underlying asset. This is the 
assumption that will be used throughout the paper.

2| DISCOUNTING FUTURE 
 CASH FLOWS GENERATED 
 BY THE ASSET AND APPLICATION 
 TO OPTION PRICING

The fundamental principle underlying the asset 
price model is the discounting of future cash fl ows 
generated by the asset. This raises the question of the 
discount factor to be used. It may be looked at from 
two different angles, depending on the “world” one 
considers. In the “risk-neutral” world, the discount rate 
is the risk-free rate. In the “real” or “historical” world, 
the stochastic discount factor is used. We come back 
to these two approaches to specify the assumptions 
made in the framework of our model and the links 
that can be established between the two worlds.

2|1 The historical world: 
 the stochastic discount factor

If the no-arbitrage assumption is verifi ed, there 
exists a positive random variable that enables us 
to calculate, at any date t, the price of an asset 
generating random future cash fl ows depending 
on the factors.11 This variable is called a stochastic 
discount factor. More specifi cally, the asset price 
at date t is equal to the expected future cash fl ows 
generated by the asset, discounted by the stochastic 
discount factor.

If Mt,t+1 is the stochastic discount factor between t 
and t+1, Pt the asset price at date t, gt+1 = g(wt+1) 
the cash fl ow generated by the asset between t and 
t+1, then:

 Pt=Et(Mt,t+1gt+1).  (2)

The fi rst step of the modelling process has made 
it possible to defi ne and identify the historical 
conditional probability distribution of factor wt+1, 
and therefore that of gt+1=g(wt+1). The second step 
involves doing the same for (wt+1, Mt,t+1). Once the 
conditional distribution for (gt+1, Mt,t+1) has been 
identifi ed, it is possible to determine either 
analytically or via simulations the conditional 
expectation of Mt,t+1 gt+1 and therefore Pt.

The approach adopted in this article is based on an 
exponential-affi ne specifi cation of the stochastic 
discount factor12 :

 Mt,t+1=exp(αt(wt)’wt+1+βt(wt)). (3)

In some circumstances, it is possible to determine 
the coeffi cients of the linear form, αt(wt) and βt(wt), 
in a unique manner, via the no-arbitrage condition. 
The stochastic discount factor is then uniquely 
defi ned in the exponential-affi ne class.

It is necessary to determine coeffi cients αt and βt 
in order to obtain a complete specifi cation of the 
form of the stochastic discount factor. By applying 
formula (2) to the rate of return on the underlying 
asset on the one hand, and to the rate of return on 
the risk-free asset on the other, it is possible to derive 
two so-called no-arbitrage conditions (see Box 2).
We can then show that this system produces a 
unique solution (αt βt), making it possible to obtain 
a complete specifi cation of the form of the stochastic 
discount factor according to the historical dynamics 
of the factors.

2|2 The risk-neutral world

The “risk-neutral” world corresponds to a virtual 
economy in which economic agents would be 
indifferent to risk. The expected rate of return on 
all assets would then be equal to the risk-free rate. 
As a result, the discount rate would be equal to the 
risk-free rate. The risk-neutral world is easy to 
construct using the historical dynamics of the factors 
and the stochastic discount factor (see Appendix 1).

11 See Hansen and Richard (1987).
12 See Gouriéroux and Monfort (2007).
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2|3 Application to option pricing

In our model, it is possible to show that, when 
the historical distribution of factors is a Gaussian 
mixture and the stochastic discount factor is 
exponential-affi ne, the risk-neutral distribution 
is unique and is also a mixture of Gaussian 
distributions. This result enables us, inter alia, 
to obtain an analytical and unique formula for 
the price of an equity option. Indeed, when the 
rate of return on the underlying asset is assumed 
to follow a mixture of Gaussian distributions 
at any date t and the stochastic discount 
factor is exponential-affi ne, the option pricing 
formula is shown to be a linear combination of 
Black and Scholes-type formulas. The price depends 
on the means and variances of the Gaussian 
distributions used in the mixture. In the Gaussian 
case, i.e. if we make the assumption of a single regime, 
we obtain the traditional Black and Scholes option 
pricing formulas (see Appendix 2 and Box 2). It is 
also possible to show that this formula can be applied 
to options with a maturity of over one period.

3| EXTREME EVENTS 
 AND PRICING: THE CASE 
 OF A EUROPEAN CALL OPTION

In this section, we show, using a numerical example, 
how incorporating extreme events (such as large 
variations in the return on risky assets) into a pricing 
model can have a signifi cant impact on the price of 
the asset that we are seeking to determine.

We have seen that the mixture of Gaussian 
distributions is better able to reproduce the high 
kurtosis and the negative skewness observed 
empirically with the series of rates of return on the 
CAC40. This result is also verifi ed in the risk-neutral 
world where the Gaussian or mixture of Gaussian 
nature of the factor distribution is preserved thanks 
to the exponential-affi ne form of the stochastic 
discount factor (see Boxes 1 and 2).

Let us consider a European CAC40 Index call 
option (observed over the period mentioned
in section 1|1), a residual maturity of one week and 
a constant  risk-free rate rƒ = 0,0007 (weekly basis). 
We compare the price obtained using the Black and 
Scholes model (see Box 1) with that corresponding 
to a mixture of two Gaussian distributions
(see Box 2). The results, presented in Table 3,
show that the Black and Scholes model,
by underestimating the frequency of extreme 
events, results in an overvaluation of at-the-money 
options (κ ≈ 1, the most traded options on the market) 
and an undervaluation of both in-the-money options 
(κ < 1) and out-of-the-money options (κ > 1, the least 
liquid options) (see Charts 3 and 4).

Chart 3
Black and Scholes (BS) price and Gaussian mixture, 
call option
(X-axis: relative strike; Y-axis: relative price call option)
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Chart 4
Relative price differential: BS price – Mixture price
 Mixture price
(X-axis: relative strike; Y-axis: relative pricing error)

-1.2

-0.8

-1.0

-0.6

-0.4

-0.2

0.2

0

0.4

0.85 0.90 0.95 1 1.05 1.10 1.15



ARTICLES
J. Idier, C. Jardet, G. Le Fol, A. Montort et F. Pegoraro: “Taking into account extreme events in European option pricing”

Banque de France • Financial Stability Review • No. 12 – Valuation and fi nancial stability • October 2008 47

Table 3

Call option
“in the 
money”

0.85 ≤ κ < 0.95

Call option
“at the 
money”

0.95 ≤ κ < 1.05

Call option
“out of the 

money”
1.05 ≤ κ < 1.15

BS price – Mixture price
Mixture price

-0.12% 3.76% -88.5%

13 A lag of 0.01 is used for each relative exercise price range.
14 See Bertholon, Monfort and Pegoraro (2006).

In this article, we put forward a European option pricing model capable of taking into account tail risk. 
The numerical examples show that a model based on an underestimation of the frequency of extreme 
events systematically results in an overvaluation of “at the money” options, the most traded on the market. 
Conversely, “at the money” and “out of the money” options (the less liquid) are undervalued.

For the sake of simplicity, we have used a static model with independent returns and a mixture
of two Gaussian distributions. A more realistic model would be a dynamic model14 in which the conditional 
time-dependent distribution would always be a Gaussian mixture but with time-dependent parameters. 
The effect of taking into account extreme events would then depend on the current and past environment 
in terms of returns and volatility. In this respect, the static model presented here may be considered
as reproducing an average effect.

The relative price differential (see Table 3)13 
between the price obtained with a mixture of 
Gaussian distributions and the price obtained 
using the Black and Scholes model is interpreted as 
the revaluation that occurs when tail risk is better 
taken into account in European call option pricing 
(move from a Black and Scholes-type model to a 
Gaussian mixture model). Price differentials are 
substantial in this example where the maturity 

is short. These prices differentials would be less 
signifi cant for longer maturities.
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APPENDIX 1

From the historical world to the risk-neutral world

The risk-neutral conditional probability distribution can generally be derived from the historical probability 
distribution and the specifi cation of the stochastic discount factor. More specifi cally, if ft(xt+1) denotes the 
historical conditional probability density function of the factor, i.e. the distribution of the factor observed in 
the “real” world, and )( 1+t

Q

t xf  the risk-neutral conditional probability density function of the factor, i.e. the 
distribution of the factor observed in a risk-neutral world, the move from the historical world to the risk-neutral 
world can be written as:

 )( 1+t

Q

t xf ),( 1+tt xf
)( 1,

1,

+

+
=

ttt

tt

ME

M
 (A1.1)

where Mt,t+1 is the stochastic discount factor.

If Pt
f denotes the price of the one period risk-free asset at date t and by applying the pricing formula (2) to this 

asset, we obtain:

 ( )f
tttt

f
t PMEP 11, ++= , (A1.2)

where Pt
f
+1 = 1.

If we defi ne ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=+ f

t

f
t

P

1
r 1 log  the risk-free rate between t and t+1 (known in t), we then have:

 
( ) )exp( 11,

f
tttt rME ++ −= . (A1.3)

By re-writing the pricing formula (2) using (A1.1) and (A1.3), we obtain:

( )11 )exp( ++−= t
Q
t

f
tt gErP f ,

this is the pricing formula in a risk-neutral world.
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APPENDIX 2

Price of a European call option with a one-period maturity

Let us consider the case of a European call option with a one-period maturity. 
t

t
t S

C
c =  denotes the relative

price of the option at date t (St is the price of the underlying asset and Ct the price of the option at date t). Its 

relative exercise price at t+1, denoted κ, is equal to 
tS

K=κ  where K is the exercise price at t+1. The relative 

price of the underlying asset at t+1 is equal to exp(xt+1)
1. The future cash fl ow generated by the option at t+1 

denoted gt+1, is therefore exp (xt+1) – κ if the option is exercised, 0 if not.

In other words, we have:

 ( ) ( )  .+

+++ −=−= κκ )exp (0,)exp (max 111 ttt xxg  (A2.1)

The relative price of the option at date t is then:

 ( ),+
++ −= ))(exp( 11, κttttt xMEc  (A2.2)

where Et(.) is the conditional expectation calculated using the historical distribution (Gaussian mixture). In 
the risk-neutral world, this is written:

 ( )+
+ −−= ))(exp()exp( 1 κt

Q

t
f

t xErc , (A2.3)

where r f is the risk-free interest rate between t and t+1 (known at t) and Et
Q (.) is the conditional expectation 

calculated using the risk-neutral distribution. It should be recalled that, under the model’s assumptions, the 
risk-neutral distribution is also a mixture of Gaussian processes.

By calculating the right-hand side of equation (A2.2), we show that the option pricing formula is a linear 
combination of Black and Scholes-type formulas. This formula depends on the means and variances of the 
Gaussian distributions used in the Gaussian mixture. In the Gaussian case, i.e. if we make the assumption of a 
single regime, we obtain the traditional Black and Scholes option pricing model (see Box 2). It is also possible 
to show that this formula can be applied to options with a maturity of over one period.

1 By defi nition ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= +

+

t

t
t

S

S
x 1

1 ln  where St is the price of the underlying asset at date t. 
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