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Abstract

Stollery (1998) studied a polluting oil extracting economy governed by the con-

stant utility criterion. The pollution caused the growth of temperature, nega-

tively a¤ecting production and utility. Stollery provided a closed form solution

for the case with the Cobb-Douglas production function and temperature a¤ect-

ing only production. This paper o¤ers a closed form solution to a non-trivial

example of this economy with utility a¤ected by temperature.
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1. Introduction

A social planner in Stollery�s (1998) problem followed a constant utility

criterion where utility and production were negatively a¤ected by irreversible

global warming resulting from oil use. Stollery obtained the closed form so-

lutions, considering the case with temperature a¤ecting only production for

the extended Dasgupta-Heal-Solow-Stiglitz (DHSS) model (Dasgupta and Heal,

1974; Solow, 1974; Stiglitz, 1974) under the Hartwick investment rule (Hartwick,

1977).1 Stollery did not consider the case where temperature a¤ected utility,

noting that �exactly the same energy path results from temperature e¤ects in

a standard constant elasticity utility function�(Stollery, 1998, p. 734).

However, the case with utility a¤ected by global warming raises some in-

teresting and important questions since the negative e¤ect of temperature can

represent an aggregate damage resulting from economic activity. For example,

Bazhanov (2009b) analyzed a solution to this problem for an imperfect econ-

omy that has been extracting the resource for a period of time before considering

the goal of sustainable development in the form of the constant utility criterion.

This approach showed that the economy can be sustainable or unsustainable de-

pending on the parameters of the hazard function and on the technology and the

initial endowments of the economy. The result implied the necessity of a more

general notion of sustainability (semisustainability) that can provide an oppor-

tunity for an economy to decline asymptotically to a su¢ cient survival level

instead of collapsing in �nite time after a period of overconsumption. A similar

problem arises in the cases when utility is positively a¤ected by the remaining

resource stock, e.g., when the stock has an amenity value (Krautkraemer, 1985;

Schubert and d�Autume, 2008).

In Bazhanov (2009b), the problem was studied numerically using a di¤eren-

tial equation for capital, which implied all other paths in the economy including

the path of the hazard function. The current paper provides the closed form

1Stollery showed that the Hartwick rule is still optimal in this problem.
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solution for a speci�c case in this economy. Unlike Bazhanov (2009b), where

the problem was formulated for an imperfect economy with the given state of

the oil extraction industry (the initial rate of extraction), this paper o¤ers a

conventionally speci�ed example for the given initial assets of capital and the

resource reserve. The uncertainty of policy recommendations in this case is

discussed using a numerical example, which resembles the current state of the

world�s oil extracting industry.

2. The model

Stollery provided a closed form solution to an oil-burning DHSS economy2

with the production function negatively a¤ected by growing temperature and

with an isoelastic utility that depended only on consumption. The current paper

considers the case with utility alone a¤ected by the hazard function T: A social

planner chooses the path of per capita consumption c (by choosing a saving

rule) and the path of the per capita resource extraction r (by choosing a tax)

to maximize the constant over time level of per capita utility u :

u(c; T ) =
�
cT�1

�(1��)
=(1� �) = u = const [c(t); r(t)]! max

c(t);r(t)
: (1)

The balance equation and the production function are

q(t) = c(t) + _k(t) = k�(t)r�(t); (2)

where q and k are per capita output and capital; �; � 2 (0; 1); �+� < 1; � > �:3

The optimal investment rule is _k := dk=dt = rqr = �q; where qr := @q=@r:

Stollery assumed that technical change compensated for the e¤ect of growing

2The Cobb-Douglas production function, which is used in the DHSS model, has become one

of the most popular tools in Resource Economics both for theoretical studies (e.g., Dasgupta

and Heal, 1979; Asheim, 2005, Hamilton and Withagen, 2007) and for practical applications,

e.g., for the global climate change assessment (Nordhaus and Boyer, 2000).
3The share of labor in this problem is 1 � � � �: The Solow (1974) condition � > �

guarantees the convergence of the integral
R1
0 rdt:
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population, so there are no explicit technical advances in the model, and popu-

lation is constant.4 The hazard T grows with the resource extraction:

T (t) = T [r(t)] = T0

�
�

Z t

0

r(�)d� + 1

�'
= T0[�(s0 � s(t)) + 1]'; (3)

where �; ' > 0 are the parameters, s0 is the initial per capita oil stock, and

s = s(t) is the current oil stock, implying r = � _s: Function T can vary from

constant to polynomial depending on the value of ':5

The constant utility criterion requires the following paths of per capita out-

put q; consumption c; and, di¤erentiating q; the path of the growth rate _q=q :

q(t) = q0 f�[s0 � s(t)] + 1g' ; (4)

c(t) = c0 f�[s0 � s(t)] + 1g' ; (5)
_q(t)

q(t)
=

'�r(t)

� [s0 � s(t)] + 1
: (6)

The rate of growth for '� > 0 is positive, declining starting from

_q(0)

q(0)
= '�r0; (7)

and approaching zero with t ! 1: The optimal initial consumption is c0 =

(1 � �)q0; where q0 = k�0 r
�
0 ; and the value of the initial rate of extraction

r0 = r0(k0; s0; ';�) is linked to the initial stocks and the intensity of the hazard

via the e¢ ciency condition s0 =
R1
0
r(t)dt: 6

In contrast to the Solow-Hartwick case ('� = 0), per capita output and

consumption grow here under the same Hartwick investment rule when '� > 0:

The growth is limited by

q1 = q0 f�s0 + 1g' and (8)

c1 = c0 f�s0 + 1g' (9)

4A plausible alternative to this assumption can be a TFP (Total Factor Productivity)

compensating for capital decay. In more details see Bazhanov (2009a).
5The speci�cations of utility and temperature functions are di¤erent here from the ones

considered by Stollery; in particular, Stollery related temperature to the remaining resource

stock (T 0(s(t)) < 0); here temperature depends on the extracted (burned) resource stock

(T 0(s0 � s(t)) > 0). The other di¤erences are discussed in Bazhanov (2009b).
6See, e.g., formulas (40) and (41).

4



respectively. The limit for temperature growth is T1 = T0 (s0�+ 1)
'
: The

only source of output and consumption growth is a redistribution of the re-

source among generations. A social planner imposes a positive declining tax on

extraction, resulting in a lower rate of initial extraction (implying lower c0 and

q0) and a slower decline in the rates of extraction. Namely, from the speci�-

cation of the production function, the equation for the rate of output growth

is _q=q = � _k=k + � _r=r: Then, given _k0 = �q0 and using (7), the initial rate of

change in the rate of extraction is _r0=r0 = ['�r0 � ��q0=k0] =� or

_r0
r0
=
r0
�

h
'�� ��k��10 r��10

i
yielding the following condition:

_r0 R 0 i¤ '� R ��

k1��0 r1��0

: (10)

This condition, however, does not directly imply that a growing initial extraction

can be optimal in this problem because r0 declines with the growth of '�: A

speci�c example of the optimal _r0 > 0 is provided in Section 4, condition (42).

The growth of output and the declining to zero �ow of the resource imply

an unbounded growth of capital in this problem.

The constant-utility criterion in the form of (1) seemingly implies that the

optimal initial values of q0 = c0=(1 � �) and c0 should depend on the prefer-

ence parameter � and the initial temperature T0; namely, cT�1 = bu = const =
[u(1� �)]1=(1��) yielding c0 = T0 [u(1� �)]1=(1��) : However, since � is a con-

stant here, the optimal policy in this framework maximizes bu and the corre-
sponding value of u(bu; �) regardless of the preference parameter. As to the

value of T0 as a �preindustrial level�of temperature, the normalization T0 = 1

can be used assuming that the hazard does not a¤ect utility when the resource is

not being extracted. Hence, problem (1) is equivalent to the problem of �nding

bu = const [c(t); r(t)] = max
c(t);r(t)

c(t)T [r(t)]
�1 (11)

with T0 = 1 in formula (3).
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For obtaining the optimality conditions, Stollery used the approach of Leonard

and Long (1992, pp. 300-304), which reformulates problem (11) into the follow-

ing equivalent problem:

maximize V (t) �
Z 1

t

bu�e���d� for t = 0 (V (0) = bu = const) (12)

for an arbitrary constant � subject to (omitting the dependence on time)

_k = q � c; _s = �r; and bu = u(c; T ): (13)

The Hamiltonian of this problem is

H = bu�e��t + �k(q � c)� �sr: (14)

The utility constraint yields the Lagrangian to be maximized:

L = H + �(u� bu):
In the general case, when both production and utility are a¤ected by the hazard,

the Pontryagin-type necessary conditions for the state variables k and s are7

Lc = �uc � �k = 0; (15)

Lr = �kqr � �s = 0; (16)

_�k = �
@L

@k
= ��kqk; (17)

_�s = �
@L

@s
= � (�kqT + �uT )Ts0�s � @(s0 � s)=@s; (18)Z 1

0

Lbudt =
Z 1

0

�
�e��t � �

�
dt = 1�

Z 1

0

�dt = 0: (19)

Eq. (18) with �k from Eq. (15) results in

_�s = Ts0�s�uc

�
qT +

uT
uc

�
: (20)

7Here �k and �s are indexed dual variables unlike uc; qk; and qr; which are the partial

derivatives of u and q:
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The time derivative of Eq. (16) is _�s = _�kqr + �k _qr; which, divided by qr and

combined with Eq. (20), gives

_qr
qr
�k + _�k =

Ts0�s�uc
qr

�
qT +

uT
uc

�
:

Substitution for _�k from Eq. (17) with �k from Eq. (15) yields

_qr
qr
= qk +

Ts0�s
qr

�
qT +

uT
uc

�
; (21)

which is the Hotelling rule with the negative additional term �(t) := Ts0�s (qT + uT =uc) =qr

resulting from the e¤ects of the externality. The fact that �(t) 6= 0 in the pres-

ence of the hazard factor ('� > 0) implies that the optimal paths in this

problem can only be asymptotically e¢ cient because the standard Hotelling

rule (� = 0) as a necessary e¢ ciency condition8 is satis�ed only with t ! 1

due to exhaustion of the resource.

Stollery obtained the optimality of the Hartwick rule from the Hamilton-

Jacobi-Bellman equation9 for the problem (12), (13) instead of using necessary

conditions (15) �(19). Namely, the Hamilton-Jacobi-Bellman equation estab-

lishes the following link between the maximized Hamiltonian and value function:

�@V �=@t = H�: (22)

An autonomous in�nite-horizon problem such as (12), (13) has the property:

V (t) = V (0)e��t:10 Then �@V �=@t = V (0)�e��t = bu�e��t and H� = bu�e��t +
Vk _k + Vs _s (��k and �

�
s are the shadow prices of capital and the resource stock)

yielding ��k _k+�
�
s _s = 0, which means that the investment �

�
k
_k must be equal to

the resource rent ��sr under optimal prices (Hartwick, 1977).

In this framework, the equations for the optimal paths in the economy can

be derived from

a) the condition cT�1 = bu = const;
b) the Hartwick rule, which provides the maximum level of bu;
8See, e.g., Dasgupta and Heal (1979).
9See, e.g., Leonard and Long (1992, p. 182-183).
10Leonard and Long (1992, Theorem 9.4.1, p. 293).
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c) the balance equation (2) specifying the production function, and

d) the Hotelling rule (21), which gives the optimal tax on extraction.

3. Optimal paths

The optimal path of output (4) can be written as q(t) = q0
h
�
R t
0
r(�)d� + 1

i'
:

Raising to the power 1=' yields q1=' = q1='0

h
�
R t
0
r(�)d� + 1

i
(restriction ' 6= 0

will be lifted below). Time derivative, substituting for r = q1=�k��=� ; is

q1='�1 _q=' = q
1='
0 �r = q

1='
0 �q1=�k��=� : This equation with the optimal saving

rule gives a system of the two di¤erential equations in q and k :

q1='�1�1=�dq=dt = 'q
1='
0 �k��=� ;

dk=dt = �q:

Following Schubert and d�Autume (2008), the system can be solved by elimi-

nating time (dt = dk=(�q)): q1='�1=�dq = A1k��=�dk; whereA1 = 'q
1='
0 �=� >

0: Integration gives q1+1='�1=�=(1 + 1=' � 1=�) = A1k
1��=�=(1 � �=�) + C1

or qa = A2k1��=� + C2; where a = 1 + 1=' � 1=� = ['(� � 1) + �]=('�) and

A2 = aA1=(1 � �=�): Note that a R 0 and A2 Q 0 when ' Q �=(1 � �):

Calibration at t = 0 gives C2 = qa0 (1 � B1k
1��=�
0 ); where B1 = A2q

�a
0 =

q
1=��1
0 � ['(1=� � 1)� 1] =(�� �) (B1 R 0 when A2 R 0). Then

q = q0

�
B1k

�(�=��1) + C3

�b
; (23)

where C3 = 1 � B1k1��=�0 and b = 1=a = '�=['(� � 1) + �]: Henceforth, the

restriction ' 6= 0 is not relevant; the case with ' ! �=(1 � �) causing b ! 1

is considered below.

Eq. (23) shows that q(t) ! q� = q0C
b
3; and the saving rule implies that

c(t)! c� = q0(1� �)Cb3 as k(t)!1 with t!1: The obtained expression for

q combined with the optimal saving rule gives a di¤erential equation in capital,

and then the dynamics of the economy is de�ned by the following system:

_k = _k0

�
B1k

�(�=��1) + C3

�b
; (24)

r(t) = q(t)1=�k(t)��=� ; (25)
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where _k0 = _k(0) = �q0:

The case with ' = 0 implies b = 0; yielding linear capital k(t) = �q0t+ k0;

which coincides with the Solow-Hartwick case and with Stollery�s solution for

 = 0: The extraction in this case is r(t) = r0 (r1t+ 1)
��=�

; where r1 = �q0=k0:

For the case with '! �=(1��); implying a! 0 or b!1; Eq. (24) can be

rewritten as follows: _k = _k0C
b
3

�
1 + k�(�=��1)B1=C3

�b
or _k = _k0C

b
3

�
1� k�(�=��1)aB5

�1=a
;

where B5 := q�a0 A1=
h
(�� � 1)C3

i
: Note that C3 ! 1 when a ! 0; but Cb3 =

(1 + aB6k
�(�=��1)
0 )1=a; where B6 := q�a0 A1=(

�
� � 1) > 0; so lima!0 C

b
3 =

exp
h
B6k

�(�=��1)
0

i
and lima!0B5 = B6: Then, Eq. (24) takes the form

_k = _k0e
B6k

�(�=��1)
0 e�B6k

�(�=��1)
: (26)

Eq. (24) is integrable in quadratures:Z k(t)

k0

d{�
B1{�(�=��1) + C3

�b = _k0t+ Const; (27)

however, in the general case, k(t) obtained from this equation cannot be ex-

pressed in elementary functions.11 The following section provides a nontrivial

(' 6= 0) example with the closed form solution to Eq. (24).

A di¤erential equation for the tax on extraction �(t) can be obtained from

Eq. (21) using the fact that the resource price with no imperfections qr � �

should satisfy the standard Hotelling rule (� � 0):

d(qr ��)=dt
qr ��

= qk:

11The LHS of Eq. (27) can be expressed using special functions. For ex-

ample, in the case with a = 0; this equation takes the form of a nonlin-

ear equation in k : z(k) = _k0 exp(B6k
�(�=��1)
0 )t + Const; where z(k) =

D1(k)
�
�
�
�B6k�=(1 + �) + 1

�
�WhittakerM(D2; D3; B6k�) + (1 + �) �WhittakerM

�
D2 + 1; D3; B6k�

��
;

with � := 1 � �=�; D1(k) := B
�(1+3�)=(2�)
6 k(1�3�)=2 exp

�
�B6k�=2

�
=(1 + 2�);

D2 := (2 � �)=(2�); D3 := (1 + 2�)=(2�): Here WhittakerM(�) is the Whittaker M

special function, which is available, e.g., in Maple or Mathematica software. When a = 0

and � = 2�; the LHS of Eq. (27) is z(k) = k exp(�B6=k) � Ei(1; B6=k); where Ei(�) is the

Exponential integral special function, which is also available in computational software.
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This equation gives the dynamic condition for the tax depending on the path

of the Hotelling rule modi�er �(t) :

_���qk � �qr = 0: (28)

Eq. (28) has a solution12

�(t) = �0 (k(t)=k0)
�=� � qr(t)

h
(q(t)=q0)

1=��1 � 1
i
; (29)

where �0 = �(0) is the initial condition.

The value of �0 can be expressed from the formula for the initial resource

price with no imperfections: qr(0) � �(0) = �q00=r
0
0; where q

0
0 = k�0

�
r00
��
and

r00 satis�es Eq. (32). Namely,

�0 = �
n
k�0 r

��1
0 � k0= [s0(�� �)]

o
: (30)

In the case with � = 0; there is no tax since r0 = r00: Eq. (30) yields the optimal

initial tax that is required to obtain the optimal initial rate of extraction r0;

de�ned in the conventional approach from the e¢ ciency condition given k0; s0; ';

and �. Eq. (30) can be inverted to show the link between the value of �0 and

the resulting value of r0 : r
��1
0 = [�0s0(�� �) + �k0] = [�k�0 s0(�� �)] or

r0 =

�
(�� �)s0=k1��0

1 + (�� �)s0�0= (�k0)

� 1
1��

; (31)

which coincides with the r00 in the Solow-Hartwick case (�0 = 0)

r00 =
�
(�� �)s0=k1��0

� 1
1�� (32)

and monotonically declines to zero with �0 !1:

4. An example of a closed form solution

Let ' = � and � = 2�: Then b = a = 1; A2 = aA1=(1 � �=�) = �A1 =

�q1=�0 � < 0; B1 = A2q
�a
0 = �q1=��10 � < 0; and C3 = 1 + �k

1��
0 r1��0 > 0: In

this case, Eq. (24) becomes

_k =
B4
k
+ C4; (33)

12See Bazhanov (2009a, Appendix 1).
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where B4 := _k0B1 < 0 and C4 := _k0C3 > 0: Eq. (33) in quadratures, denoting

D0 := B4=C4 = B1=C3 < 0; isZ
k

k +D0
dk = C4t+ bC;

where bC is the constant of integration. Integration of the LHS yields
k �D0 ln (k +D0) = C4t+ bC: (34)

After denoting x := ln (k +D0) ; the last equation becomes ex � D0(x + 1) =

C4t + bC or ex = D0 (x� p) ; where p := �C4t=D0 � 1 � bC=D0: Multiplication
of both sides by �e�x+p=D0 results in the equation �ep=D0 = e(p�x) (p� x) ;

which, by the de�nition of the Lambert W function,13 has the solution

p� x =W (�ep=D0) :

Then, k +D0 = exp [p�W (�ep=D0)] = �D0 [�ep=D0] e�W (�ep=D0): The def-

inition of the Lambert W function implies that W (z) = ze�W (z); transforming

the last equation as follows: k +D0 = �D0W (�ep=D0) or

k(t) = �D0

8<:1 +W
0@�e�C4

D0
t�1� bC

D0

D0

1A9=; ; (35)

where bC; de�ned from Eq. (34) at t = 0; is bC = k0 � D0 ln (k0 +D0) : After

substitution for bC into Eq. (35), it becomes
k(t) = D0

�
�1�W

�
e�

C4
D0

t � e�
k0
D0

�1 �
�
� k0
D0

� 1
���

; (36)

which must be equal to k0 at t = 0: Indeed, by the de�nition, W [ezz] = z;

therefore, the RHS of Eq. (36) at t = 0 equals D0
n
�1�

h
� k0
D0
� 1
io

= k0:

Since �C4=D0 < 0; D0 < 0; and W is monotonically growing function with

13Lambert W function is the solution to the equation yey = z; namely, y = W (z): The

derivative (for z 6= �1=e) of W is dW=dz = W (z)= [z (1 +W (z))] ; and the antiderivative of

W (z) (using the substitution w =W (z)) z = wew ) is
R
W (z)dz = z [W (z)� 1 + 1=W (z)]+

C: In more details about the Lambert W function see, e.g., Corless et al. (1996).
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limz!1W (z) = 1; capital is growing with no limit along a path that grows

faster than a linear function (Fig. 6). Formula (36) can be considered as a

closed form solution for k(t) (using an alternative de�nition of this notion) since

function W is uniquely de�ned for k0 > 0;14 and numerical implementations of
this function are available in major computational software.

Substitution for k(t) into Eq. (24) gives the closed form path of investments,

which, using the optimal saving rule _k = �q; implies the paths of output, con-

sumption, and extraction:

q(t) = q0

(
B1
D0

�
�1�W

�
e�

C4
D0

t � e�
k0
D0

�1 �
�
� k0
D0

� 1
����1

+ C3

)
; (37)

c(t) = c0

(
B1
D0

�
�1�W

�
e�

C4
D0

t � e�
k0
D0

�1 �
�
� k0
D0

� 1
����1

+ C3

)
; (38)

r(t) = q(t)1=�k(t)��=� ; (39)

where c0 = (1� �)q0: On the other hand, the constant utility criterion implies

that c(t) = c0[�(s0 � s(t)) + 1]'; yielding (for ' = �) the equation for the path

of the current reserve:

s(t) = s0 �
1

�

�n
B1k(t)

�1
+ C3

o1=�
� 1
�
:

In the limit, this formula becomes s1 = limt!1 s(t) = s0 � 1
�

�
C
1=�
3 � 1

�
=

s0�
��
1 + �k1��0 r1��0

�1=�
� 1
�
=�: Then, the e¢ ciency condition s0 =

R1
0
rdt

results in the following relationship between k0; s0; and r0 :

r0 =
nh
(s0�+ 1)

� � 1
i
=
�
k1��0 �

�o1=(1��)
: (40)

Note that r0 is a decreasing function of � in this case (Fig. 1), which means

that the greater the intensity of the hazard the larger the amount of the resource

14Function W (z) is uniquely de�ned for z > �1=e implying that k0 should sat-

isfy the condition e
�C4
D0

t � e�
k0
D0

�1 �
�
� k0
D0

� 1
�

> �1=e for any t > 0: This in-

equality holds when � k0
D0

� 1 > 0 or k0 > �D0 (�D0 is a positive number here:

�D0 = �B1=C3 = k
�=���
0 r1��0 �=

h
1 + �k1��0 r1��0

i
). Then, after dividing both sides by

k0=
�
1 + �k1��0 r1��0

�
; the condition of the uniqueness of the representation via the Lambert

W function for the case with � = 2� is 1 + �k1��0 r1��0 > �k1��0 r1��0 ; which is always true.
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that should be left for the future in order to o¤set the hazard with the growth

of consumption according to the criterion. At the same time, reallocation of the

resource to the future �attens the path of temperature until the rates of growth

of temperature and consumption completely compensate for each other.

The initial tax on extraction should be higher (Fig. 2) for a larger �; and

the initial level of consumption should be lower as a result of a lower r0. Letting

�! 0 and using the L�Hôpital�s rule, condition (40) becomes

r00 = lim
�!0

r0 =
�
�s0=k

1��
0

� 1
1�� (41)

coinciding with the expression (32) in the Solow-Hartwick case for � = 2�:

Formula (40) speci�es condition (10) of the optimality of the growing ini-

tial extraction depending on the hazard factors. Namely, the second inequal-

ity of this condition becomes � R �k1��0 �=
n
k1��0

h
(s0�+ 1)

� � 1
io

or 1 R

�=
h
(s0�+ 1)

� � 1
i
; yielding

_r0 R 0 i¤ � R (1 + �)1=� � 1
s0

: (42)

According to this condition, the optimal pattern of extraction can be hump-

shaped even in the case with a small intensity of the hazard � when the initial

reserve s0 is large. An example of the optimal hump-shaped extraction path is

provided in the next section (Fig. 4, solid line).

Formula (30) for � = 2� becomes

�0 = �k
�
0 r

��1
0 � k0=s0: (43)

The explicit dependence of the initial tax on the hazard parameter � results

from combining Eqs. (40) and (43):

�0(�) =
�k0�

(s0�+ 1)
� � 1

� k0
s0
: (44)

Expressed in the terms of the resource price, the initial tax is �0(�)=qr(0) =

1� k1��0 =
�
s0�r0(�)

��1� or
�0(�)=qr(0) = 1�

(s0�+ 1)
� � 1

�s0�
:

13



This equation shows (using the L�Hôpital�s rule) that �0(�)=qr(0) asymptoti-

cally approaches unity with �!1 starting from zero when � = 0 (Fig. 2).

It can be easily shown that the asymptotes15 for q(t) and c(t) given by Eqs.

(37) and (38) coincide with q1 and c1 given by formulas (8) and (9) for ' = �.

For example, q1 = q0C3 = q0

�
1 + �k1��0 r1��0

�
; which after substitution for

r0 from formula (40) yields formula (8) with ' = �:

Given Eq. (29) and the other paths (36) �(39), the path of the tax in terms

of the resource price �=qr is �=qr = �0k�=�=
�
k
�=�
0 �k�r��1

�
�(q=q0)1=��1+1;

which can be rewritten as follows:

�(t)

qr(t)
= q(t)1=��1

"
�0

�k
�=�
0

� 1

q
1=��1
0

#
+ 1: (45)

The boundedness of output in this problem implies the value of the asymptote

for �=qr; using Eqs. (8) and (43):

�1
qr1

= q1
1=��1

"
�0

�k
�=�
0

� 1

q
1=��1
0

#
+ 1

=
�0q

1=��1
0 (s0�+ 1)

1��

�k
�=�
0

� (s0�+ 1)1�� + 1

=
�r�10 q

1=�
0 (s0�+ 1)

1�� � q1=��10 (s0�+ 1)
1��

k0=s0

�k
�=�
0

� (s0�+ 1)1�� + 1

= 1� k
1��=�
0

�s0
q
1=��1
0 (s0�+ 1)

1��
= 1� k

1��
0

�s0
r1��0 (s0�+ 1)

1��
;

which after substitution for r0 from Eq. (40) becomes

�1
qr1

= 1� 1

�s0�

h
(s0�+ 1)� (s0�+ 1)1��

i
: (46)

Using the properties of the Lambert W function, it can be shown that for

any parameters of the problem the tax becomes negative in the long run when

� > 0: Namely, from Eq. (46), the condition that �1=qr1 < 0 for s0� > 0 is

(s0�+ 1) � (s0�+ 1)1�� > �s0�: The substitutions p := s0� + 1 and �v :=

1 � � + 1=(p � 1) (or � = v + 1 + 1=(p � 1)) transform this condition into the

15The asymptotes follows from the fact that limz!1W (z) =1:
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Figure 1: The dependence of the initial rate of extraction r0 on the hazard factor �:

following form:16 p�vp�1=(p�1) < �v(p� 1); which can be rewritten as

vpv < �p
�1=(p�1)

p� 1 or ev ln pv ln p < �p
�1=(p�1)

p� 1 ln p:

The de�nition of the Lambert W function yields

v ln p < W (�p
�1=(p�1)

p� 1 ln p) or v <
W (�p�1=(p�1)

p�1 ln p)

ln p
:

The last inequality in the original variables is

� < 1 +
W
h
� (s0�+1)

�1=s0�

s0�
ln (s0�+ 1)

i
ln (s0�+ 1)

+
1

s0�
: (47)

Since W (zez) = z (denoting z := � 1
s0�

ln (s0�+ 1)), the numerator of the �rst

fraction in (47) is

W

�
� 1

s0�
ln (s0�+ 1) (s0�+ 1)

�1=s0�
�
= � 1

s0�
ln (s0�+ 1) ;

and then condition (47) becomes � < 1;which is always true in this problem.

Hence, if � > 0; there exists t > 0 such that �(t) < 0 for any t > t and for any
values of the parameters in this problem (see, e.g., Fig. 3).

16The same inequality can be obtained from Eq. (45) as a condition of the existence of the

moment of time where �=qr becomes negative.
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Figure 2: The dependence of the initial tax in terms of the initial resource price �0(�)=qr(0)

on the hazard factor �:

5. Numerical example

Let the shares of capital and the resource are � = 0:3 17 and � = 0:15; the

hazard function parameters: ' = �; � = 0:02; T0 = 1; the initial stocks of the

economy: s0 = 371 bln t, k0 = 14:35:18 Formula (40) yields the optimal initial

rate of extraction r0 = 3:524 bln t/year (cf. r0 = 12:61 bln t/year for � = 0;

Fig. 1). This reduced initial extraction results from the tax �0 = 0:0756 (or in

the terms of the resource price �0=qr(0) = 0:66) applied at t = 0 and estimated

by formula (44).

The externality causes the following deviation from the standard Hotelling

rule at t = 0 : �(0) = Ts0�s(0)uT (0)= (uc(0)qr(0)) = T0'��(�c0=T 20 )=
�
�k�0 r

��1
0 =T0

�
=

�(1 � �)k�0 r
�
0�=

�
k�0 r

��1
0

�
= �(1 � �)�r0 or �(0) = �0:0599: Eq. (28) yields

17See, e.g., Nordhaus and Boyer (2000).
18To make the example more illustrative, these initial values imply the rate of extraction r0

that is close to the current world oil rate of extraction given s0 as the world oil reserve estimate.

Namely, the world rate of crude oil extraction on January 1, 2010 is 70502.6 [1000 b/day]/7.3

[b/t] � 365 � 10�6 = 3.525 [bln t/year] (World Oil, 2009). CERA (2006) claimed that

actual world oil reserve in 2006 was three times larger (about 512 bln t) than the conventional

estimate. I take here s0 = 2� 185:5 = 371 [bln t] = 2�1,354,182,395 [1000 b]/7.3 [b/t] �

10�6; where 185.5 [bln t] is the conventional estimate (World Oil, 2009). One ton of crude oil

equals here 7.3 barrels.
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Figure 3: The path of the tax in terms of the resource price �(t)=qr(t): In the Solow-Hartwick

case the tax is zero.

_�(0) = �0qk(0)+�(0)qr(0): The initial values of marginal productivities qk(0) =

�k��10 r�0 = 0:056 and qr(0) = �k
�
0 r

��1
0 = 0:11 result in _�(0) = �0:0026 show-

ing that the tax is declining at t = 0:

The path of the tax in terms of the resource price (45) is depicted in Fig. 3.

The tax becomes negative after 40 years and approaches the negative asymptote

�1=qr1 = �1:07:

Capital for � = 0:02 (Fig. 6, solid line) grows faster than a linear function.19

Linear capital in the Solow-Hartwick case (Fig. 6, circles) has a steeper slope

( _k00 = 0:488) due to the higher rate of extraction at t = 0: The optimal paths of

per capita consumption for the cases with � = 0:02 and � = 0 are in Fig. 7.

The tax imposed by the planner for � = 0:02 results in a hump-shaped

optimal path of extraction (Fig. 4, solid line). The path in circles in Fig. 4

corresponds to the case with � = 0 (Solow-Hartwick case, no tax). Note that,

in the conventional approach,20 a relatively small uncertainty in the hazard

parameter leads to a large uncertainty in the short-run resource policy (Figs.

2 � 5). The model shows that if the planner is unaware of the externality

19This linear function k0 + _k0t with k0 and _k0 = 0:403 for � = 0:02 is depicted as a dotted

line in Fig. 6
20 I mean here the approach where r0 is to be derived as an optimal or equilibrium value.
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Figure 4: The optimal paths of extraction: for � = 0:02 - solid line, for � = 0 (Solow-Hartwick

case) - circles.

or is going to neglect its e¤ect and implement an economic program with the

maximum constant per capita consumption over time, she should apply the

policies that will result in the current rate of extraction r0 = 12:61 bln t/year,

which is 3.6 higher than in the case with � = 0:02:

The uncertainty of the conventional approach in de�ning r0 with respect

to the imprecision of the reserve estimate s0 is illustrated in Figs. 5a and 5b,

where s10 is a conventional world oil reserve estimate (World Oil, 2009), s
3
0 is

the estimate of CERA (2006), and s20 = 2 � s10 is the estimate that is used

in this example as s0 and is somewhere between s10 and s
3
0: Note that a small

hazard factor (Fig. 5b) results in higher uncertainty than the large one since,

for the larger values of �; the initial rate of extraction should be essentially

lower, reducing the uncertainty of this value.

For a small extracting �rm that has just discovered or obtained an oil �eld

at an auction, an approach that provides the initial rate of extraction as a policy

recommendation could be possible when the oil-extracting capital is available

in required quantities and the elasticity of the demand for the resource is high.

However, for a large incumbent �rm that has been extracting the resource for

a period of time and is going to reestimate the optimal path, this approach can

be questionable due to the high volatility of this recommendation with respect

18



Figure 5: The dependence of the initial rate of extraction r0 [bln t/year] on the reserve s0

for di¤erent values of the hazard factors � : (a) � = 0:02; (b) � = 0; s10 = 185:5 bln t � the

current world oil reserve according to World Oil (2009); s20 = 2� 185:5 bln t; s30 = 512:3 bln

t �CERA (2006) world oil reserve estimate.

to uncertainties.

For example, if the extraction was started under the constant consumption

criterion (� = 0) and with the initial reserve estimate s0 = s10; the initial rate

of extraction would be r10 = 5:58 bln t/year (Fig. 5b). The announcement

similar to CERA (2006) about the larger actual reserve s0 = s30 would cause

the immediate jump in the rate of extraction up to the new value r30 = 18:44

bln t/year as a result of the reestimation of the optimal path using the same

approach. Then, if the social planner takes into account information about the

hazards of the extraction of the resource and decides to follow the constant

utility path with � = 0:02; the imposed tax should instantly cut down the rate

of extraction to the new initial value br30 = 4:2 bln t/year (Fig. 5a).
The e¤ect of deviation of the optimal path from the initially estimated path

recalculated at a later date is called �dynamic inconsistency�in the literature.21

In this case, inconsistency takes the form of considerable discontinuous jumps in

21For example, Newbery (1981) considered various reasons for dynamic inconsistency in oil

markets including the changes in the market structure.
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Figure 6: The optimal paths of capital: for � = 0:02 - solid line, the linear path for � = 0

(Solow-Hartwick case) - circles, the path k0 + _k0t with k0 and _k0 for � = 0:02 - dotted line.

resource policies that can lead to socioeconomic and environmental damage;22

some of these jumps can be unrealizable in practice.

Hence, the approaches that result in the paths that are discontinuous with

respect to the initial state of economy could be appropriate only for small �rms

entering the market or for theoretical studies where the questions of the tran-

sition to an optimal state are not important (Bazhanov, 2010). In many cases,

reestimation of the optimal path requires a solution that is linked to the ini-

tial conditions, including the initial state of the extracting industry (Bazhanov,

2009a, Section 9; Bazhanov, 2009b).23

6. Concluding remarks

This paper has o¤ered an example of the closed form solution for the problem

of irreversible global warming under the constant utility criterion (Stollery, 1998)

with utility negatively a¤ected by the hazard factor. The solution was expressed

via the Lambert W special function, which has convenient analytical properties

22One can recall the consequences of the oil embargo in 1973.
23Pezzey (2004, formula (15), p. 477) o¤ered an example of solving the problem of dy-

namic inconsistency by specifying the discount factor in the utilitarian criterion for given

technological parameters and the current state of economy.
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Figure 7: The optimal paths of per capita consumption: for � = 0:02 - solid line with the

asymptote (dotted line), the constant path for � = 0 (Solow-Hartwick case) - circles.

for any parameters in this problem. For example, using the properties of this

function, it was shown that the declining tax in this problem becomes negative

in the long run.

The main qualitative distinctions of this problem from the Solow-Hartwick

case with no hazard are:

(a) output and consumption are growing and asymptotically approaching

positive constants;

(b) the initial rate of the resource extraction is lower, implying (for the same

initial capital) lower levels of initial output and consumption;

(c) the economy is e¢ cient only asymptotically with exhaustion of the pol-

luting resource;

(d) the optimal path of the resource extraction can be hump-shaped;

(e) capital is growing faster than a linear function.

The example has shown that the initial rate of extraction and the initial

tax, provided in the conventional approach as policy recommendations, can be

signi�cantly uncertain due to the uncertainties in the initial reserve and in the

intensity of the hazard. The uncertainty is considerably higher in the case of

the low values of the intensity of the hazard (Figs. 1, 2, 4, and 5).
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