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Strict stationarity testing and estimation of

explosive ARCH models

By Christian Francq∗

University Lille 3, EQUIPPE-GREMARS
and

By Jean-Michel Zakoïan∗

CREST and University Lille 3

This paper studies the asymptotic properties of the quasi-
maximum likelihood estimator of ARCH(1) models without strict
stationarity constraints, and considers applications to testing prob-
lems. The estimator is unrestricted, in the sense that the value of the
intercept, which cannot be consistently estimated in the explosive
case, is not fixed. A specific behavior of the estimator of the ARCH
coefficient is obtained at the boundary of the stationarity region, but
this estimator remains consistent and asymptotically normal in ev-
ery situation. The asymptotic variance is different in the stationary
and non stationary situations, but is consistently estimated, with the
same estimator, in both cases. Tests of strict stationarity and non
stationarity are proposed. Their behaviors are studied under the null
assumption and under local alternatives. The tests developed for the
ARCH(1) model are able to detect non-stationarity in more general
GARCH models. A numerical illustration based on stock indices is
proposed.

1. Introduction. Testing for strict stationarity is an important issue in
the context of financial time series. A standard assumption is that the prices
are non stationary while the returns (or log-returns) are stationary. Numer-
ous statistical tools, such as the unit root tests, have been introduced for test-
ing the non-stationarity of prices. For the log-returns, the most widely used
models are arguably the GARCH introduced by Engle (1982) and Bollerslev
(1986). No statistical tools are available for testing strict stationarity in the
GARCH framework. This is the main aim of this paper to develop such tools.
The problem is non standard because, contrary to stationarity in linear time

∗The authors are very grateful to Professor Y. Davydov and to Professor L. Horváth
for stimulating and instructive discussions on topics related to this paper.

AMS 2000 subject classifications: Primary 62M10; secondary 62F12, 62F05.
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2 C. FRANCQ AND J-M. ZAKOÏAN

series models, which solely depends on the lag polynomials, the strict sta-
tionarity condition for GARCH models has a non explicit form, involving the
distribution of the underlying independent and identically distributed (iid)
sequence.

The asymptotic properties of the quasi-maximum likelihood estimator
(QMLE) for classical GARCH models have been extensively studied; see
Berkes, Horváth and Kokoszka (2003), Francq and Zakoïan (2004) and the
references therein. For valid statistical inference based on those results, strict
stationarity must hold. Thus, from the point of view of the validity of the
asymptotic results for the QMLE, strict stationarity testing in GARCH mod-
els is also an important issue. Surprisingly, this issue has not been addressed
in the literature, to the best of our knowledge.

1.1. Modes of divergence in the non stationary case. The complexity
of the statistical problem arises from the specificities of the probabilistic
framework, even for the simplest GARCH model. To fix ideas, consider the
ARCH(1) model, given by

(1.1)

{

ǫt =
√
htηt, t = 1, 2, . . .

ht = ω0 + α0ǫ
2
t−1

with an initial value ǫ0, where ω0 > 0, α0 ≥ 0, and (ηt) is a sequence of
independent and identically distributed (iid) variables such that Eη1 = 0
and Eη2

1 = 1. The necessary and sufficient condition for the existence of a
strictly stationary solution to (1.1) is (by Nelson, 1990)

(1.2) γ0 < 0 (i.e. α0 < exp
{

−E log η2
1

}

),

where γ0 = E log(α0η
2
1). More precisely, if (1.2) holds we have

(1.3) ht − σ2
t → 0 almost surely as t→ ∞,

where

(1.4) σ2
t = lim

n→∞
↑ σ2

t,n, σ2
t,n = ω0

(

1 +
n−1
∑

k=1

αk
0η

2
t−1 . . . η

2
t−k

)

.

Let us now turn to the nonstationary case, for which it is necessary to con-
sider separately γ0 > 0 and γ0 = 0. Under the assumption

(1.5) γ0 > 0 (i.e. α0 > exp
{

−E log η2
1

}

),
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ht → ∞ almost surely as t → ∞, as shown by Nelson (1990). In this case,
the increasing sequence σ2

t,n goes to infinity almost surely as t→ ∞, by the
Cauchy root test. The case γ0 = 0 is much more intricate. By the Chung-
Fuchs theorem, it can be seen that σ2

t,n goes to infinity almost surely as
t → ∞. However, (1.3) may not hold when γ0 = 0. Actually, Klüppelberg,
Lindner and Maller (2004) (see also Goldie and Maller (2000)) showed that

(1.6) when γ0 = 0, ht → ∞ in probability

instead of almost surely in the case γ0 > 0 1. The astonishing difficulties
encountered in the case γ0 = 0 are related to the fact that the sequence
ht = σ2

t,t + αt
0η

2
t−1 . . . η

2
1ǫ

2
0 does not increase with t.

1.2. The statistical problem. Denote by θ = (ω,α)′ the ARCH(1) param-
eter and define the QMLE as any measurable solution of

(1.7) θ̂n = (ω̂n, α̂n)′ = arg min
θ∈Θ

1

n

n
∑

t=1

ℓt(θ), ℓt(θ) =
ǫ2t

σ2
t (θ)

+ log σ2
t (θ),

where Θ is a compact subset of (0,∞)2, and σ2
t (θ) = ω+αǫ2t−1 for t = 1, . . . , n

(with an initial value for ǫ20). The rescaled residuals are defined by η̂t = ηt(θ̂n)
where ηt(θ) = ǫt/σt(θ) for t = 1, . . . , n.

To construct a test of the strict stationarity assumption, we will establish
the asymptotic distribution, under (1.2), of the statistic

γ̂n = log α̂n +
1

n

n
∑

t=1

log η̂2
t .

This will be accomplished by deriving the joint distribution of
(α̂n,

1
n

∑n
t=1 log η̂2

t ), under the assumptions used to prove the asymptotic

normality of the QMLE θ̂n.
To study the asymptotic power of the test, it is necessary to analyze the

asymptotic behavior of the QMLE when γ0 ≥ 0. Jensen and Rahbek (2004a,
2004b) were the first to establish an asymptotic theory for estimators of
non-stationary GARCH. 2 They considered a constrained QMLE of α0 (in
the sense that the value of the intercept is fixed) which is consistent in the
non stationary case, but is inconsistent in the stationary case. We will estab-
lish the strong consistency and asymptotic normality of the (unconstrained)

1Klüppelberg, Lindner and Maller (2004) noted that the arguments given by Nelson
(1990) for the a.s. convergence are in failure when γ0 = 0.

2See Linton, Pan and Wang (2009) for extensions in the case of non iid errors.
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QMLE of α0, the only component which matters for our testing problem,
when γ0 > 0. It turns out that, contrary to the strict stationarity case, the
asymptotic distribution of α̂n is extremely simple, and is given by

√
n (α̂n − α0)

d→ N
{

0, (κη − 1)α2
0

}

, as n→ ∞

where
d→ stands for the convergence in distribution. When γ0 = 0, the QMLE

of α0 will be shown to be weakly consistent with the same asymptotic normal
distribution as in the case γ0 > 0. The asymptotic variances of α̂n when
γ0 ≥ 0 and when γ0 < 0 do not coincide, but we propose an estimator which
is consistent in both situations. This is in accordance with similar results for
autoregressive models with random coefficients derived by Aue and Horváth
(2009).

The rest of the paper is organized as follows. Section 2 is devoted to the
asymptotic properties of the QMLE. In Section 3, we first consider the prob-
lem of testing the value of α without any stationarity restriction. Then, we
consider strict stationarity testing. The asymptotic distributions of two tests
are studied when the null assumption is either the stationarity or the non sta-
tionarity. Section 4 is devoted to a power study. We start by establishing the
Local Asymptotic Normality (LAN) of the ARCH(1) model without station-
arity. The Fisher information matrix is degenerate in the case γ0 ≥ 0. The
LAN property is used to derive the local asymptotic power of the proposed
tests. Optimality issues are discussed. Necessary and sufficient conditions on
the noise density are derived for the tests to be uniformly locally asymptot-
ically most powerful. We also consider testing stationarity in more general
GARCH-type models. Numerical illustrations are provided in Section 6. In
particular, the stationarity of eleven major stock returns is analyzed. Proofs
and complementary results, in particular the inconsistency of the constrained
estimators in the stationary case, are collected in Section 7.

2. Asymptotic properties of the QMLE. In this paper we consider
the standard QMLE, which is the commonly used estimator for GARCH
models.

2.1. Consistency and asymptotic normality of α̂n. The following result
completes those already established in the stationary case, which we recall for
convenience. The asymptotic distribution in the case γ0 = 0 will be treated
separately.

Theorem 2.1. For the ARCH(1) model (1.1), let the QMLE defined in
(1.7).
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i) When γ0 < 0 and P (η2
t = 1) < 1

α̂n → α0 and ω̂n → ω0 a.s. as n→ ∞.

ii) When γ0 > 0,
α̂n → α0 a.s. as n→ ∞.

iii) When γ0 = 0,

α̂n → α0 in probability as n→ ∞.

iv) When γ0 < 0, κη = Eη4
1 ∈ (1,∞) and θ0 = (ω0, α0)

′ belongs to the

interior
◦
Θ of Θ,

(2.1)
√
n
(

θ̂n − θ0
)

d→ N
{

0, (κη − 1)J−1
}

, as n→ ∞,

and

(2.2) J = E





1
(ω0+α0ǫ21)2

ǫ21
(ω0+α0ǫ21)

2

ǫ21
(ω0+α0ǫ21)2

ǫ41
(ω0+α0ǫ21)

2



 .

v) When γ0 > 0, κη ∈ (1,∞) and θ0 ∈
◦
Θ,

(2.3)
√
n (α̂n − α0)

d→ N
{

0, (κη − 1)α2
0

}

, as n→ ∞.

To obtain the asymptotic distribution of α̂n in the case γ0 = 0, we need
an additional assumption on the distribution of η2

t . Let Zt = α0η
2
t . Note

thatγ0 = E logZt = 0 entails E(1 +Zt−1 +Zt−1Zt−2 + · · ·+Zt−1 . . . Z1) ≥ t
by Jensen’s inequality. We introduce the assumption

A: when t tends to infinity,

E

(

1

1 + Z1 + Z1Z2 + · · · + Z1 . . . Zt−1

)

= o

(

1√
t

)

.

Note that A is obviously satisfied when Zt = 1 a.s., since the expectation is
then equal to 1/t.

Theorem 2.2. Suppose that γ0 = 0, θ0 ∈ ◦
Θ, κη ∈ (1,∞) and A is

satisfied. Then the QMLE α̂n is asymptotically normal and its asymptotic
distribution is given by (2.3).
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2.2. Estimator of the asymptotic variance of α̂n with or without station-
arity. In view of (2.1)-(2.2), when γ0 < 0 the asymptotic distribution of the
QMLE α̂n of θ0 is given by

(2.4)
√
n (α̂n − α0)

d→ N {0, (κη − 1)ξ} , as n→ ∞,

with

(2.5) ξ =
µ(0, 2)

µ(0, 2)µ(2, 2) − µ2(1, 2)
, µ(p, q) = E

ǫ2p
1

(ω0 + α0ǫ21)
q
.

It is obvious to show that the empirical estimator of ξ

ξ̂n =
µ̂n(0, 2)

µ̂n(0, 2)µ̂n(2, 2) − µ̂2
n(1, 2)

, where µ̂n(p, q) =
1

n

n
∑

t=1

ǫ2p
t

(ω̂n + α̂nǫ2t )
q
,

is strongly consistent in the stationary case γ0 < 0. The following result
shows that this estimator is also a consistent estimator of the asymptotic
variance of α̂n in the nonstationary case γ0 ≥ 0.

Theorem 2.3. Assume θ0 ∈ Θ, κη ∈ (1,∞) and let κ̂η = n−1∑n
t=1 η̂

4
t ,

where η̂t = ǫt/σt(θ̂n).

i) When γ0 < 0, we have κ̂η → κη and ξ̂n → ξ a.s as n→ ∞.

ii) When γ0 > 0, we have κ̂η → κη and ξ̂n → α2
0 a.s.

iii) When γ0 = 0, we have κ̂η → κη and, if A is satisfied, ξ̂n → α2
0 in

probability.

In any case, (κ̂η − 1)ξ̂n is a consistent estimator of the asymptotic variance
of the QMLE of α0.

The consequence of Theorem 2.3, from a practical point of view, is ex-
tremely important. It means that we can get confidence intervals, or tests
for α0 without assuming stationarity/nonstationarity.

3. Testing. Before considering strict stationarity testing, we start with
tests on the parameter α.

3.1. Testing the ARCH coefficient. Consider a testing problem of the
form

(3.1) H0 : α0 ≤ α∗ against H1 : α0 > α∗,

where α∗ is a given positive number. A value of particular interest is α∗ = 1,
because Eǫ2t <∞ if and only if α0 < 1. Note however that we do not impose
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any constraint on α∗ so that some values of α0 ≤ α∗ may correspond to
nonstationary ARCH models. A direct consequence of Theorems 2.1-2.2-2.3
is the following result, in which Φ denotes the N (0, 1) cumulative distribution
function. Let α ∈ (0, 1).

Corollary 3.1. Assume that θ0 ∈ ◦
Θ and the assumptions of Theorem

2.3 hold. For the testing problem (3.1), the test defined by the critical region

(3.2) Cα∗
=







Tα∗
n :=

√
n(α̂n − α∗)
√

(κ̂η − 1)ξ̂n

> Φ−1(1 − α)







has the asymptotic significance level α and is consistent.

Hence, assumption H0 can be tested without knowing if the observations
are generated by a stationary or an explosive ARCH. However, it is of interest
to test if a given series is stationary or not. This cannot be done by testing
an assumption of the form (3.1).

3.2. Strict stationarity testing. Consider the strict stationarity testing
problems

(3.3) H0 : γ0 < 0 against H1 : γ0 ≥ 0,

and

(3.4) H0 : γ0 ≥ 0 against H1 : γ0 < 0,

where γ0 = E log
(

α0η
2
1

)

. These hypotheses are not of the form (3.1)
because γ0 not only depends on α0, but also on the unknown moment
ζ := E log η2

t ∈ R ∪ {−∞}. Let ζ̂n = n−1∑n
t=1 log η̂2

t . The following re-
sult gives the asymptotic joint distribution of ζ̂n and α̂n, and the asymptotic
distribution of a consistent estimator of γ0, under either the stationarity or
the nonstationarity conditions.

Theorem 3.1. Assume that Eη4
1 ∈ (1,∞), E

∣

∣log η2
1

∣

∣

2
<∞ and θ0 ∈

◦
Θ.

i) If the stationarity condition γ0 < 0 holds, as n→ ∞,
(3.5)
√
n

(

ζ̂n − ζ

θ̂n − θ0

)

d→ N
{

0,Σ :=

(

σ2
u + σ2

v + 2σuv −(σ2
v + σuv)θ

′
0

−(σ2
v + σuv)θ0 σ2

vJ
−1

)}

,
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where vt = 1 − η2
t , σ

2
v = Ev2

t , ut = log η2
t − ζ, σ2

u = Eu2
t , σuv =

Cov(ut, vt) and J is given by (2.2). Moreover

(3.6) γ̂n := ζ̂n + log α̂n → γ0 in probability as n→ ∞

and

(3.7)
√
n(γ̂n − γ0)

d→ N
(

0, σ2
u + σ2

v

{

ξ

α2
0

− 1

})

as n→ ∞.

ii) If γ0 > 0, or if γ0 = 0 and A holds, then
(3.8)
√
n

(

ζ̂n − ζ
α̂n − α0

)

d→ N
{

0,

(

σ2
u + σ2

v + 2σuv −(σ2
v + σuv)α0

−(σ2
v + σuv)α0 σ2

vα
2
0

)}

.

Moreover (3.6) holds and we have

(3.9)
√
n(γ̂n − γ0)

d→ N
(

0, σ2
u

)

as n→ ∞.

It is interesting to note that the asymptotic distribution of ζ̂n is the same
in the cases γ0 < 0 and γ0 ≥ 0 and that this distribution is independent of
θ0.

Let σ̂2
u = n−1∑n

t=1

(

log η̂2
t

)2 − ζ̂2
n.

Corollary 3.2. Let the assumptions of Theorem 3.1 hold. For the test-
ing problem (3.3), the test defined by the critical region

(3.10) CST =

{

Tn :=
√
n
γ̂n

σ̂u
> Φ−1(1 − α)

}

has its asymptotic significance level bounded by α, has the asymptotic prob-
ability of rejection α under γ0 = 0, and is consistent for all γ0 > 0.

For the testing problem (3.4), the test defined by the critical region

(3.11) CNS =
{

Tn < Φ−1(α)
}

has its asymptotic significance level bounded by α, has the asymptotic prob-
ability of rejection α under γ0 = 0, and is consistent for all γ0 < 0.

4. Asymptotic local powers. The section investigates the asymptotic
behavior under local alternatives of the tests (3.2) on α0 and of the strict
stationarity tests (3.10) and (3.11). We first establish the LAN of the ARCH
model without imposing any stationarity constraint. This LAN property will
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be used to derive the asymptotic properties of our tests, but the result is of
independent interest (see van der Vaart (1998) for a general reference on LAN
and its applications, and see Drost and Klaassen (1997), Drost, Klaassen and
Werker (1997) and Ling and McAleer (2003) for applications to GARCH and
other stationary processes).

4.1. LAN without stationarity constraint. Assume that ηt has a density
f with third-order derivatives, that

(4.1) lim
|y|→∞

y2f ′(y) = 0,

and that for some positive constants K and δ

(4.2) |y|
∣

∣

∣

∣

f ′

f
(y)

∣

∣

∣

∣

+ y2

∣

∣

∣

∣

∣

(

f ′

f

)′
(y)

∣

∣

∣

∣

∣

+ y2

∣

∣

∣

∣

∣

(

f ′

f

)′′
(y)

∣

∣

∣

∣

∣

≤ K
(

1 + |y|δ
)

,

(4.3) E |η1|2δ <∞.

These regularity conditions are satisfied for numerous distributions, in par-
ticular for the gaussian distribution with δ = 2, and entail the existence of
the Fisher information for scale

ιf =
∫ {1 + yf ′(y)/f(y)}2 f(y)dy <∞.

Given the initial value ǫ0, the density of the observations (ǫ1, . . . , ǫn) satisfy-

ing (1.1) is given by Ln,f (θ0) =
∏n

t=1 σ
−1
t (θ0)f

{

σ−1
t (θ0)ǫt

}

. Around θ0 ∈
◦
Θ,

let a sequence of local parameters of the form θn = θ0 + τn/
√
n, where

(τn) is a bounded sequence of R
2. Without loss of generality, assume that

n is sufficiently large so that θn ∈ Θ. Under the strict stationarity condi-
tion γ0 < 0, Drost and Klaassen (1997) showed that the log-likelihood ratio
Λn,f (θn, θ0) = logLn,f (θn)/Ln,f (θ0) satisfies the LAN property
(4.4)

Λn,f (θn, θ0) = τ ′nSn,f (θ0) −
1

2
τ ′nIf τn + oPθ0

(1), Sn,f(θ0)
d−→ N {0,If}

under Pθ0 as n → ∞. The following proposition shows that (4.4) holds
regardless of γ0.

Proposition 4.1. When θ0 ∈ ◦
Θ, under (4.1)-(4.3) we have the LAN

property (4.4). When γ0 ≥ 0, the Fisher information is the degenerate matrix

(4.5) If =
ιf
4

(

0 0

0 α−2
0

)
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4.2. Local asymptotic powers of the tests. Because the information matrix
(4.5) is singular, when γ0 ≥ 0 the LAN property does not entail the convo-
lution theorem of Hájek (see Theorem 2.2 of Drost and Klaassen (1997)).
The LAN property, with the help of Le Cam’s third lemma, allows however
to easily compute local asymptotic powers of tests. In view of Corollary 3.2,

lim
n→∞

Pθ0

(

CST
)

= lim
n→∞

Pθ0

(

CNS
)

= α,

when θ0 = (ω0, α0)
′ is such that α0 = exp(−E log η2

t ). Denote by Pn,τ ,
where τ = (τ1, τ2)

′, the distribution of the observations (ǫ1, . . . , ǫn) when the
parameter is of the form

(

ω0 + τ1/
√
n, exp(−E log η2

t ) + τ2/
√
n
)′

. We should
use the notation (ǫ1,n, . . . , ǫn,n) instead of (ǫ1, . . . , ǫn) because the parameter
varies with n, but we will avoid this heavy notation. Local alternatives for
the CST-test (resp. the CNS-test) are obtained for τ2 > 0 (resp. τ2 < 0).

Proposition 4.2. Under the assumptions of Theorem 3.1 and Propo-
sition 4.1, the local asymptotic powers of the strict stationarity tests (3.10)
and (3.11) are given by

(4.6) lim
n→∞Pn,τ

(

CST
)

= Φ

{

τ2
α0σu

− Φ−1(1 − α)

}

and

lim
n→∞

Pn,τ

(

CNS
)

= Φ

{

Φ−1(α) − τ2
α0σu

}

.

We now compute the local asymptotic power of the test defined by (3.2).
We thus consider a sequence of local parameters of the form θα∗

n = (ω0, α
∗)′+

τ/
√
n where τ = (τ1, τ2)

′ with τ2 > 0. We denote by Pα∗
n,τ the distribution of

the observations under the assumption that the ARCH(1) parameter is θα∗
n .

Proposition 4.3. Let the assumptions of Proposition 4.1 and Theorem
2.3 be satisfied. For testing (3.1), the test defined by the rejection region (3.2)
has the local asymptotic power

(4.7) lim
n→∞

Pα∗
n,τ

(

Cα∗)

= Φ







τ2
√

(κη − 1)ξ0
− Φ−1(1 − α)







,

where ξ0 = α∗2 when E log α∗η2
1 ≥ 0 and ξ0 = ξ defined by (2.5) when

E logα∗η2
1 < 0.
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4.3. Optimality issues. Let T2 be a subset of R containing 0. When
γ0 ≥ 0, the relations (4.4)-(4.5) imply that the limiting distribution of
Λn,f (θ0 + τ/

√
n, θ0) is that of the log-likelihood ratio in the statistical

model N (τ2, 4α
2
0/ιf ) of parameter τ2. In other words, the so-called local

experiments {Ln,f (θ0 + (0, τ2)
′/
√
n), τ2 ∈ T2} converge to the gaussian ex-

periment
{N (

τ2, 4α
2
0/ιf

)

, τ2 ∈ T2

}

(see van der Vaart (1998) for details
about the notion of statistical experiments). Testing α0 ≤ exp(−E log η2

1)
against α0 > exp(−E log η2

1) corresponds to testing τ2 ≤ 0 against τ2 > 0
in the limiting experiment. The uniformly most powerful test based on
X ∼ N (

τ2, 4α
2
0/ιf

)

is the Neyman-Pearson test of rejection region C =
{

X/
√

4α2
0/ιf > Φ−1(1 − α)

}

. This optimal test has the power

(4.8) Pτ2(C) = Φ





τ2
√

4α2
0/ιf

− Φ−1(1 − α)



 .

A test of (3.10) whose level and power jointly converge to α and to the bound
in (4.8), respectively, will be called asymptotically optimal. A similar result
holds for the dual testing problem (3.11). For the testing problem (3.1), the
optimal local asymptotic power is

(4.9) Φ





τ2
√

4ξ0/ιf
− Φ−1(1 − α)



 ,

where ξ0 is defined in Proposition 4.3.

Proposition 4.4. Under the assumptions of Proposition 4.2, the strict
stationarity tests (3.10) (and/or (3.11)) is asymptotically optimal if and only
if

(4.10) f(y) =
1

2
√

|δ|πe−δ/4
e

(log |y|)2
δ y−2, δ < 0.

The test (3.2) is optimal for the testing problem (3.1) if and only if

(4.11) f(y) =
aa

Γ(a)
e−ay2 |y|2a−1, a > 0, Γ(a) =

∫ ∞

0
ta−1e−tdt.

Figure 1 displays the densities (4.11) and (4.10) for different values of a
and δ. Note that the gaussian density is obtained in (4.11) for a = 1/2.
The result was expected because the Cα∗

-test is based on the QMLE of
α0, and the QMLE is efficient in the gaussian case. Note however that the
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Fig 1. Densities (4.11) of ηt for which the test (3.2) on α0 is asymptotically optimal
(left panel) and densities (4.10) for which the strict stationarity tests (3.10) and
(3.11) are asymptotically optimal (right panel).
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Fig 2. Optimal asymptotic power (in full line) and local asymptotic power of the
strict stationarity test (3.10) (in dotted line) when ηt follows a standardized Student
distribution with ν degrees of freedom. .



INFERENCE OF EXPLOSIVE ARCH MODELS 13

0 20 40 60 80 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ν=4.1

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ν=6

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ν=10

Fig 3. Optimal asymptotic power (in full line) and local asymptotic power of the
test (3.1) (in dotted line) for testing α0 < α∗ where α∗ = 2 exp(−ζ) when ηt follows
a standardized Student distribution with ν degrees of freedom.

Cα∗
-test is also asymptotically optimal when ηt follows some non gaussian

distributions. The strict stationarity tests are not optimal in the gaussian
case. For densities which do not belong to the class (4.10), there is a price
to pay for the estimation of ζ and/or for using an estimator of α0 which
is asymptotically less accurate than the MLE. This point is illustrated by
Figures 2–3, in which the local asymptotic powers of the different tests (in
dotted lines) are compared to the optimal asymptotic powers given by (4.8)
and (4.9). In these two figures, the noise ηt is assumed to satisfy a Student
distribution with ν > 2 degrees of freedom, standardized in such a way that
Eη2

t = 1. Figure 3 considers tests of the null assumption α0 ≤ α∗, where α∗ =
2exp(−E log η2

t ) is such that γ0 = 0 for this particular distribution. It can
be seen, in Figure 3, that the local asymptotic power is far from the optimal
power when ν is small, but the discrepancy decreases as ν increases. By
contrast, the discrepancy increases with ν in Figure 2. This is not surprising
since the normal distribution belongs to the class defined by (4.11), but not
to that defined by (4.10).

5. Testing non stationarity in non linear GARCH. In this section
we study the behaviour of the stationarity tests of Section 3.2 when the data
are generated by the following GARCH-type model:

(5.1)

{

ǫt =
√
htηt, t = 1, 2, . . .

ht = ω(ηt−1) + a(ηt−1)ht−1

with an initial value h0, under the same assumptions on (ηt) as in Model
(1.1). In this model, ω : R → [ω,+∞), for some ω > 0, and a : R → R

+.
This model belongs to the so-called class of augmented GARCH mod-
els (see Hörmann, 2008) and encompasses many classes of GARCH(1,1)



14 C. FRANCQ AND J-M. ZAKOÏAN

models introduced in the literature: for instance, with constant ω(·), the
standard GARCH(1,1) when a(x) = α0x

2 + β0; the GJR model when
a(x) = α1(max{x, 0})2 + α2(min{x, 0})2 + β0. It can be shown that, if
E log+ a(ηt) <∞,

(5.2) Γ := E log a(ηt) < 0

is a necessary and sufficient condition for the strict stationarity of this model
(see e.g. Francq and Zakoïan, 2006a). Our aim is to test strict stationarity,
without estimating the non parametric Model (5.1). We shall see that, sur-
prisingly, the tests developed for the standard ARCH(1) model still work in
this framework. Recall that the tests are founded on the statistics

γ̂n = log α̂n +
1

n

n
∑

t=1

log η̂2
t , σ̂2

u =
1

n

n
∑

t=1

(

log η̂2
t

)2
−
(

1

n

n
∑

t=1

log η̂2
t

)2

where α̂n denotes the QMLE of the ARCH coefficient in an ARCH(1) model
and the squared rescaled residuals are given by

η̂2
t =

ǫ2t
ω̂n + α̂nǫ

2
t−1

, t = 1, . . . , n.

Proposition 5.1. Let ǫ1, . . . , ǫn denote observations from Model (5.1).
Assume 0 < E| log η2

1|2 < ∞, E| log a(η1)|2 < ∞, E
{

a(η1)/η
2
1

}

< ∞, and
E|ω(η1)|s <∞ for some s > 0.

If Γ > 0 then

γ̂n → Γ, and σ̂2
u → Var log

{

η2
1

a(η0)

η2
0

}

> 0, a.s.

If Γ < 0 then, under regularity conditions implying the strong consistency
of θ̂n to the unique pseudo-true value

(ω∗, α∗)′ = arg min
θ∈Θ

E

{

ǫ2t
ω + αǫ2t−1

+ log
(

ω + αǫ2t−1

)

}

and if Var log ǫ2t <∞, we have, for some Γ∗,

γ̂n → Γ∗ < 0, and σ̂2
u → Var log

{

ǫ2t
ω∗ + α∗ǫ2t−1

}

> 0, a.s.

Thus, the (non)stationarity tests developed in the ARCH(1) case lead,
asymptotically, to the right decision, even if the ARCH(1) model is misspec-
ified (at least for the augmented GARCH(1,1), except in the limit case where
Γ = 0). More precisely, we have the following result.
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Corollary 5.1. Let the assumptions of Proposition 5.1 hold.
If Γ > 0 then

P (CNS) → 0 and P (CST) → 1

where CST and CST are defined in Corollary 3.2.
If Γ < 0 then

P (CST) → 0 and P (CNS) → 1.

6. Numerical illustrations. Before illustrating our asymptotic results
for the tests, we study the behaviour of the QMLE in finite samples.

6.1. Inconsistency of ω̂n in the non stationary case. The asymptotic be-
havior of the score leads us to think that the QMLE of ω0 is inconsistent
without the strict stationarity condition. A detailed discussion is provided in
Section 7.3. Figure 4 presents some numerical evidence on the performance
of the QMLE in finite samples through a simulation study. In all experi-
ments, we use the sample size n = 200 and n = 4, 000 with 100 replications.
The data of the top panel are generated from the second-order stationary
ARCH(1) model (1.1) with the true parameter θ0 = (1, 0.95)′. The data of
the middle panel are generated from the strictly stationary ARCH(1) model
with θ0 = (1, 1.5)′ and infinite variance. In those two panels the results are
very similar, confirming that the second-order stationarity condition is not
necessary for the use of the QMLE. The bottom panel, obtained for the ex-
plosive ARCH(1) model with θ0 = (1, 4)′, confirms the asymptotic results
for the QMLE of α0. It also illustrates the impossibility of estimating the pa-
rameter ω0 with a reasonable accuracy under the nonstationarity condition
(1.5). The results concerning ω0 even worsen when the sample size increases.

6.2. Finite sample properties of the tests.

6.2.1. On simulated data. To assess the performance of the tests devel-
oped in Section 3, we simulated N = 1, 000 independent trajectories of size
n = 100, n = 500 and n = 1, 000 of an ARCH(1) model. We used different
values of α0 and a double Gamma distribution for ηt, with shape parameter
k = 3 and scale parameter s = 1/2

√
3. The density of that distribution is

f(η) = ηk−1/{2(k − 1)!}e−|η|/s, where k and s are such that Eη2
0 = 1 and

such that the assumptions of Proposition 5.1 are satisfied with a standard
GARCH(1,1) volatility.

The results concerning the test (3.2) on α0 are presented in Tables 1-2.
With the density f , we have γ0 = 0 for α0 = 1.895. It has to be noted that
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Fig 4. Boxplots of estimation errors for the QMLE of the parameters ω0 and α0 of
an ARCH(1), with ηt ∼ N (0, 1).
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Table 1

Relative frequency of rejection (in %) for the test (3.2) of the null hypothesis
H0 : α0 ≤ 1 against H1 : α0 > 1 at the nominal level α = 5% when the errors

follow a double Gamma distribution.

α0 0.8 0.9 0.95 1 1.1 1.2 1.3
n = 100 0.0 0.4 1.2 2.3 7.7 17.8 32.9
n = 500 0.0 0.2 0.8 2.4 22.8 66.9 90.8
n = 1, 000 0.0 0.0 0.7 4.9 38.9 88.6 99.4

Table 2

As Table 1, but for testing the null hypothesis H0 : α0 ≤ 3 against H1 : α0 > 3.

α0 2.8 2.9 2.95 3 3.1 3.2 3.3
n = 100 0.4 1.3 1.4 2.5 4.0 8.9 12.5
n = 500 0.1 0.5 1.9 3.5 10.0 28.5 47.9
n = 1, 000 0.0 0.4 1.0 5.2 19.7 46.6 78.6

the test behaves similarly when the value tested corresponds to a stationary
solution (Table 1) or to a non stationary process (Table 2).

We now illustrate the behavior of the strict stationarity tests (3.10) and
(3.11), through simulations of ARCH(1) models with values of α0 corre-
sponding to γ0 < 0 (α0 ∈ {1.6, 1.7, 1.8}), γ0 = 0 (α0 = 1.895) and γ0 > 0
(α0 ∈ {2, 2.1, 2.2}). Tables 3-4 show that, as expected, the frequency of rejec-
tion of the CST-test increases with γ0 while, obviously, that of the CNS-test
decreases. The rejection frequencies of the two tests approach the nominal
level when γ0 = 0 and n increases.

Now consider testing strict stationarity in a GARCH(1,1) model using
the tests developed for the ARCH(1). Tables 5-6 confirm the theoretical
result of Section 5. More precisely, for n sufficiently large, the tests give
the right conclusion when Γ < 0 and Γ > 0. Note that when Γ = 0 the
rejection frequencies are far from the nominal 5% level corresponding to an
ARCH(1). This is not surprising since, except in the ARCH(1) case, the

Table 3

Relative frequency of rejection of the stationarity hypothesis H0 : γ0 < 0 of the
test (3.10) at the nominal level α = 5% in the ARCH(1) case. The parameter

α0 = 1.895 corresponds to γ0 = 0.

α0 1.6 1.7 1.8 1.895 2 2.1 2.2
n = 100 0.2 1.4 2.9 6.4 11.8 21.3 33.8
n = 500 0.0 0.0 0.6 4.7 25.0 57.4 83.4
n = 1, 000 0.0 0.0 0.3 5.9 38.2 82.2 98.3
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Table 4

As Table 3, but for testing the nonstationarity hypothesis H0 : γ0 ≥ 0 with the
test (3.11).

α0 1.6 1.7 1.8 1.895 2 2.1 2.2
n = 100 42.1 28.4 17.1 11.6 5.5 2.1 0.8
n = 500 90.0 61.4 23.8 6.7 0.9 0.0 0.0
n = 1, 000 99.3 86.9 39.8 5.5 0.3 0.0 0.0

Table 5

As Table 3, but for standard GARCH(1,1) models with β0 = 0.8. The parameter
α0 = 0.226 corresponds to Γ = 0.

α0 0.1 0.15 0.2 0.226 0.35 0.4 0.5
n = 100 0.0 0.0 0.0 0.0 0.0 0.0 0.6
n = 500 0.0 0.0 0.0 0.0 1.6 49.9 96.2
n = 1, 000 0.0 0.0 0.0 0.0 55.1 96.0 99.8

asymptotic relative frequencies of rejection are unknown under Γ = 0.

6.2.2. On real data. The strict stationarity tests were then applied to
the daily returns of 11 major stock market indices. We considered the CAC,
DAX, DJA, DJI, DJT, DJU, FTSE, Nasdaq,3 Nikkei, SMI and SP500, from
January 2, 1990, to January 22, 2009, except for the indices for which such
historical data do not exist. Table 7 displays the test statistics Tn computed
on each series. Note that, as n→ ∞,

Tn =
√
n
γ̂n − γ0

σ̂u
+

√
n
γ0

σ̂u
→ −∞

in probability when γ0 < 0, and Tn → +∞ in probability when γ0 > 0.
Because the values of Tn given in Table 7 are very small, a nonstationary
augmented GARCH(1,1) model is not plausible, for any of these series.

3 Since the Nasdaq index level was halved on January 3, 1994, one outlier has been
eliminated for this series.

Table 6

As Table 4, but for testing the nonstationarity hypothesis H0 : Γ ≥ 0 with the test
(3.11).

α0 0.1 0.15 0.2 0.226 0.35 0.4 0.5
n = 100 100.0 100.0 98.5 95.3 26.6 10.7 2.9
n = 500 100.0 100.0 100.0 93.9 1.1 0.2 0.1
n = 1, 000 100.0 100.0 100.0 89.1 0.5 0.1 0.0
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Table 7

Test statistic Tn of the strict stationarity tests (3.10) and (3.11). The test
statistic is the realization of a random variable which is asymptotically N (0, 1)
distributed when γ0 = 0, tends to −∞ under the strict stationarity hypothesis

γ0 < 0, tends to +∞ when γ0 > 0.

CAC DAX DJA DJI DJT DJU FTSE Nasdaq Nikkei SMI SP500

-86.1 -79 -80.8 -78.7 -87.2 -69.3 -75.3 -81.4 -86.7 -71.5 -80.8

7. Proofs and complementary results.

7.1. Asymptotic behaviors of (ht). As noted in the introduction, when
γ0 6= 0 the asymptotic behavior of the sequences (ht) (defined by (1.1)) and
(σ2

t ) (defined by (1.4)) is the same and is easily obtained by the Cauchy rule.
When γ0 = 0 the asymptotic behavior of σ2

t can be obtained by the Chung-
Fuchs theorem. The behavior of ht is different in this case and is described
in the result below.

Proposition 7.1. For the ARCH(1) model (1.1), the following proper-
ties hold:

i) When γ0 > 0, ht → ∞ a.s. at an exponential rate:

for any ρ ∈ (e−γ0 , 1), ρtht → ∞ and ρtǫ2t → ∞ a.s. as t→ ∞.

ii) (Klüppelberg, Lindner and Maller (2004))
When γ0 = 0, ht → ∞ and ǫ2t → ∞ in probability.

iii) Let ψ be a decreasing bijection from (0,∞) to (0,∞) such that Eψ(ǫ21) <
∞. When γ0 = 0,

(7.1)
1

n

n
∑

t=1

ψ(ǫ2t ) → 0 and
1

n

n
∑

t=1

ψ(ht) → 0 in L1 as n→ ∞.

Proof. To prove i) we note that

ht = ω0 + α0η
2
t−1ht−1 = ω0

{

1 +
t−1
∑

i=1

αi
0η

2
t−1 . . . η

2
t−i

}

+ αt
0η

2
t−1 . . . η

2
1ǫ

2
0

≥ ω0

t−1
∏

i=1

α0η
2
i ,(7.2)
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Thus, for any constant ρ ∈ (e−γ0 , 1), we have

lim inf
t→∞

1

t
log ρtht ≥ lim

t→∞
1

t

{

log ρω0 +
t−1
∑

i=1

log ρα0η
2
i

}

= E log ρα0η
2
1 = log ρ+ γ0 > 0.

It follows that log ρtht, and hence ρtht, tends to +∞ a.s as n → ∞.
For any real-valued function f , let f+(x) = max{f(x), 0} and f−(x) =
max{−f(x), 0}, so that f(x) = f+(x) − f−(x). Since E log+ η2

1 ≤ Eη2
1 = 1,

we have E| log η2
1 | = ∞ if and only if E log η2

1 = −∞. Thus γ0 > 0 implies
E| log η2

1| < ∞, which entails that log η2
t /t → 0 a.s. as t → ∞. Therefore,

lim inft→∞ t−1 log ρtη2
t ht ≥ E log ρα0η

2
1 > 0, and ρtǫ2t = ρtη2

t ht → +∞ a.s.
by already given arguments.

The proof of ii) follows from Klüppelberg et al. (2004). Their condi-
tion E

∣

∣log λε21
∣

∣ < ∞ becomes in our notations E
∣

∣log α0η
2
1

∣

∣ < ∞, and this
condition is satisfied because E(log α0η

2
1)

+ − E(log α0η
2
1)

− = γ0 = 0 and
E(log α0η

2
1)

+ ≤ α0.
To prove iii) note that γ0 ≥ 0 implies α0 ≥ exp{− logEη2

1} = 1, by
Jensen’s inequality. Thus ht > ǫ2t−1 and ψ(ht) < ψ(ǫ2t−1). Therefore, the
second convergence in (7.1) will follow from first convergence. It suffices to
consider the case ǫ0 = 0 and to show that Eψ(ǫ2t ) → 0 as t → ∞. Note
that, even if ǫ2t does not increase with probability one, ǫ2t+1 is stochastically
greater than ǫ2t because

ǫ2t+1 = (ω0 + ω0α0η
2
t + · · · + ω0α

t−1
0 η2

t · · · η2
2 + ω0α

t
0η

2
t · · · η2

1)η
2
t+1

≥ (ω0 + ω0α0η
2
t + · · · + ω0α

t
0η

2
t · · · η2

2)η
2
t+1

d
= ǫ2t

where
d
= stands for equality in distribution. The dominated convergence the-

orem and i)-ii) then entail

Eψ(ǫ2t ) =

∫ ∞

0
P
{

ǫ2t < ψ−1(u)
}

du→
∫ ∞

0
lim
t→∞

↓ P
{

ǫ2t < ψ−1(u)
}

du = 0,

which completes the proof. �
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7.2. Asymptotic normality of the unrestricted QMLE of α0.

Lemma 7.1. When γ0 > 0, we have

∞
∑

t=1

sup
θ∈Θ

∣

∣

∣

∣

∂

∂ω
ℓt(θ)

∣

∣

∣

∣

< ∞ a.s.,(7.3)

∞
∑

t=1

sup
θ∈Θ

∥

∥

∥

∥

∥

∂2

∂ω∂θ
ℓt(θ)

∥

∥

∥

∥

∥

< ∞ a.s.,(7.4)

sup
θ∈Θ

∣

∣

∣

∣

∣

1

n

n
∑

t=1

∂2

∂α2
ℓt(ω,α0) −

1

α2
0

∣

∣

∣

∣

∣

= o(1) a.s.,(7.5)

1

n

n
∑

t=1

sup
θ∈Θ

∣

∣

∣

∣

∣

∂3

∂α3
ℓt(θ)

∣

∣

∣

∣

∣

= O(1) a.s.,(7.6)

When γ0 = 0,

sup
θ∈Θ

∣

∣

∣

∣

∣

1

n

n
∑

t=1

∂2

∂α2
ℓt(ω,α0) −

1

α2
0

∣

∣

∣

∣

∣

= o(1) in probability,(7.7)

1

n

n
∑

t=1

sup
θ∈Θ

∣

∣

∣

∣

∣

∂3

∂α3
ℓt(θ)

∣

∣

∣

∣

∣

= O(1) in probability.(7.8)

Proof. Using Proposition 7.1, there exist a real random variable K and a
constant ρ ∈ (e−γ0 , 1), independent of θ and t, such that

∣

∣

∣

∣

∂

∂ω
ℓt(θ)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−(ω0 + α0ǫ
2
t−1)η

2
t

(ω + αǫ2t−1)
2

+
1

ω + αǫ2t−1

∣

∣

∣

∣

∣

≤ Kρt(η2
t + 1).(7.9)

Since
∑∞

t=1Kρ
t(η2

t + 1) has a finite expectation, it is almost surely finite.
Thus (7.3) is proved, and (7.4) can be obtained by the same arguments. We
have

∂2ℓt(ω,α0)

∂α2
− 1

α2
0

=

{

2
(ω0 + α0ǫ

2
t−1)η

2
t

ω + α0ǫ2t−1

− 1

}

ǫ4t−1

(ω + α0ǫ2t−1)
2
− 1

α2
0

=
(

2η2
t − 1

) ǫ4t−1

(ω + α0ǫ2t−1)
2
− 1

α2
0

+ r1,t

= 2
(

η2
t − 1

) 1

α2
0

+ r1,t + r2,t

where

sup
θ∈Θ

|r1,t| = sup
θ∈Θ

∣

∣

∣

∣

∣

2(ω0 − ω)η2
t

(ω + α0ǫ
2
t−1)

ǫ4t−1

(ω + α0ǫ
2
t−1)

2

∣

∣

∣

∣

∣

= o(1) a.s.
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and

sup
θ∈Θ

|r2,t| = sup
θ∈Θ

∣

∣

∣

∣

∣

(2η2
t − 1)

{

ǫ4t−1

(ω + α0ǫ2t−1)
2
− 1

α2
0

}∣

∣

∣

∣

∣

= sup
θ∈Θ

∣

∣

∣

∣

∣

(2η2
t − 1)

{

ω2 + 2α0ǫ
2
t−1

α2
0(ω + α0ǫ2t−1)

2

}∣

∣

∣

∣

∣

= o(1) a.s.

as t→ ∞. Therefore (7.5) is established. To prove (7.6), it suffices to remark
that

∣

∣

∣

∣

∣

∂3

∂α3
ℓt(θ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

{

2 − 6
(ω0 + α0ǫ

2
t−1)η

2
t

ω + αǫ2t−1

}(

ǫ2t−1

ω + αǫ2t−1

)3
∣

∣

∣

∣

∣

∣

≤
{

2 + 6

(

ω0

ω
+
α0

α

)

η2
t

}

1

α3
.

We obtain (7.7) and (7.8) similarly in view of Proposition 7.1 iii). �

Proof of Theorem 2.1. i) and iv) have already been proven (see Berkes,
Horváth and Kokoszka (2003) and Francq and Zakoïan (2004)).

To prove ii) note that (ω̂n, α̂n) = arg minθ∈ΘQn(θ), where

Qn(θ) =
1

n

n
∑

t=1

{ℓt(θ) − ℓt(θ0)} .

We have

Qn(θ) =
1

n

n
∑

t=1

η2
t

{

σ2
t (θ0)

σ2
t (θ)

− 1

}

+ log
σ2

t (θ)

σ2
t (θ0)

=
1

n

n
∑

t=1

η2
t

(ω0 − ω) + (α0 − α)ǫ2t−1

ω + αǫ2t−1

+ log
ω + αǫ2t−1

ω0 + α0ǫ2t−1

.

For any θ ∈ Θ, we have α 6= 0. Letting

On(α) =
1

n

n
∑

t=1

η2
t

(α0 − α)

α
+ log

α

α0

and

dt =
α(ω0 − ω) − ω(α0 − α)

α(ω + αǫ2t−1)
,

we have, by Proposition 7.1,

Qn(θ) −On(α) =
1

n

n
∑

t=1

η2
t dt−1 +

1

n

n
∑

t=1

log
(ω + αǫ2t−1)α0

(ω0 + α0ǫ2t−1)α
→ 0 a.s.
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Moreover this convergence is uniform on the compact set Θ:

(7.10) lim
n→∞

sup
θ∈Θ

|Qn(θ) −On(α)| = 0 a.s.

Let α−
0 and α+

0 denote two constants such that 0 < α−
0 < α0 < α+

0 . Intro-
ducing σ̂2

η = n−1∑n
t=1 η

2
t , the solution of

α∗
n = arg min

α
On(α)

is α∗
n = α0σ̂

2
η . This solution belongs to the interval (α−

0 , α
+
0 ) for sufficiently

large n. Thus

(7.11) α∗∗
n = arg min

α6∈(α−
0 ,α+

0 )
On(α) ∈ {α−

0 , α
+
0 }

and

(7.12) lim
n→∞

On(α∗∗
n ) = min

{

lim
n→∞

On(α−
0 ), lim

n→∞
On(α+

0 )
}

> 0.

This result and (7.10) show that almost surely

lim
n→∞ min

θ∈Θ, α6∈(α−
0 ,α+

0 )
Qn(θ) > 0.

Since minθ Qn(θ) ≤ Qn(θ0) = 0, it follows that

lim
n→∞

arg min
θ∈Θ

Qn(θ) ∈ (0,∞) × (α−
0 , α

+
0 ).

Because the interval (α−
0 , α

+
0 ) containing α0 can be chosen arbitrarily small,

ii) is proven.
Turning to the proof of iii) we first note that Proposition 7.1 entails

n−1∑n
t=1E supθ∈Θ |dt−1| → 0, which implies 1

n

∑n
t=1 supθ∈Θ η

2
t dt−1 → 0 in

L1. Using the elementary inequality |log(x/y)| ≤ |x − y|/x + |x − y|/y for
x, y > 0, Proposition 7.1 also entails

n−1
n
∑

t=1

log
(ω + αǫ2t−1)α0

(ω0 + α0ǫ2t−1)α
→ 0

in L1 uniformly in θ. It follows that (7.10) can be replaced by

(7.13) lim
n→∞

E sup
θ∈Θ

|Qn(θ) −On(α)| = 0.
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We now note that the asymptotic behavoir of On(α) is not affected by the
assumption on γ0. Thus (7.11) and (7.12) still hold. For all ε > 0, we clearly
have

P

{

min
θ∈Θ, α6∈(α−

0 ,α+
0 )
Qn(θ) ≤ ε

}

≤ P

{

min
θ∈Θ, α6∈(α−

0 ,α+
0 )
On(θ) ≤ 2ε

}

+P

{

sup
θ∈Θ

|Qn(θ) −On(α)| > ε

}

.

By (7.11)-(7.12), the first term of the right-hand side of the last inequality
tends to zero when ε < limn→∞On(α∗∗

n ). The second term tends to zero
by (7.13) and the Markov inequality. Because Qn(θ̂n) ≤ Qn(θ0) = 0, we

conclude that P
{

α̂n ∈ (α−
0 , α

+
0 )
}

→ 1, which shows the weak consistency in

iii).
It remains to prove the asymptotic normality of α̂n when γ0 > 0. Notice

that we cannot use the fact that the derivative of the criterion cancels at
θ̂n = (ω̂n, α̂n) since we have no consistency result for ω̂n. Thus the minimum
could lie on the boundary of Θ, even asymptotically. However, the partial
derivative with respect to α is asymptotically equal to zero at the minimum
since α̂n → α0 and (ω0, α0) belongs to the interior of Θ. Hence, an expansion
of the criterion derivative gives

(

1√
n

∑n
t=1

∂
∂ω ℓt(θ̂n)

0

)

=
1√
n

n
∑

t=1

∂

∂θ
ℓt(θ0) + Jn

√
n(θ̂n − θ0)(7.14)

where Jn is a 2 × 2 matrix whose elements have the form

Jn(i, j) =
1

n

n
∑

t=1

∂2

∂θj∂θj
ℓt(θ

∗
i )

where θ∗i = (ω∗
i , α

∗
i ) is between θ̂n and θ0. By Proposition 7.1 i) and from

the central limit theorem we have

1√
n

n
∑

t=1

∂

∂α
ℓt(θ0) =

1√
n

n
∑

t=1

(1 − η2
t )

ǫ2t−1

ω0 + α0ǫ2t−1

=
1√
n

n
∑

t=1

(1 − η2
t )

1

α0
+ oP (1)

d→ N
(

0,
κη − 1

α2
0

)

.(7.15)
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By (7.4) in Lemma 7.1 and the compactness of Θ, we have

(7.16) Jn(2, 1)
√
n(ω̂n −ω0) ≤

∞
∑

t=1

sup
θ∈Θ

∥

∥

∥

∥

∥

∂2

∂ω∂θ
ℓt(θ)

∥

∥

∥

∥

∥

1√
n

(ω̂n −ω0) → 0 a.s.

An expansion of the function

α 7→ 1

n

n
∑

t=1

∂2

∂α2
ℓt(ω

∗
2 , α)

gives

Jn(2, 2) =
1

n

n
∑

t=1

∂2

∂α2
ℓt(ω

∗
2, α0) +

1

n

n
∑

t=1

∂3

∂α3
ℓt(ω

∗
2 , α

∗)(α∗
2 − α0)

where α∗ is between α∗
2 and α0. Using (7.5), (7.6) and ii) we get

(7.17) Jn(2, 2) → 1

α2
0

a.s.

The conclusion follows, by considering the second component in (7.14) and
from (7.15), (7.16) and (7.17). �

Proof of Theorem 2.2. The proof of the asymptotic normality still relies
on the Taylor expansion (7.14). By the Lindeberg central limit theorem for
martingale differences (see Billingsley, 1995, p. 476), the asymptotic normal-
ity (7.15) of the score vector is obtained by showing that

Var

(

1√
n

n
∑

t=1

(1 − η2
t )

ǫ2t−1

ω0 + α0ǫ2t−1

)

=
κη − 1

n

n
∑

t=1

E

∣

∣

∣

∣

∣

ǫ2t−1

ω0 + α0ǫ2t−1

∣

∣

∣

∣

∣

2

→ (κη − 1)α−2
0 ,

which is a consequence of Proposition 7.1 iii), and by noting that for all
ε > 0

κη − 1

n

n
∑

t=1

E

∣

∣

∣

∣

∣

ǫ2t−1

ω0 + α0ǫ2t−1

∣

∣

∣

∣

∣

2

1{∣
∣

∣

∣

1−η2
t√

n

ǫ2
t−1

ω0+α0ǫ2
t−1

∣

∣

∣

∣

>ε

}

≤ κη − 1

α2
0

P
(

|1 − η2
t | > α0ε

√
n
)

→ 0.

To deal with the second term in the right-hand side of (7.14) we cannot use
(7.16) because (7.4) requires γ0 > 0. Instead, noting that σ2

t (θ
∗
2)/σ

2
t (θ0) is
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bounded, we use

|Jn(2, 1)
√
n(ω̂n − ω0)| ≤ K√

n

n
∑

t=1

(

2η2
t σ

2
t (θ0)

σ2
t (θ

∗
2)

+ 1

)

ǫ2t−1

σ4
t (θ

∗
2)

≤ K√
n

n
∑

t=1

(

η2
t + 1

) ǫ2t−1

σ4
t (θ

∗
2)
,

where K > 0 is a generic constant whose value can change along the proof.
Hence,

E|Jn(2, 1)
√
n(ω̂n − ω0)| ≤ K√

n

n
∑

t=1

E
ǫ2t−1

(ω∗
2 + α∗

2ǫ
2
t−1)

2
≤ K√

n

n
∑

t=1

E
1

σ2
t−1(θ0)

.

Moreover,

σ2
t (θ0) = ω0(1 + Zt−1 + Zt−1Zt−2 + · · · + Zt−1 . . . Z1) + Zt−1 . . . Z0σ

2
0.

By Assumption A, it follows that

(7.18) E|Jn(2, 1)
√
n(ω̂n − ω0)| → 0 as n→ ∞.

Finally, similarly to (7.17)

(7.19) Jn(2, 2) → 1

α2
0

in probability

using iii) in Theorem 2.1, (7.7) and (7.8). The conclusion follows as in the
case γ0 > 0. �

Proof of Theorem 2.3. The convergence results in i) can be shown in
a standard way, using Taylor expansions of the functions κ̂η = κη(θ̂n) and

µ̂n(p, q) = µn(p, q)(θ̂n) around θ0, and the ergodic theorem together with
the consistency of θ̂n.

Now consider the case ii). For some θ∗ = (ω∗, α∗)′ between θ̂n and θ0 we
have

(7.20) κ̂η =
1

n

n
∑

t=1

η4
t −

2

n

n
∑

t=1

ǫ4t
σ4

t (θ
∗)

1

σ2
t (θ

∗)

∂σ2
t (θ

∗)
∂θ′

(θ∗−θ0) :=
1

n

n
∑

t=1

η4
t +Rn.

By Proposition 7.1, for some constants K > 0 and ρ ∈ (0, 1),

|Rn| ≤
K

n

n
∑

t=1

η4
t

(

ρt|ω∗ − ω0| + |α∗ − α0|
)

= oP (1)
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where the last equality follows from the strong consistency of α̂n and the
fact that |ω∗ − ω0| is bounded by compactness of Θ. Hence the first part of
ii) is proven. Now note that

µ̂n(2, 2) =
1

α̂2
n

+
1

n

n
∑

t=1

{

ǫ4t
(

ω̂n + α̂nǫ2t
)2 − 1

α̂2
n

}

=
1

α̂2
n

− ω̂2
n

α̂2
n

µ̂n(0, 2) − 2
ω̂n

α̂n
µ̂n(1, 2).

Similarly we have

µ̂n(1, 2) = − ω̂n

α̂n
µ̂n(0, 2) +

1

α̂n
µ̂n(0, 1).

It follows that

(7.21) ξ̂n = α̂2
n

{

1 − µ̂2
n(0, 1)

µ̂n(0, 2)

}−1

.

In order to show that ξ̂n → α2
0, it thus remains to show that

µ̂2
n(0, 1)/µ̂n(0, 2) = o(1) a.s. First note that µ̂n(0, 2) ≥ n−1ω̂−2

n . Since

σ2
t (θ̂n) = ω̂n + α̂nη

2
t−1σ

2
t−1(θ0) ≥ ω0α̂nα

t−2
0 η2

t−1η
2
t−2 · · · η2

1 ,

we have

nµ̂n(0, 1) =
n
∑

t=1

1

σ2
t+1(θ̂n)

≤ α0

ω0α̂n

∞
∑

t=1

1

αt
0η

2
t η

2
t−1 · · · η2

1

.

By the Cauchy root test, the last series is almost surely finite because

lim sup
t→∞

(

1

αt
0η

2
t η

2
t−1 · · · η2

1

)1/t

= exp(−γ0) < 1 a.s.

We thus have shown that µ̂2
n(0, 1) = O(n−1) a.s., which completes the proof

of ii).
Turning to iii), we note that in (7.20), Rn =: Sn(θ∗ − θ0) with

E|Sn| ≤
K

n

n
∑

t=1

E

(

1

α∗ǫ2t−1

(1, ǫ2t−1)

)

→ (0,K)

by Proposition 7.1 iii). Since the first component of θ∗ − θ0 is bounded, by
compactness of Θ, and the second component tends to zero in probability, by
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Theorem 2.1 iii), the first convergence is established. To complete the proof
we note that µ̂n(0, 2) ≥ Kn−1 and that, in view of Assumption A,

E
√
n|µ̂n(0, 1)| =

1√
n

n
∑

t=1

E
1

σ2
t+1(θ̂n)

= o(1).

The conclusion follows from (7.21). �

7.3. Inconsistency of ω̂n when γ0 ≥ 0. The previous results do not give
any insight on the asymptotic behavior of the QMLE of ω0. Similarly to
(7.15) it can be shown that the score vector satisfies

(7.22)
1√
n

n
∑

t=1

∂

∂θ
ℓt(θ0)

d→ N
{

0, (κη − 1)

(

0 0

0 α−2
0

)}

.

The form of the asymptotic variance shows that, for n sufficiently large
and almost surely, the variation of the log-likelihood n−1/2∑n

t=1 log ℓt(θ) is
negligible when θ varies between (ω0, α0) and (ω0 + h, α0) for small h.

Note that a score vector with a degenerate asymptotic variance J can arise
when a central limit theorem with a non standard rate of convergence ap-
plies. This is for instance the case in regressions with trends, or in unit root
and cointegration models. In such situations, the rate of convergence of the
QMLE is obtained by finding a diagonal matrix Λn such that the asymp-
totic distribution of Λn

∑n
t=1

∂
∂θ ℓt(θ0) is not degenerated. If, for instance,

Λn = diag(n−1, n−1/2) then the second component of QMLE is expected to
converge at the standard rate

√
n, and the first one at the faster rate n.

The situation here is completely different. In the proof of Theorem 2.1 it is
shown that ∂

∂ω ℓt(θ0) = OP (ρt) with |ρ| < 1 (see Equation (7.9) below). The
equation (7.22) can thus be extended as

Λn

n
∑

t=1

∂

∂θ
ℓt(θ0)

d→ N
{

0, (κη − 1)

(

0 0

0 α−2
0

)}

, Λn =

(

λn 0

0 n−1/2

)

for any sequence λn tending to zero as n → ∞. It means that the log-
likelihood is completely flat in the direction where α0 is fixed and ω0 varies.
Thus there is little hope concerning the existence of any consistent estimator
of ω0. This is in accordance with the numerical illustrations provided in
Section 6.

7.4. A constrained QMLE of α0. The asymptotic behaviour of the QMLE
α̂n being independent of ω0 when γ0 > 0, and the QMLE of ω0 being prob-
ably inconsistent in view of the previous remark, it seems natural to avoid
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estimating ω0. To this aim a constrained QMLE of α0, in which the first
component of θ is fixed to an arbitrary value ω, can be introduced. The
estimator

(7.23) α̂c
n(ω) = arg min

α∈Θ1

1

n

n
∑

t=1

ℓt(ω,α), Θ1 compact ⊂ (0,∞)

was studied by Jensen and Rahbek (2004a). They proved that, when γ0 > 0,
(2.3) continues to hold when the QMLE α̂n is replaced by the constrained
QMLE α̂c

n(ω0).
4 In the appendix we prove that:

under the assumptions of Theorem 2.2, in particular γ0 = 0,

(7.24)
√
n (α̂c

n(ω) − α0)
d→ N

{

0, (κη − 1)α2
0

}

, as n→ ∞.

However, the next result shows that the restricted QMLE of α0 is generally
inconsistent in the stationary case.

Proposition 7.2. Let (ǫt) be a stationary solution of the ARCH(1)
model with parameters ω0 and α0, such that Eǫ4t <∞. Then, if ω 6= ω0

(7.25) α̂c
n(ω) does not converge in probability to α0.

On the contrary, Theorems 2.1-2.2 show that

(7.26) the QMLE of α0 is always CAN

(under A when γ0 = 0).
Proof of (7.24). First note that, by the arguments used to prove iii) in

Theorem 2.1, we have

(7.27) α̂c
n(ω) → α0 in probability as n→ ∞.

A Taylor expansion of the criterion derivative gives

0 =
1√
n

n
∑

t=1

∂

∂α
ℓt(ω, α̂

c
n(ω))

=
1√
n

n
∑

t=1

∂

∂θ
ℓt(ω,α0) +

(

1

n

n
∑

t=1

∂2

∂α2
ℓt(ω,α

∗)

)

√
n(θ̂n − θ0)(7.28)

4In fact, the result was announced under the assumption γ0 ≥ 0 but their proof is only
valid under γ0 > 0 because the a.s. convergence of ǫ

2
t to infinity is used (see their Lemma

1).
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where α∗ is between α̂c
n(ω) and α0. Another Taylor expansion yields, for α∗∗

between α̂c
n(ω) and α0

∣

∣

∣

∣

∣

1

n

n
∑

t=1

∂2

∂α2
ℓt(ω,α0) −

1

n

n
∑

t=1

∂2

∂α2
ℓt(ω,α

∗)

∣

∣

∣

∣

∣

≤ |α∗ − α0|
1

n

n
∑

t=1

∣

∣

∣

∣

∣

∂2

∂α3
ℓt(ω,α

∗∗)

∣

∣

∣

∣

∣

≤ |α∗ − α0|
1

n

n
∑

t=1

sup
θ∈Θ

∣

∣

∣

∣

∣

∂3

∂α3
ℓt(θ)

∣

∣

∣

∣

∣

= o(1) in probability,

using (7.27) and (7.8). Therefore, using (7.7), the term in parentheses in
(7.28) converges to 1/α2

0. To conclude, it remains to prove that

1√
n

n
∑

t=1

∂

∂α
ℓt(ω,α0)

d→ N
(

0,
κη − 1

α2
0

)

.(7.29)

We have

1√
n

n
∑

t=1

∂

∂α
ℓt(ω,α0)

=
1√
n

n
∑

t=1

(1 − η2
t )

ǫ2t−1

ω + α0ǫ2t−1

+
1√
n

n
∑

t=1

η2
t

(ω − ω0)ǫ
2
t−1

(ω + α0ǫ2t−1)
2
.

The last term tends to zero in probability, using A, similarly to (7.18). The
first term converges in distribution to the normal law of (7.29) by exactly
the same arguments as in the proof of Theorem 2.2. �

Proof of Proposition 7.2. The ergodic theorem entails that, almost
surely,

Ln(α) =
1

n

n
∑

t=1

ǫ2t
σ2

t (ω,α)
+ log σ2

t (ω,α)

→ L(α) = E

{

ω0 + α0ǫ
2
t−1

ω + αǫ2t−1

+ log
(

ω + αǫ2t−1

)

}

as n→ ∞. The dominated convergence theorem implies that

L′(α) = E
∂

∂α

{

ω0 + α0ǫ
2
t−1

ω + αǫ2t−1

+ log
(

ω + αǫ2t−1

)

}

= E

{

ǫ2t−1
(

ω + αǫ2t−1

)2 {(ω − ω0) + (α− α0)ǫ
2
t−1}

}

.
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First suppose that ω < ω0. Then L′(α) < 0 for α ≤ α0. The intermediate
values theorem shows that the function L(·) has a minimum at a point α∗ >
α0 and that L(α∗) < L(α0). Now suppose that ω > ω0. Then L′(α) > 0 for
α ≥ α0. This shows that L(·) has a minimum at a point α∗ ∈ [0, α0), with
L(α∗) < L(α0). Thus, we have shown that for any ω 6= ω0, the function L(·)
has a minimum at a point α∗ 6= α0 and L(α∗) < L(α0).

A Taylor expansion of Ln(·) yields

(7.30) Ln {α̂c
n(ω)} = Ln(α0) + L′

n(α̃n){α̂c
n(ω) − α0}

where α̃n is between α̂c
n(ω) and α0. Note that since Eǫ4t <∞, almost surely,

lim sup
n→∞

sup
α

∣

∣L′
n(α)

∣

∣ ≤ lim
n→∞

1

n

n
∑

t=1

(

1 +
ǫ2t
ω

)

ǫ2t−1

ω
<∞.

Now suppose that

(7.31) α̂c
n(ω) → α0, in probability as n→ ∞.

Then, it follows from (7.30) that

Ln {α̂c
n(ω)} → L(α0), in probability as n→ ∞.

Then, taking the limit in probability in the following inequality

Ln{α̂c
n(ω)} ≤ Ln(α∗)

we find that L(α0) ≤ L(α∗), which is in contradiction with the definition of
α∗ 6= α0. Thus (7.31) cannot be true. �

7.5. Stationarity test. Proof of Theorem 3.1. First consider the case
γ0 < 0. Let ζn = n−1∑n

t=1 log η2
t . Note that ζ̂n = ζn(θ̂n) and ζn = ζn(θ0)

with ζn(θ) = n−1∑n
t=1 log η2

t (θ) and ηt(θ) = ǫt/σt(θ). A Taylor expansion
thus gives

(7.32) ζ̂n = ζn +
∂ζn(θ0)

∂θ′
(θ̂n − θ0) + oP (n−1/2)

with
∂ζn(θ0)

∂θ′
=

−1

n

n
∑

t=1

1

ht

∂σ2
t (θ0)

∂θ′
.

Moreover the QMLE satisfies

(7.33)
√
n(θ̂n − θ0) = −J−1 1√

n

n
∑

t=1

vt
1

ht

∂σ2
t (θ0)

∂θ
+ oP (1).
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In view of (7.32) and (7.33), we have

√
n(ζ̂n − ζ) =

1√
n

n
∑

t=1

ut + Ω′J−1 1√
n

n
∑

t=1

vt
1

ht

∂σ2
t (θ0)

∂θ
+ oP (1),

where Ω = Eh−1
t ∂σ2

t (θ0)/∂θ. Note that

Cov

(

1√
n

n
∑

t=1

ut, Ω′J−1 1√
n

n
∑

t=1

vt
1

ht

∂σ2
t (θ0)

∂θ

)

= σuvΩ
′J−1Ω.

The Slutsky lemma and the central limit theorem for martingale differences
thus entail

√
n

(

ζ̂n − ζ

θ̂n − θ0

)

d→ N
{

0,Σ :=

(

σ2
u + (σ2

v + 2σuv)Ω
′J−1Ω −(σ2

v + σuv)Ω
′J−1

−(σ2
v + σuv)J

−1Ω σ2
vJ

−1

)}

.

Noting that θ′0∂σ
2
t (θ0)/∂θ = ht almost surely, we have

E

{

1

ht

∂σ2
t (θ0)

∂θ

(

1 − 1

ht

∂σ2
t (θ0)

∂θ′
θ0

)}

= 0,

which entails Jθ0 = Ω. Thus J−1Ω = θ0 and Ω′J−1Ω = 1, and (3.5) follows.
The convergence in probability in (3.6) is a straightforward consequence

of (3.5). By direct application of the delta method (see e.g. Theorem 3.1 in
van der Vaart, 1998), in the case γ0 < 0

√
n(γ̂n − γ0)

d→ N (

0, LΣL′) where L =
(

1, 0, α−1
0

)

.

It is easy to verify that LΣL′ = σ2
u + σ2

v

{

ξ
α2

0
− 1

}

.

Now consider the case γ0 ≥ 0. Note that,

∂2ζn(θ)

∂θ∂θ′
= Jn(θ) :=

1

n

n
∑

t=1

1

σ4
t (θ)

∂σ2
t (θ)

∂θ

∂σ2
t (θ)

∂θ′
→ J(θ) :=

(

0 0
0 α−2

)

a.s. (resp. in probability) as n → ∞ when γ0 > 0 (resp. when γ0 = 0),
uniformly in θ ∈ Θ, by Proposition 7.1. Moreover the matrix ΛnJn(θ)Λn

converges to the same limit, where Λn is the diagonal matrix with elements
n1/4 and 1. Thus

(7.34) ζ̂n = ζn+
∂ζn(θ0)

∂θ′
(θ̂n−θ0)+

1

2
(θ̂n−θ0)′Λ−1

n ΛnJn(θ∗)ΛnΛ−1
n (θ̂n−θ0).
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Noting that Λ−1
n (θ̂n − θ0) tends to zero (a.s. when γ0 > 0, in probability

when γ0 = 0), we conclude that (7.32) still holds. By the same arguments,

1

n

n
∑

t=1

1

ht

∂σ2
t (θ0)

∂θ′
→
(

0

α−1
0

)

a.s. (in probability when γ0 = 0).

Therefore

(7.35)
√
n(ζ̂n − ζ) =

1√
n

n
∑

t=1

ut − α−1
0

√
n (α̂n − α0) + oP (1).

From the proof of (2.3) and Theorem 2.2, it can be seen that

(7.36)
√
n (α̂n − α0) = −α0n

−1/2
n
∑

t=1

vt + oP (1),

and (3.8) follows. The rest of the proof is as in the case γ0 < 0. �

Proof of Corollary 3.2. By arguments used in the proof of Theorem 2.3,
σ̂2

u converges almost surely to σ2
u when γ < 0 or γ ≥ 0. Therefore Tn =√

n(γ̂n − γ0)/σ̂u +
√
nγ0/σ̂u converges in probability to −∞ when γ < 0, to

+∞ when γ > 0, and in distribution to the N (0, 1) when γ0 = 0. �

Proof of Proposition 4.1. We consider the case γ0 ≥ 0 because the LAN
of GARCH models has already be established in the stationary case (see
Drost and Klaassen (1997), Lee and Taniguchi (2005)). A Taylor expansion
of τn 7→ Λn,f (θ0 + τn/

√
n, θ0) around 0 yields

(7.37) Λn,f (θ0 + τn/
√
n, θ0) = τ ′nSn,f (θ0) −

1

2
τ ′nIn(θ∗n)τn,

where θ∗n = θ0 + τ∗n/
√
n with τ∗n between 0 and τn,

(7.38) Sn,f(θ0) =
−1√
n

n
∑

t=1

{

1 + ηt
f ′(ηt)

f(ηt)

}

1

2σ2
t (θ0)

∂σ2
t (θ0)

∂θ

and, introducing the function g(y) = 1 + 2y(f ′/f)(y) + y2(f ′/f)′(y),

In(θ) = −(1/4n)
n
∑

t=1

g

(

ǫt
σt(θ)

)

∆t(θ), ∆t(θ) =
1

σ4
t (θ)

∂σ2
t (θ)

∂θ

∂σ2
t (θ)

∂θ′
.

As in the proof of Theorem 2.2, the Lindeberg central limit theorem for
martingale differences shows that

(7.39) Sn,f (θ0)
d−→ N {0,If} .
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Let the matrix norm defined by ‖A‖ =
∑ |aij| with standard notations. We

have

‖∆t(θ) − ∆t(θ0)‖ ≤ |ω0 − ω|
(

2

ωω0
+

1

αω0
+

1

α0ω

)

+|α0 − α|
(

2

αα0
+

1

αω0
+

1

α0ω

)

= O(‖θ − θ0‖).

Note that (4.2)-(4.3) implies E|g(η1)| < ∞. The law of large numbers then
entails

lim
n→∞

∥

∥

∥

∥

∥

1

n

n
∑

t=1

g(ηt) {∆t(θ) − ∆t(θ0)}
∥

∥

∥

∥

∥

≤ O(‖θ − θ0‖) lim
n→∞

1

n

n
∑

t=1

|g(ηt)| = O(‖θ − θ0‖) a.s.

and

lim
n→∞

∥

∥

∥

∥

∥

1

n

n
∑

t=1

g(ηt) {∆t(θ
∗
n) − ∆t(θ0)}

∥

∥

∥

∥

∥

= 0 a.s.

Noting that
∣

∣

∣

∣

ǫt
σt(θ)

∣

∣

∣

∣

=

∣

∣

∣

∣

σt(θ0)

σt(θ)
ηt

∣

∣

∣

∣

≤
(
√

ω0

ω
+

√

α0

α

)

|ηt|,

and that supθ ‖∆t(θ)‖ = O(1), Assumption (4.2) and the mean value theo-
rem entail

∥

∥

∥

∥

∥

1

n

n
∑

t=1

{

g

(

ǫt
σt(θ)

)

− g(ηt)

}

∆t(θ)

∥

∥

∥

∥

∥

≤ O(‖θ − θ0‖)
1

n

n
∑

t=1

|ηt|δ+1 .

The Hölder inequality shows that E |ηt|δ+1 ≤
√

E |ηt|2δ Eη2
t , which is finite

under (4.3). It follows that

1

n

n
∑

t=1

∥

∥

∥

∥

{

g

(

ǫt
σt(θ∗n)

)

− g(ηt)

}

∆t(θ
∗
n)

∥

∥

∥

∥

→ 0 a.s.

We thus have shown that, as n→ ∞,

(7.40) ‖In(θ∗n) − In(θ0)‖ → 0 a.s.

Integrations by parts show that, under (4.1), we have
∫

y2f ′′(y)dy =
−2
∫

yf ′(y)dy = 2. It follows that Eg(η1) = −ιf . Proposition 7.1 iii) shows



INFERENCE OF EXPLOSIVE ARCH MODELS 35

that

E

∥

∥

∥

∥

∥

1

n

n
∑

t=1

g(ηt)

{

∆t(θ0) −
(

0
1/α0

)}∥

∥

∥

∥

∥

≤ E|g(η1)|E
∥

∥

∥

∥

∥

∥

1

n

n
∑

t=1





1
ω0+α0ǫ2t−1

ω0

ω0+α0ǫ2t−1





∥

∥

∥

∥

∥

∥

→ 0,

and thus, by the law of large numbers
(7.41)

In(θ0) =
1

n

n
∑

t=1

−g(ηt)

4

(

0
1/α0

)

+OPθ0
(1) → If in probability as n→ ∞.

The conclusion follows from (7.37)–(7.41). �

Proof of Proposition 4.2. For simplicity, write P instead of Pn,0. By the
delta method and (7.36) we obtain

√
n (log α̂n − logα0) =

1

α0

√
n (α̂n − α0) + oP (1) = − 1√

n

n
∑

t=1

vt + oP (1).

In view of (7.35), and noting ζ + logα0 = 0, we have

Tn =
√
n
ζ̂n − ζ + log α̂n − logα0

σ̂u
=

1√
n

n
∑

t=1

ut

σu
+ oP (1).

By (4.4) and (7.38), it follows that under P

(7.42)

(

Tn

Λn,f (θ0 + τ/
√
n, θ0)

)

d−→ N










0

− τ2
2 ιf
8α2

0



 ,





1 c

c
τ2
2 ιf
4α2

0











,

where

(7.43) c = − τ2
2α0σu

Eu1

{

1 + η1
f ′(η1)

f(η1)

}

=
τ2
α0σu

.

For the last equality, we used an integration by parts and we noted that
Eη2

1 <∞ entails limx→±∞ x log x2f(x) = 0. Le Cam’s third lemma (see e.g.
van der Vaart, 1998, page 90) shows that

Tn
d−→ N

(

τ2
α0σu

, 1

)

, under Pn,τ .
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The conclusion easily follows. �

Proof of Proposition 4.3. Distinguishing the cases γ0 < 0 and γ0 ≥ 0,
and reasoning as in the proof of Proposition 4.2, it can be shown that α̂n is
a regular estimator of α∗, in the sense that

√
n(α̂n − α∗ − τ2/

√
n)

√

(κ̂η − 1)ξ̂n

d→ N (0, 1) , under Pα∗
n,τ as n→ ∞.

The conclusion easily follows. �

Proof of Proposition 4.4. In view of (4.6) and (4.8), the CST-test is asymp-

totically optimal if and only if τ2/α0σu = τ2/
√

4α2
0/ιf , which is equivalent

to σ2
uιf = 4. In the second equality of (7.43), we have seen that

∫

(log y2 − ζ)

(

1 +
f ′(y)
f(y)

y

)

f(y)dy = −2.

Thus, the Cauchy-Schwarz inequality yields

4 ≤
∫

(log y2 − ζ)2f(y)dy

∫ (

1 +
f ′(y)
f(y)

y

)2

f(y)dy = σ2
uιf

with equality iff there exists a 6= 0 such that 1 + ηtf
′(ηt)/f(ηt) =

a
(

log η2
t − ζ

)

a.s. Such densities f must satisfy the differential equation
f ′(y)/f(y) = 2a log |y|/y−(1+ζa)/y for almost every y. Setting a = −1/2σ2

and b = ζ/4σ2, the solutions are two-sided generalized log-normal densities
of the form

f(y) =
1

2σ
√

2πe2b2σ2
e−

(log |y|)2
2σ2 |y|−1+2b, σ2 > 0, b ∈ R.

Direct computations show that
∫

log y2f(y)dy = 4bσ2 and
∫

y2f(y)dy =
exp{2σ2(2b + 1)}, which shows that the test is optimal iff f is given by
(4.11).

We now give the proof of the first result. In view of (4.7) and (4.9), the
Cα∗

-test is asymptotically optimal if and only if (κη−1)ιf = 4. By Corollary
1 in Francq and Zakoïan (2006b), the solutions of this equation are given by
(4.11). �

Proof of Proposition 5.1. We start by considering the case Γ > 0. By
the arguments given in the proof of Proposition 7.1 i), ht → ∞ and ǫ2t → ∞
a.s. at an exponential rate as t→ ∞. Let

α∗
0 = E

(

a(ηt)

η2
t

)

.



INFERENCE OF EXPLOSIVE ARCH MODELS 37

Following the lines of the proof of Theorem 2.1, note that (ω̂n, α̂n) =
arg minθ∈ΘQn(θ), where

Qn(θ) =
1

n

n
∑

t=1

{

ǫ2t
ω + αǫ2t−1

+ log(ω + αǫ2t−1) −
ǫ2t

α∗
0ǫ

2
t−1

− log(α∗
0ǫ

2
t−1)

}

.

Letting

On(α) =
1

n

n
∑

t=1

η2
t

a(ηt−1)

η2
t−1

(α∗
0 − α)

αα∗
0

+ log
α

α∗
0

we have (7.10) by arguments already used. Noting that

arg min
α
On(α) =

1

n

n
∑

t=1

η2
t

a(ηt−1)

η2
t−1

→ α∗
0, a.s.

we conclude, as in the proof of Proposition 7.1 ii), that α̂n → α∗
0, a.s. Note

that for t large enough ωs(ηt)/h
s
t < ωs(ηt)/t, and limt→∞ ωs(ηt)/t → 0 a.s.

We thus have

1

n

n
∑

t=1

log η̂2
t =

1

n

n
∑

t=1

log
ǫ2t

α̂nǫ2t−1

+ oP (1)

=
1

n

n
∑

t=1

log
η2

t {ω(ηt−1) + a(ηt−1)ht−1}
α̂nht−1η2

t−1

+ oP (1)

→ Γ − log α∗
0,

and the first result follows. The convergence of σ̂2
u is obtained by similar

arguments. By assumption E| log η2
1 |2 > 0, which entails that η2

1 has a non-
degenerate distribution. It follows that the a.s. limit of σ̂2

u is positive.
Now consider the case Γ < 0. Letting η∗2t = ǫ2t/(ω

∗ + α∗ǫ2t−1), and using
the inequality |log(x∗/x)| ≤ |x∗ − x|/min(x, x∗) for all x, x∗ > 0, we have

∣

∣

∣

∣

∣

1

n

n
∑

t=1

log
(

η̂2
t /η

∗2
t

)

∣

∣

∣

∣

∣

≤ 1

n

n
∑

t=1

∣

∣ω∗ − ω̂n + (α∗ − α̂n)ǫ2t−1

∣

∣

ω∗ + α∗ǫ2t−1

→ 0 a.s.

with ω∗ > 0 and α∗ > 0. By the arguments used in Berkes, Horváth, and
Kokoszka (2003, Lemma 2.3), we have E|ǫt|2s < ∞. Applying the ergodic
theorem to (log η∗2t ), it follows that

Γ∗ = E log α∗η∗2t = E log α∗ǫ2t/(ω
∗ + α∗ǫ2t−1) < 0.

The convergence of σ̂2
u to a positive limit is obtained by arguments already

used. �
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