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Abstract 

 

The paper develops an optimal control model to analyse various management options for 

infectious diseases that occur in metapopulations, under both Nash and cooperative behaviour. 

As pathogens are renewable resources with negative value, the problem may be non-convex. 

Since the disease can be transmitted across various connected populations, externalities are 

involved.  Both aspects deserve attention as two issues arise: a) is eradication of the disease in 

finite time preferable to indefinite treatment? b) are cooperative solutions well-behaved? The 

problem is solved numerically and the results indicate that while eradication is likely to be an 

optimal strategy when initial levels of infections are relatively low, the internalisation of 

between-population externalities (as indicated by the first order necessary conditions of the 

cooperative optimal control problem) might not always be possible. Also, ignoring these two 

aspects can lead to inadequate policy design. 
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1 Introduction 

The emergence of new infectious diseases has gained significant attention on the policy agenda 

as recent initiatives both in the USA and in the UK call for interdisciplinary research to better 

understand the spread and to better manage infectious agents1. Traditionally, the study of 

disease dynamics has been the realm of mathematical epidemiology (e.g., Bailey 1975; Anderson 

and May 1991), whose initial remit has been to understand the properties of a system invaded 

by a pathogen.  

One prominent concept in epidemiology is the basic reproductive ratio of an infection (or other 

metrics related to it, e.g., Roberts and Heesterbeek 2003), also known as R0, which indicates the 

number of secondary cases of infections generated by one primary case. As in an uninvaded 

system the infection will spread if and only if R0>1, the epidemiological literature focuses on 

control measure that can bring R0<1 so as to achieve eradication in finite time. As it is not clear 

how control should be distributed over time, it is commonly assumed that the effort should be 

constant over time (e.g., Anderson and May 1991).  

More recently bioeconomic approaches to disease management have been advocated (e.g., 

Fenichel et al. 2010; Fenichel and Horan 2007, a, b; Barrett and Hoel 2007), since infectious 

diseases can be modelled as a renewable resource with negative value whose control through 

the use of limited means involves trade-offs. It is normal to frame the disease management 

question into an optimal control (OC) problem requiring the maximisation of some objective 

function depending on the fraction of healthy and susceptible individuals and control costs, 

given some initial conditions and the equations describing the dynamics of the infection. The 

main contrasts between the bioeconomic approaches and those based solely on mathematical 

epidemiology concern the desirability of eradication (compared to other possible outcomes, like 

steady-state solutions) and the resulting optimal allocation of control effort over time (as 
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opposed to a constant control). Gersovitz (2003) asks “whether settling for an internal steady-state 

with positive infection is dominated by a push for eradication in finite time” (as reported in Barrett 

and Hoel 2007 p. 629). The question of whether it is optimal to exhaust a renewable resource 

(like a disease) in finite time or to maintain the system indefinitively in steady-state is not new 

in economics and relates to the existence of non-convexities. Lewis and Schmalensee (1977), for 

example, look at the optimal management of a renewable resource (a fishery) when non-

convexities (due to the presence of fixed costs) exist. In particular they compare two sets of 

policies: a) driving the system towards a steady-state in an infinitely long horizon (the 

„continuous harvesting solution‟) and b) exhausting the resource in finite time (the 

„abandonment solution‟). Because of the fixed costs, convergence to the steady-state might not 

be optimal. In fact the authors claim that “...the presence of non-convexities can radically alter the 

nature of the optimal resource management strategy. Without numerically evaluating alternative payoffs, 

one cannot be sure in general that continuous harvesting will be superior to abandonment” (p. 348). In 

the case of infectious diseases non-convexities could arise because the resource under 

consideration has a negative value (Rondeau 2001). Barrett and Hoel (2007) develop a 

theoretical model and derive an intuitive cost-benefit rule for eradication (i.e., when the 

marginal costs of vaccination are relatively low compared to the „discounted‟ marginal damages 

of the infection). This paper also extends their analysis to the case of multiple connected 

populations. 

Early models of epidemics assumed a single homogenous population (Keeling and Rohani 2008, 

provide a good introduction), while subsequently this restrictive assumption has been relaxed 

in order to allow for heterogeneity, as contact rates between different subgroups in the 

population are likely to vary. Among the many factors which determine the degree of 

heterogeneity in a given population, the spatial distribution of its various subgroups is 
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particularly important in explaining the probability of a system being invaded and the 

persistence of the infection (Park et al. 2001; Keeling 1999; Hagenaars et al. 2004). The recent 

cases of swine flu pandemics and avian influenza show the importance of spatial connectivity in 

disease dynamics, as some diseases can be transmitted over long ranges by migrating 

populations (Waldenström et al. 2007; Stallknecht and Brown 2007) and/or through travel and 

trade (Kilpatrick et al. 2006).  

The management of infectious diseases over a number of separate but connected populations is 

likely to involve reciprocal externalities, as control of the disease in one particular region will 

generate some benefits to all regions (e.g., Barrett 2003; Sandler and Arce 2002). It is then 

natural to model the non-cooperative solution, to identify the corresponding Nash equilibria, 

and the cooperative solution, to identify the optimal management rule. In fact, by comparing 

the first order necessary conditions (FONC) of the cooperative solution with those of the non-

cooperative one, it should be possible to identify a suitable way (e.g., taxes, subsidies, etc.) to 

internalise the externalities and ameliorate welfare. However, if the problem is non-convex can 

the FONC still be relied upon to indicate the appropriate strategy to internalize the 

externalities? To the best of my knowledge, this aspect has not been formally addressed yet in 

the context of infectious diseases. Rowthorn et al. (2009), for example, apply an OC framework 

to the management of an infectious disease over two connected populations, but they only 

consider the cooperative solution. Similarly, Mbah and Gilligan (2009) consider an analogous 

problem, where disease transmission between different species is allowed. The purpose of this 

paper is then to shed light on the implications of non-convexities, for the optimal management 

of an infectious disease occurring over several connected populations, with respect to: a) the 

choice between eradication policies and convergence to steady-states and b) the ability to 

identify a suitable way to internalise the disease spill over. 
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2 Spatial models of epidemics 

Several approaches have been explored in order to deal with the effects of spatial heterogeneity 

on epidemics (e.g., McCallum 2008). The most common ones fall in the following categories: 

reaction-diffusion models, network models and metapopulation models. Such a classification is 

not clear-cut as, for example, network approaches (e.g., lattice and cellular automata) have been 

used to study the behaviour of a metapopulation. In this section I will focus on network models 

and metapopulation models, as diffusion-reaction models can be thought of as a special case of 

the metapopulation approach (Smith et al. 2009).   

 

2.1 Networks and epidemics 

In network models each individual is assigned a fixed set of „contacts‟ to which it can transmit 

the infection (see Keeling and Eames 2005, for a review of network models in epidemics). Here 

I will refer to network models as those in which, each node is the smallest unit of analysis (e.g., 

infected person or infected premise) and the dynamic processes within the node are not 

considered. The attention is focused on characterizing the network structure (e.g. small-world, 

scale-free, random, lattice etc.) for the disease under consideration and, through computer 

simulations, understanding the implications for the disease dynamics. So for example, it appears 

that infectious diseases can spread more easily in scale-free and small-world networks than in 

regular lattices and random networks. Closely related to the network approach is the use of 

lattice/cellular automata (LCA) models, which allows explicit representation of the spatial 

distribution of the nodes. LCA models are discrete dynamical system formed by a finite number 

of cells, where each cell is endowed with a state (e.g. susceptible, infected, recovered etc.) which 

changes at each step following a transition rule (e.g., White et al. 2007). In LCA models the 
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spread of the disease occurs through the interaction between each individual/node with its 

immediate neighbourhood. Su et al. (2009), for example, use a LCA model to investigate the 

effects of spatial clustering and habitat loss on a parasite-host (prey-predator) system and their 

results show that both phenomena (i.e., habitat loss and degree of clustering) have important 

consequences on both the dynamics and equilibrium of the system. 

 

2.2 Metapopulation and epidemics 

The metapopulation2 framework (Levin 1976), on the other hand, provides a useful starting 

point to address the issue of spatial heterogeneity in epidemiological models in situations where 

one wants to investigate also the dynamics within each local deme. Indeed the way Rowthorn 

et al. (2009)  and Mbah and Gilligan (2009)  deal with spatial heterogeneity in their 

epidemiological framework closely resembles a metapopulation approach. Metapopulation 

frameworks have also been used to explore the effect of host mobility (Rodriguez and Torres-

Sorando, 2001) on disease dynamics. 

 

3 The ecological constraints and the ecological approach to infectious diseases policies 

I begin with the characterisation of the epidemiological model which underlies the entire 

analysis.  Consider the case of an infectious disease occurring in two3 spatially distinct 

populations (regions) and allow for transmission between these populations to occur. The 

dynamics of the disease in the i-th region are expressed in terms of a classical Susceptible-

Infected-Susceptible (SIS) model with total (constant) population Ni, i=1,2. This class of models 

is appropriate to describe bacterial or parasitic infections for which no permanent immunity 

exists (see Bailey 1975, for an introduction to the SIS model). The population is partitioned into 
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susceptible (Si) and infected/infectious (Ii) individuals.  If disease transmission between 

individuals of different populations is allowed, the equations of motion of the infection4 can be 

expressed as follows (e.g., Rowthorn et al. 2009) 

 

   (1) 

 

where ui represents the level of (public/collective) control (treatment)5 in the i-th region, αi is 

the effectiveness of the control, βi is the infectiousness of the disease, ωi is the recovery rate 

associated with the disease (ω-1 is the duration of the disease) and pji indicates the probability of 

disease transmission from the j-th to the i-th region. This version of the SIS model is relatively 

simple as it ignores the fact that some parameter values might change with the progression of 

the epidemics, for example as a result of individuals‟ defensive behavior (D‟Onofrio and 

Mandfredi 2009). Such a simplification is introduced in order to focus the attention on public 

management decisions of epidemics (ui in this case).  

One way to illustrate the dynamics of the system is to draw the zero-isoclines associated with 

(1). The important thing to notice is that at this stage the controls (ui) enter the equations of 

motion as exogenous factors.  

 

[Figure 1 here] 

 

For example, in figure 1, I parameterize (1) and represent the dynamics for three different 

levels of control.  The left panel is drawn for u1=u2=0. In the un-controlled system there is 
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only one steady-state (which is a locally asymptotically stable node), other than the origin 

(which is unstable), and the infection will naturally progress towards the steady-state. The 

central panel is drawn for intermediate levels of control (u1=u2=0.2). In this case the system 

has two steady-state equilibria: a high infection equilibrium (which is a locally asymptotically 

stable node) and a low infection equilibrium (which is a saddle point). For intermediate levels of 

control, eradication (i.e., bringing the system to the origin) is possible, depending on initial 

conditions. The right panel is drawn for high levels of control (u1=u2=0.3). In this case the 

system has two equilibria with complex roots but again eradication is possible, depending on 

the initial conditions. 

Figure 1 provides a representation of the epidemiologists‟ approach to the management of an 

infectious disease. Given the prevalence of the disease at a given point in time (the initial 

conditions of the system), a constant level of control can be determined so as to achieve 

complete eradication. However, when framing the problem in a bioeconomic fashion the level of 

control is endogenously determined (e.g., Fenichel et al. 2010) and the phase-space becomes 

four-dimensional. For this reason the representation in Figure 1 can give only an incomplete 

picture. 

 

4 Bioeconomic approaches to infectious disease management: the general model 

As the ecological constraints have been illustrated, the purpose of this section is to provide a 

general characterisation of the economic problem at hand. The main objective of the paper is to 

investigate some of the implications of non-convexities in an OC problem of epidemics 

management in a metapopulation. As a more detailed discussion on the second order sufficient 

conditions (SOSC) is presented in subsequent sections and in the Appendix, at this stage it is 
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important to correctly frame the problem so that admits solution. If an existence theorem 

applies, then at least one can be sure that the FONC identify the set of candidates for an 

optimal solution even when the SOSC do not hold (Seierstad and Sydsaeter 1987, p. 11). 

The fact that the two populations are connected implies that there is a finite probability p that 

the infected individuals in one region can transmit the disease to susceptible individuals in the 

other region, reflecting the existence of an externality. Here I assume that the probability of 

between-regions disease transmission is exogenously given. Although it is possible to envisage 

situations in which this hypothesis is not appropriate, there are a number of cases in which it 

will hold. For example, the connectiveness of two relatively small regions as a result of 

similarity in climatic conditions is likely to be exogenous, as it is unlikely that the policies 

followed in such regions could alter the pattern of climate therefore changing the value of p. 

Similarly the existence of migrating species (e.g., birds) provides a connection path between 

locations that can be distant even hundreds or thousands of miles and although in principle 

such migration routes could be altered, in many cases such course of action will be politically or 

economically unfeasible (e.g., endangered migratory species that nest in natural reserves and 

carry pathogens that can be transmitted to domesticated species and/or to humans). In these 

cases adaptation policies are likely to be more important. 

Assuming that the infection generates a cost (e.g., people not turning in for work etc.) and that 

control is costly, the framework is naturally one of cost minimization over time. The objective 

of the managers will somehow involve choosing the appropriate level of  public 

control/treatment over time to minimize the discounted flow of damages associated with the 

disease , with , and the costs of its control 

, with . Two possible situations are 
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considered, namely the case in which each manager (in each region) acts non-cooperatively (i.e., 

Nash behaviour) and the case in which a single „meta-regional‟ manager exists (i.e., cooperative 

solution).  

 

4.1 The non-cooperative case 

Formally, in this case I am interested in finding the Open Loop Nash Equilibrium (OLNE) of a 

differential game (Basar and Losder 1999). Notice that OLNE solutions need not to be thought 

of as equilibria emerging in the complete absence of negotiation, but rather they can be thought 

of as results of negotiations on agreements that are self-enforcing (Dockner and Long 1993). 

The general problem for the i-th region can be expressed as follows (the problem for region 2 is 

analogous) 

 

   (2.a) 

Subject to (1) and 

 (2.b) 

(2.c) 

 

The term  in (2.a) represents the scrap value associated with the free terminal stock 

 and I assume  and . Problem (2.a, 2.b, 2.c) is framed in the most 

general way, with free terminal state and free terminal horizon (as T is a choice variable in 2.a) 
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and it encompasses as special cases both eradication in finite time and convergence to steady-

state in infinite time. In fact, drawing on Barrett and Hoel (2007) eradication in finite time can 

be represented by adapting (2.a, 2.c) as follows 

 

  (2.d) 

Subject to (1, 2.b) and 

(2.e) 

 

As the terminal condition in (2.e) requires eradication by the terminal time T, the scrap value 

function Fi is omitted from (2.d). 

As in Lewis and Schmalensee (1977), convergence to steady-state in infinite time is obtained by 

modifying (2.a, 2.c) as follows  

 

  (2.f) 

Subject to (1, 2.b, 2.c) 

 

Given the infinite horizon, the scrap value function is omitted again. 

It is possible to show that problem (2) admits a solution (see Appendix A.1), therefore one can 

be sure that even if the problem turns out to be non-convex the FONC will identify possible 

candidates for a solution.  
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4.2 The cooperative case 

In the cooperative case, the general problem can be formulated as follows 

 

  (3.a) 

Subject to (1) and  ,   (3.b) 

 

Even in this case, eradication in finite time is obtained by adapting (3.a, 3.b) as follows 

 

  (3.c) 

Subject to (1, 2.b),    (3.d) 

 

Where the scrap value functions Fi are omitted, as eradication by time T is imposed. 

Convergence to steady-state in infinite time is given by (omitting the scrap value functions) 

 

  (3.e) 

Subject to (1, 3.b) 

 

Problem (3) also admits solution, and the same considerations as before apply.  
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5 A numerical application 

This section develops a numerical application to illustrate the implications of non convexities in 

the management of epidemics in a metapopulation with respect to a) the choice between 

eradication in finite time and stabilisation and b) the ability of the FONC associated with the 

cooperative outcome to signal the proper strategy to internalise the between-region spill over. 

The purpose of the application is entirely illustrative, as no attempt has been made to represent 

a specific situation (although most of the parameter values and functional forms have been 

chosen so as to resemble the analysis developed by Rowthorn et al. 2009). To some extent, the 

effect of non-convexities in OC problem have been analysed before. So for example Lewis and 

Schmalensee (1977) compare steady-state versus exhaustion in finite time of a renewable 

resource when fixed costs are present. Barrett and Hoel (2007) look at the choice between 

continuous vaccination and eradication of a disease in finite time. Tahvonen and Salo (1996), 

Rondeau (2001) and Brock and Starrett (2003) show how in non-convex problems multiple 

steady-states can emerge and the choice of which steady-state to approach may depend on the 

system‟s initial conditions. In all the cases above the analysis was greatly served by the use of 

graphical illustrations. Unfortunately the dimensionality of the problem does not allow me to 

rely on graphics and therefore I will rely on numerical solutions. As in Gersovitz and Hammer 

(2003), although quantitative results are reported, my interest is in their qualitative 

interpretation. All the numerical solutions have been obtained by using the bvp4c solver 

(Shampine et al. 2000) in Matlab (© Mathworks). 

I consider a symmetric case where the infection damage function is parametrised as 

, while the treatment cost function is 

 and the parameters in the epidemiological model (1) are chosen 
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as  and the 

discount rate is  

It has already been pointed out that the general problem admits solution both in the OLNE and 

in the cooperative case, while SOSC are openly tested in both cases. Two kinds of sufficiency 

theorems are normally reported in the literature: Mangasarian sufficiency theorems and 

Arrow-type sufficiency theorems (Seierstad and Sydsaeter 1987; Caputo 2005). Mangasarian 

sufficiency conditions require the Hamiltonian to be jointly convex in the state and control 

variable. On the other hand, Arrow-type sufficiency conditions are less stringent (normally 

they are applied when Mangasarian sufficient conditions fail) and require the Maximised 

Hamiltonian to be convex in the state variable. I use Arrow-type conditions and show that even 

though necessary Legendre-Clebsch conditions hold, the sign of the second order differential 

associated with the maximised Hamiltonian is indefinite, suggesting that the problem is neither 

convex nor concave (see Appendix A.2). 

 

5.1 The OLNE 

In the non-cooperative case I consider a) optimal eradication in finite time and b) convergence 

to a steady-state in infinite time. The problem is solved numerically by considering three 

different initial conditions. 

 

5.1.1 Eradication in finite time 

Due to the symmetric nature of the differential game eradication will be simultaneous in the 

two regions. Given the chosen functional forms, problem (2.d, 2.e) becomes 
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  (4.a) 

subject to (1),   and  (4.b) 

and   (4.c) 

 

The current value Hamiltonian associated with (4) is 

 

  (5) 

 

and the FONC for an internal solution include (1) and 

 

  (6.a) 

  (6.b) 

  (6.c) 

  (6.d) 

 

Through some manipulation (6.a, 6.b) can be used to obtain an equation of motion in the 

control variable 
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  (7) 

 

The four-equation system (7, 1) is a boundary value problem (BVP) with initial conditions 

given by  terminal conditions given by   and is solved numerically 

with the bvp4c routine by implementing a shooting method (Judd 1998). As in this problem the 

terminal time T is free, I use condition (6.c) to identify its optimal value. After substituting (6.a) 

in (6.c), the latter implies ui(T)=0. The value of T in the BVP problem is then adjusted so as to 

meet this condition. 

When the initial level of infection is relatively low, with , eradication occurs in T=7 and 

the net present value (NPV) of the programme stands at £ 2.196 (in each region). The 

corresponding time path of the disease prevalence I1(t) and control u1(t) for region 1 are 

illustrated in figures 2.a and 2.b (cross marker).  

 

[Figures 2.a and 2.b here] 

 

When the initial level of infection is increased, with , eradication takes longer and 

occurs in T=14 and the NPV of the programme stands at £ 6.588 (in each region). The 

corresponding infection prevalence and control paths are illustrated in figures 3.a and 3.b (cross 

marker). Finally, when the initial level of infection is relatively high, , eradication in 

finite time is not optimal as I am unable to find a value of T which satisfies all the FONC.  
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[Figures 3.a and 3.b here] 

 

5.1.2 Convergence to steady-state 

For the chosen functional forms, problem (2.f) can be rewritten as  

 

  (8.a) 

subject to (1),   and  (8.b) 

 

The current value Hamiltonian for this problem is unchanged (see expression 5) and for an 

interior solution the FONC are given by (6.a, 6.b) and the Arrow-type transversality condition 

. The FONC can be manipulated to yield four differential equations 

given by (1) and (7) and the system can be solved for steady-state. In total 9 steady-states are 

identified, but after ruling out degenerate equilibria (i.e., complex roots and/or negative roots 

and/or Ii>1) only 2 are left, as indicated in Table 1. An analysis of the Jacobian matrix 

associated with the dynamic system reveals that both steady-states are saddle points (see 

Appendix A.3). 

 

[Table 1 here] 

 

Convergence to the steady-state is obtained numerically by implementing a shooting method 

with the bvp4c routine, where the two boundary values are given by the steady-state 
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equilibrium and the initial conditions (Judd 1998). After various attempts it turns out that for 

initial conditions  only steady-state A can be approached. When the initial 

infection is low, with , the NPV of the programme stands at £ 10.116 (per region) and 

the associated infection and control paths (for region 1 only) are illustrated in figures 4.a and 

4.b (cross marker).  

 

[Figures 4.a and 4.b here] 

 

For higher levels of initial infection, with , the NPV of the programme stands at £ 

12.179 and the associated infection and control paths are illustrated in figures 5.a and 5.b (cross 

marker).  

 

[Figures 5.a and 5.b here] 

 

Finally, for , the NPV of the programme stands at £ 13.977 and the associated 

infection and control paths are illustrated in figures 6.a and 6.b (cross marker). 

 

[Figures 6.a and 6.b here] 
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The results up to this point suggest that, under OLNE conditions, eradication is possible only 

when initial levels of infections are not too high (as already noted by Barrett and Hoel 2007) 

and the NPV of the corresponding programme is increasing in the initial level of infection. This 

latter conclusion holds also along the paths converging to the steady-state. 

 

5.2 The cooperative solution 

Even in the cooperative case I consider two possibilities, namely a) optimal eradication in finite 

time and b) convergence to a steady-state in infinite time. Again the problem is solved by 

considering three different initial conditions. 

 

5.2.1 Eradication in finite time 

In this case problem (3.c, 3.d) becomes 

 

  (9.a) 

subject to (1),   and   (9.b) 

and   (9.c) 

 

The current value Hamiltonian associated with (9) is  

 

  (10) 
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and the FONC for an internal solution are 

 

  (11.a) 

   (11.b) 

  (11.c) 

 (11.d) 

 

After some manipulation (11.a, 11.b) yield differential equations for the control variables 

 

  (12) 

 

whose solution generates the cooperative outcome. Notice the difference between (12) and (7). 

Under cooperative behaviour the level of control in region i along the optimal path explicitly 

takes into account the effects on marginal treatment costs in region j (i.e., the term 

 in 12).  

The system (12, 1) with initial conditions given by  and terminal conditions 

given by   is a boundary value problem (BVP) and is solved numerically with 

the bvp4c routine. As the terminal time T is free, I use condition (17.c) to identify its optimal 
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value. After substituting (11.a) in (11.c), the latter implies ui(T)=0. The value of T in the BVP 

problem is then adjusted so as to meet this condition. 

For low initial infections levels, with , eradication occurs in T=4 (earlier than in the 

OLNE case) and the NPV associated with the programme stands at £ 2.353 (per region). The 

infection and control paths (only for region 1) are illustrated in figures 2.a and 2.b (square 

marker). The level of control in this case is initially larger than in the OLNE but declines at a 

faster rate, while the prevalence of the infection is always lower. The NPV associated with the 

cooperative outcome is worse (i.e., larger) than the one obtained in the OLNE, something 

which is difficult to accept as two cooperative agents can at least replicate what two non-

cooperative agents are doing. This result, which may be a consequence of the non-convexities 

in the problem and is further discussed in the last section of this paper, suggests that the 

internalisation strategy identified by the FONC of the cooperative outcome cannot be relied 

upon. For higher levels of initial infections, with , eradication occurs in T=7 (earlier 

than in the OLNE case) and the NPV associated with the programme stands at £ 6.382 (per 

region). The corresponding infection and control paths (only for region 1) are presented in 

figures 3.a and 3.b (square marker). In this case the cooperative solution outperforms (i.e., the 

NPV is lower) the OLNE. This result is not in contrast with the one obtained above, as our 

problem is neither convex nor concave (remember that the sign of the second order differential 

associated with the maximised Hamiltonian for problem 9 is indefinite). Finally, for high initial 

levels of infection with , eradication in finite time is not possible (a result analogous to 

the one obtained in the OLNE). 
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5.2.2 Convergence to steady-state 

Finally problem (3.e) becomes 

 

  (13.a) 

subject to (1),   and   (13.b) 

 

The current value Hamiltonian is unchanged (see expression 10) and for an interior solution 

the FONC are given by (11.a, 11.b) and the Arrow-type transversality condition 

. The FONC can be manipulated to yield four differential 

equations given by (1) and (12) and this system can be solved for steady-state. In total 9 steady-

states are identified, but after ruling out degenerate equilibria (i.e., complex roots and/or 

negative roots and/or Ii>1) only 2 are left, as indicated in Table 2. An analysis of the Jacobian 

matrix associated with the dynamic system reveals that both steady-states are saddle points 

(see Appendix A.3). 

 

[Table 2 here] 

 

Convergence to the steady-state is obtained numerically by implementing a shooting method 

with the bvp4c routine. After various attempts it turns out that for initial conditions 

 only steady-state A can be approached. When the initial infection is low, 
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with , the NPV of the programme stands at £ 11.256 (per region), an outcome which 

ranks below the one obtained in the OLNE. The associated infection and control paths (for 

region 1 only) are illustrated in figures 4.a and 4.b (square marker). The infection prevalence is 

initially higher than in the OLNE, but then reaches a lower steady-state. Control is initially 

lower than in the OLNE, but it finally rests on a higher steady-state. For higher levels of initial 

infection, with , the NPV of the programme stands at £ 12.498 (again underperforming 

the OLNE solution) and the associated infection and control paths are illustrated in figures 5.a 

and 5.b (square marker). In this case infection prevalence is always lower than in the OLNE, 

while the level of control is always higher. Finally, for , the NPV of the programme 

stands at £ 13.967, therefore (just) outperforming the OLNE, and the associated infection and 

control paths are illustrated in figures 6.a and 6.b (square marker). Even in this case infection 

prevalence is always lower than in the OLNE, while the level of control is always higher. 

The results indicate that even under cooperative behaviour, eradication is possible only when 

initial levels of infections are not too high (as already noted by Barrett and Hoel 2007) and the 

NPV of the corresponding programme is increasing in the initial value of infection. This latter 

conclusion holds also along the paths converging to the steady-state. The cooperative solutions 

underperform the OLNE in three circumstances (i.e., in the eradication case with low initial 

levels of infection and in the convergence to steady-state with low and intermediate levels of 

infections), an aspect which leads to question the ability of the FONC associated with the non-

convex cooperative problem to identify the appropriate way to internalise externalities.  
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6 Discussion 

As noted in the early sections, the main objective of this paper is to analyze the implications of 

non-convexities in the OC of epidemics across two connected regions/populations. In 

particular two aspects deserve attention: a) whether eradication is preferable to indefinite 

treatment and b) how to internalize the between-region externalities. 

The results of the model are summarized in Table 3, where the optimal policies (i.e., those 

yielding the lowest NPV) for each set of initial conditions are indicated in bold.  

 

[Table 3 here] 

 

With respect to point a), Lewis and Schmalensee (1977) conclude that the choice between 

eradication and convergence to steady-state requires the numerical evaluation of the associated 

payoffs. The application developed in this paper suggests that eradication in finite time turns to 

be optimal only when the initial levels of infection are not too high (although the optimal time 

of eradication is positively correlated with the initial infection levels), a result consistent with 

those of Barrett and Hoel (2007, pp. 638-639). For high initial levels of infection, on the other 

hand, the optimal solution is to converge to the steady-state. In this case, along the optimal 

path converging to the (cooperative) steady-state the prevalence of the disease decreases 

smoothly while the corresponding level of control increases gradually. This pattern, suggesting 

a negative relationship between the level of control and the prevalence of a disease, is 

illustrated in Figure 7.c and has been used as a sort of feedback rule to guide optimal 

management of epidemics (Goldman and Lightwood 2002). The intuition behind this „golden 

rule‟ is that when disease prevalence is high, the risk of re-infection is also high and the return 
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to control is therefore low. However, for low/moderate initial levels of infections, along the 

respective optimal eradication paths the prevalence of the disease and the level of control 

decline, indicating a positive relationship between control and prevalence (as illustrated in 

Figures 7.a and 7.b). Therefore informing public health policies on the basis of the „golden rule‟ 

might be inappropriate as the non-convex nature of the problem might require either 

eradication or convergence to the steady-state, depending on initial conditions. 

 

[Figures 7.a, 7.b and 7.c here] 

 

Point b) also requires careful discussion. To the best of my knowledge the existing 

environmental economic literature in OC has looked at the effects of non-convexity with 

respect to the multiplicity of steady-states and the implications for optimal management (e.g., 

Tahvonen and Salo 1996; Rondeau 2001; Brock and Starrett 2003)6.  However, as the problem I 

consider also involves externalities between various agents, a novel aspect emerges in that one 

should consider both cooperative and non-cooperative solutions. Rowthorn et al. (2009), for 

example, look at the optimal control of epidemics in two connected populations (and show that 

the problem is non-convex) but only consider cooperative solutions. My results point out that 

cooperative solutions do not always perform better than OLNE, which is difficult to accept in 

concrete, as two cooperating agents should at least be able to replicate the outcome of non-

cooperating agents. This could be the consequence of the non-convexities in the problem, 

indicating that the FONC of the cooperative solution might not be relied upon to identify a 

corrective mechanism to internalize the between-region externalities. Although providing a 

rigorous proof of this statement is beyond the remit of the paper, there are some results in 
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cooperative game theory that point in this direction, as it appears that when the problem is 

non-convex there are difficulties with the cooperative solutions. Barucci (2000), for example, 

considers an infinite horizon differential game of capital accumulation (with non-convexities 

due to positive spill-over between firms) in both the non-cooperative (OLNE) and cooperative 

framework. He shows that in the linear-quadratic case the OLNE exists, while the cooperative 

solution does not. Engwerda (2007) examines the sufficient conditions for optimal strategies 

(equivalent to the cooperative solution discussed here) in finite time and free terminal state 

cooperative differential games and shows that such conditions bear a close resemblance to the 

Arrow sufficiency theorem (i.e., requiring the joint convexity of the maximized Hamiltonian in 

the state variable) for an OC problem. Although the author is not able to generalize his results 

to free-time problems (as problems (2) and (3) here would require), it seems that when non-

convexities are present the OC problem is not well-behaved, in which case the FONC may fail 

to signal the correct cooperative mechanism to internalize externalities. Perhaps this is an 

aspect which calls for further investigation. 
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Notes 

1 In 2009 the National Science Foundation in the US opened a call for interdisciplinary research 

to look at the Ecology of Infectious Diseases (National Science Foundation, 2009). Also in 

2009, an initiative was launched in the UK by various Research Councils led by the Medical 

Research Council, to undertake interdisciplinary research to look at the Environmental and 

Social Ecology of Human Infectious Diseases (Medical Research Council, 2009). 

2 A metapopulation consists of a group of spatially separated populations (i.e. local demes), 

interacting with each other at some level. 

3 The use of two regions greatly simplifies both the analysis and the notation, while it still 

allows one to think about a general n regions case. 

4 Notice that as the total population in each region is constant, the dynamics of the susceptible 

populations can be obtained simply by changing the sign of (1). 

5 As our model describes the dynamics of a disease in a region, the control must be qualified as 

public/collective. In this model treatment removes infected/infectious individuals. In an 

alternative model treatment could affect the infectiousness of the disease (β) and/or the 

probability of between-regions transmission (p) and/or the recovery rate (ω). 

6 The papers show that when multiple steady-states exist, optimal management trajectories 

may depend on initial conditions. Similarly in my model multiple steady-states exist, but for 

plausible initial conditions only one steady-state can be approached. 
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APPENDICES 

A.1 Existence Theorems 

In what follows I prove the existence of solutions to problems (2) in both free finite terminal 

time (as implemented in problem 4) and infinite horizon (as implemented in problem 8). The 

proof for the cooperative case (i.e., problem 3 and its implementations in finite and infinite 

horizon) is omitted as it is be entirely analogous to the one here presented. 

 

A.1.1 Free finite terminal time 

This proof is based on theorem 5.5 in Seierstad and Sydsaeter (1987). Let the control space be 

. First of all notice that as  are continuous function, the first 

requirement of the theorem is met. Also, by assumption in problem (2) and its implementation 

in finite time (4), . Therefore by setting b=1, the second requirement of the theorem 

is also met. The final requirement calls for the convexity of the set 

 

which I will now prove, drawing on Seierstad and Sydsaeter (1987). 

Keeping  constant let x and y be two arbitrary points in N defined as 

 

and 
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Let , then it is sufficient to prove that . By 

definition 

 

The term in the curly brackets can be developed into 

  

where . Then it follows that 

 which in turn implies that 

.  

By definition  

. 

Then we found a  and a  such that for two arbitrary points in N, x and y, and 

for , 

. 

 

A.1.2 Infinite time horizon 

I extend theorem 5.5 to infinite horizon by using theorem 3.15 in  Seierstad and Sydsaeter 

(1987). In this case the existence of a solution has some additional requirements to those 

presented in A.1.1. First of all notice that in our case  and therefore setting 
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, it follows that  which satisfies the requirement of the theorem. 

Also by setting , the last requirement of the theorem becomes 

. As in our case  and , 

even this requirement is trivially satisfied. 

 

A.2 Sufficiency Conditions 

Here I openly test Arrow-type sufficiency conditions for the OLNE (problems 4 and 8) and 

cooperative solution (problems 9 and 13). 

 

A.2.1 OLNE 

The current value Hamiltonian associated with problems (4) and (8) is 

 

  (A.1) 

 

First of all notice that the necessary Legendre-Clebesh condition is satisfied, as . 

After substituting the maximum condition (6.a) into (A.1) the corresponding Maximised 

Hamiltonian is 

 

  

(A.2) 
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The Arrow-type sufficiency requires the Maximised Hamiltonian to be jointly convex in the 

state variables I1 and I2 , which in turn requires the two principal minors of the Hessian 

matrix associated with (A..2) to be positive (Caputo 2005).  Focusing on region 1 (as the 

analysis for region 2 is symmetric), the Hessian matrix is 

 

  (A.3) 

 

As the determinant is , the quadratic form associated with the second order 

differential will never be positive semidefinite. Moreover the first principal minor will be 

positive if and only if , which in turn would require  and therefore is never 

satisfied. Therefore the quadratic form associated with the second order differential is 

indefinite, suggesting that the Maximised Hamiltonian is neither convex nor concave, and the 

sufficient conditions are not met. 

 

A.2.2 Cooperative Solution 

The current value Hamiltonian associated with problems (9) and (13) is 

 

  (A.4) 

 

Even in this case the necessary Legendre-Clebesh condition is satisfied, as . After 

applying conditions (11.a), the Maximised Hamiltonian is given by 
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(A.5) 

 

The corresponding Hessian Matrix is 

 

  (A.6) 

 

Positive definitiveness of the quadratic form associated with the second order differential of 

(A.5) again requires the two principal minors of (A.6) to be positive . For our parameter 

values this implies  (which is never satisfied, as it would require )  and 

. The second inequality will be satisfied in 

regions I and III of figure A.1. Given the values of μi along the solution paths presented in 

Table A.1, it follows that the sign of the second-order differential associated with (A.5) is 

indefinite. Therefore the sufficient conditions are not satisfied. 

 

[Figure A.1 here] 

[Table A.1 here] 
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A.3 Dynamic stability of the Steady-State solutions 

A.3.1. OLNE 

The FONC for problem (8) can be reduced to expressions (1) and (7), which evaluated in 

steady-state define a system of 4 equations in 4 variables (ui, Ii, i=1,2). The system has 9 steady-

states of which only two are non-degenerate: A = {ui=0.032, Ii=0.8} and B = { ui=0.26, 

Ii=0.42}.  For our parameter values the eigenvalues of the Jacobian matrix associated with the 

FONC, evaluated at steady-state A are , suggesting that 

steady-state A is a saddle point. For steady-state B the corresponding eigenvalues are given by 

. As the real parts of the eigenvalues have 

alternate signs, even steady-state B is a saddle point. 

 

A.3.2. Cooperative Solution 

In the cooperative solutions also two non-degenerate steady-states emerge: A = {ui=0.11, 

Ii=0.73} and B = { ui=0.17, Ii=0.67}. The corresponding eigenvalues of the Jacobian matrix 

associated with the FONC (12, 1) are  and 

 respectively. Both A and B are saddle points. 
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TABLES AND FIGURES 

 

Table 1: Steady-states solutions under the OLNE 

Steady-States Values of the variable Dynamic Stability Properties 

u1 I1 u2 I2 

A 0.032 0.8 0.032 0.8 Saddle Point 

B 0.26 0.42 0.26 0.42 Saddle Point 

 

 

Table 2: Steady-states solutions under cooperative behaviour 

Steady-States Values of the variable Dynamic Stability Properties 

u1 I1 u2 I2 

A 0.11 0.73 0.11 0.73 Saddle Point 

B 0.17 0.67 0.17 0.67 Saddle Point 
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Table 3: summary of model results and optimal policies 

 Eradication Steady-State 

T NPV NPV 

 
   

OLNE 7 2.196 10.116 

Coop Sol 4 2.353 11.256 

 
   

OLNE 14 6.588 12.179 

Coop Sol 7 6.382 12.498 

 
   

OLNE n.a. n.a. 13.977 

Coop Sol n.a. n.a. 13.967 
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Table A.1: values of μi, i=1,2 in the cooperative solutions 

time Ii(0)=0.2, i=1,2 Ii(0)=0.5, i=1,2 Ii(0)=0.75, i=1,2 

Eradication Steady-State* Eradication Steady-State* Steady-State* 

0 11.14375 7.607431 12.88127 7.512677 6.03758 

1 9.742151 6.739839 12.86498 7.265778 6.046541 

2 8.258388 6.135221 12.24647 7.033097 6.054693 

3 6.856293 5.744482 11.13645 6.827313 6.062119 

4 5 5.512353 9.734023 6.655766 6.068888 

5 - 5.390732 8.250473 6.519624 6.075064 

6 - 5.342375 6.84924 6.414529 6.080704 

7 - 5.340357 5 6.332864 6.085858 

8 - 5.36611 - 6.266625 6.090572 

9 - 5.407291 - 6.209591 6.094885 

10 - 5.455957 - 6.158116 6.098834 

11 - 5.507175 - 6.110756 6.102452 

12 - 5.558004 - 6.067366 6.105767 
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13 - 5.606777 - 6.028255 6.108807 

14 - 5.652631 - 5.993676 6.111596 

15 - 5.695187 - 5.963644 6.114154 

16 - 5.734356 - 5.937986 6.116502 

17 - 5.770217 - 5.91644 6.118658 

18 - 5.802939 - 5.898745 6.120638 

19 - 5.832734 - 5.884675 6.122457 

20 - 5.859833 - 5.87403 6.124127 

21 - 5.884465 - 5.866612 6.125661 

22 - 5.906853 - 5.862208 6.127071 

23 - 5.927204 - 5.860577 6.128366 

24 - 5.94571 - 5.861454 6.129556 

25 - 5.962547 - 5.864555 6.130649 

26 - 5.977874 - 5.869586 6.131652 

27 - 5.991836 - 5.876254 6.132573 

28 - 6.004563 - 5.884279 6.133418 
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29 - 6.016172 - 5.893395 6.134193 

30 - 6.026769 - 5.903361 6.134902 

31 - 6.036448 - 5.913958 6.135551 

32 - 6.045297 - 5.924994 6.136145 

33 - 6.05339 - 5.936305 6.136686 

34 - 6.060798 - 5.94775 6.137178 

35 - 6.067584 - 5.959211 6.137624 

36 - 6.073804 - 5.970595 6.138027 

37 - 6.079509 - 5.981825 6.13839 

38 - 6.084746 - 5.992846 6.138713 

39 - 6.089557 - 6.003617 6.139 

40 - 6.09398 - 6.01411 6.13925 

41 - 6.098051 - 6.024311 6.139466 

42 - 6.101802 - 6.034216 6.139647 

43 - 6.105261 - 6.043832 6.139794 

44 - 6.108456 - 6.053173 6.139907 
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45 - 6.111411 - 6.062263 6.139985 

46 - 6.11415 - 6.07113 6.140028 

47 - 6.116694 - 6.079813 6.140033 

48 - 6.119063 - 6.088354 6.14 

49 - 6.121275 - 6.096804 6.14 

50 - 6.123349 - 6.10522 6.14 

51 - 6.125301 - 6.113669 6.14 

52 - 6.127147 - 6.122224 6.14 

53 - 6.128904 - 6.130969 6.14 

54 - 6.130587 - 6.14 6.14 

55 - 6.132211 - 6.14 6.14 

56 - 6.133791 - 6.14 6.14 

57 - 6.135344 - 6.14 6.14 

58 - 6.136885 - 6.14 6.14 

59 - 6.138431 - 6.14 6.14 

60 - 6.14 - 6.14 6.14 

* In any numerical simulation a steady-state will be approached in finite time. 
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Figure 1: Phase-plane diagram of system (1). The following parameter values have been used: 

α=0.2; β=0.2; ω=0.05; p=0.1; N1=N2=1. In the left panel, u1=u2=0 and the system converges to 

the only equilibrium point (a locally asymptotically stable node). The central panel is drawn for 

u1=u2=0.2 and two equilibria appear: a high infection one (which is a local asymptotically stable 

node) and a low infection one (which is a saddle).  For initial conditions given by point A, 

exerting a constant level of control equal to u1=u2=0.2 will lead to eradication in finite time. 

However for different initial conditions, as indicated by point B, the specified level of control 

will move the system towards the stable steady-state. The panel on the right is drawn for 

u1=u2=0.3, where the steady-state equilibria are complex. However for certain initial 

conditions, as indicated by point C, the specified level of control will lead to eradication in finite 

time. 
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Figure 2.a: infection prevalence in region 1 along the OLNE (cross marker) and the 

Cooperative Solution (square marker) eradication path for low initial levels of infection. 

 

 

Figure 2.b: control in region 1 along the OLNE (cross marker) and the Cooperative Solution 

(square marker) eradication path for low initial levels of infection. 



 
47 

 

Figure 3.a: infection prevalence in region 1 along the OLNE (cross marker) and the 

Cooperative Solution (square marker) eradication path for intermediate initial levels of 

infection. 

 

 

Figure 3.b: infection prevalence in region 1 along the OLNE (cross marker) and the 

Cooperative Solution (square marker) eradication path for intermediate initial levels of 

infection. 
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Figure 4.a: infection prevalence in region 1 along the OLNE (cross marker) and the 

Cooperative Solution (square marker) paths converging to steady-state for low initial levels of 

infection. 

 

 

Figure 4.b: control in region 1 along the OLNE (cross marker) and the Cooperative Solution 

(square marker) paths converging to steady-state for low initial levels of infection. 
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Figure 5.a: infection prevalence in region 1 along the OLNE (cross marker) and the 

Cooperative Solution (square marker) paths converging to steady-state for intermediate initial 

levels of infection. 

 

 

Figure 5.b: control in region 1 along the OLNE (cross marker) and the Cooperative Solution 

(square marker) paths converging to steady-state for intermediate initial levels of infection. 
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Figure 6.a: infection prevalence in region 1 along the OLNE (cross marker) and the 

Cooperative Solution (square marker) paths converging to steady-state for high initial levels of 

infection. 

 

 

Figure 6.b: control in region 1 along the OLNE (cross marker) and the Cooperative Solution 

(square marker) paths converging to steady-state for high initial levels of infection. 
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Figure 7.a: relationship between control effort and disease prevalence (for region 1) along the 

optimal eradication path for low initial levels of infection. 

 

 

Figure 7.b: relationship between control effort and disease prevalence (for region 1) along the 

optimal eradication path for intermediate initial levels of infection. 
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Figure 7.c: relationship between control effort and disease prevalence (for region 1) along the 

optimal path converging to steady-state for high initial levels of infection. 
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Figure A.1: the determinant of A.6 is positive in regions (I) and (III), while it is negative in 

region (II). 

 


