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Abstract

We work with a newly developed method to empirically assess whether a spec-

ified new-Keynesian business cycle monetary model estimated with U.S. quarterly

data is consistent with a unique equilibrium or multiple equilibria under rational

expectations. We conduct classical tests to verify if the structural model is correctly

specified. Conditional on a positive answer, we formally assess if such model is ei-

ther consistent with a unique equilibrium or with indeterminacy. Importantly, our

full-system approach requires neither the use of prior distributions nor that of non-

standard inference. The case of an indeterminate equilibrium in the pre-1984 sample

and of a determinate equilibrium in the post-1984 sample is favored by the data.

The long-run coefficients on inflation and the output gap in the monetary policy

rule are found to be weakly identified. However, our results are further supported

by a proposed identification-robust indicator of indeterminacy.

Keywords: GMM, Indeterminacy, Maximum Likelihood, Misspecification, new-

Keynesian business cycle model, VAR, Weak identification.

J.E.L.: C31, C22, E31, E52.
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1 Introduction

The U.S. inflation and output growth processes have experienced dramatic breaks in the

post-WWII. The most evident change regards their volatilities. The 1970s were charac-

terized by high macroeconomic turbulence. Differently, since the mid-1980s, much milder

fluctuations in inflation and output growth has been observed, at least before the advent

of the recent financial crisis. The marked reduction of the U.S. macroeconomic volatili-

ties has been termed ‘Great Moderation’ (see, among others, Kim and Nelson, 1999 and

McConnell and Perez-Quiros, 2000).

A popular explanation for such phenomenon hinges upon the switch toward an aggres-

sive monetary policy conduct occurred with the appointment of Paul Volcker as Chairman

of the Federal Reserve at the end of the 1970s. With his appointment, the argument goes,

the Fed moved from a weakly aggressive reaction to inflation to a much stronger one.

Such a switch anchored private sector’s inflation expectations, therefore leading the U.S.

economy to move from an indeterminate equilibrium to determinacy. This story, popular-

ized by Clarida, Galí, and Gertler (2000), has subsequently been supported by Lubik and

Schorfheide (2004), Boivin and Giannoni (2006), Benati and Surico (2009), Mavroeidis

(2010), and Inoue and Rossi (2011).1

All these contributions assume the new-Keynesian model one works with to be cor-

rectly specified. If this assumption is false, however, testing for determinacy becomes

problematic. Since indeterminacy generally entails a richer correlation structure of the

data, the typical risk, as argued by Lubik and Schorfheide (2004), is confounding in the

determinate case the possible omission of important propagation mechanisms in the struc-

tural equations with indeterminacy. In this respect, different model specifications in the

literature appear to have led to different conclusions as for the probability of being in an

indeterminate state in the pre-Volcker phase.2

1A recent contribution by Coibion and Gorodnichenko (2011) estimates a Taylor rule featuring time-

varying policy coefficients and trend inflation. They find the reduction of the average inflation level to be

a necessary ingredient for the switch to determinacy possibly occurred in the early 1980s. Ascari, Branzoli

and Castelnuovo (2011) show that movements in trend inflation may be a proxy for the evolution of labor

market frictions in the post-WWII U.S. economy. We postpone the investigation of the role of trend

inflation to future research.
2Justiniano and Primiceri (2008) test for indeterminacy in the pre-Volcker sample following the strat-

egy adopted by Lubik and Schorfheide (2004) but with a richer, medium scale new-Keynesian model.

They find the data to favor the determinate case. Justiniano and Primiceri’s (2008) explanation of the
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This paper tests for determinacy in the U.S. economy by explicitly recognizing that

model misspecification might affect the empirical assessment of determinacy/indeterminacy.

From the methodological side, our contribution is twofold. First, we apply a novel, com-

putationally simple test for the hypothesis of determinacy (against the alternative of

indeterminacy) that requires neither the use of prior distributions nor that of nonstan-

dard inference. Building on Fanelli (2010), the method hinges on the idea that if the

structural new-Keynesian model is not rejected by the data (i.e., it is not misspecified),

one can use standard ‘misspecification diagnostic analysis’ to infer whether the macro-

economic series of interest are better approximated by a determinate vs. indeterminate

reduced form solution. In particular, we first estimate the structural Euler equations of

the system by GMM and test the model specification at hand through an overidentifi-

cation restrictions test. Then, we re-estimate the model with maximum likelihood and

appeal to a likelihood-based test for the cross-equation restrictions (Hansen and Sargent,

1980, 1981) that the new-Keynesian model entails under determinacy as a tool for disen-

tangling whether the data favour the occurrence of a unique stable solutions or multiple

stable solutions. Second, in addition to the above inferential method we introduce an

indicator of indeterminacy (determinacy) that is explicitly designed to cope with ‘weakly

identified’ parameters (Stock and Wright, 2000). Recent evidence suggests that the reac-

tion functions coefficients in models involving forward-looking behavior tend to be weakly

identified (Mavroeidis, 2010). Clearly, this phenomenon might have negative consequences

on the finite sample performance of our test.

Our empirical investigation, conducted with a small scale dynamic stochastic general

equilibrium (DSGE) model for the post-WWII U.S. data, leads us to the following findings.

First, the standard small scale new-Keynesian monetary policy framework is not rejected

by the data over the pre-1984 sample. Conditional on this first step, our test leads us not

to reject the hypothesis of indeterminacy. Turning to the post-1984 sample, our joint test

does not reject the hypothesis that a determinate equilibrium prevailed. In both samples,

we find that the long-run coefficients on inflation and the output gap in the monetary

policy rule are weakly identified. We then develop an identification-robust indicator of

indeterminacy which exploits the GMM estimates of the structural parameters and the

identification-robust confidence sets suggested by Stock and Wright (2000). Our indicator

supports our main finding, i.e., multiple equilibria likely occurred in the 1970s, but very

Great Moderation mainly points to the time-variation of structural shocks’ volatilities.
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unlikely after the appointment of Paul Volcker as Federal Reserve’s chairman. Overall,

our evidence is in line with the story popularized by Clarida, Galí, and Gertler (2000) on

the aggressive monetary policy implemented by the Federal Reserve to engineer a deflation

in the early 1980s and maintain inflation to low levels afterwards.

To summarize, our paper apply a novel methodology to formally test for indeterminacy

under rational expectations. This enables us to take a stand on the scenario better

describing the U.S. economy in different samples. Our conclusions are consistent with the

‘good policy’ interpretation of the U.S. Great Moderation, in that we find formal support

for the switch from indeterminacy to uniqueness occurred in the early 1980s. It must be

clear, however, that we do not take any stand on the relative importance of the ‘good

policy’ driver as opposed to its main ‘competitor’, i.e., the ‘good luck’ explanation pushed

by Sims and Zha (2006), Smets and Wouters (2007), and Justiniano and Primiceri (2008),

which points toward a reduction in the volatility of the shocks hitting the economy. An

elaboration of our proposal aimed at identifying the relative importance of these two

drivers of the Great Moderation is left to future research.

The paper is organized as follows. Section 2 introduces the reference small scale struc-

tural model and discusses its reduced form solutions under determinacy and indeter-

minacy, respectively. Section 3 summarizes the two methods - one based on standard

inference and the other on an identification-robust indicator of indeterminacy - we apply

for detecting determinacy/indeterminacy. Section 4 presents our empirical results ob-

tained on U.S. quarterly data. Section 5 contains some concluding remarks. Additional

methodological details are confined in the Appendix.

2 Model

This Section presents the reference small-scale new-Keynesian business cycle model we

focus on in this paper, and discusses its solutions under determinacy and indeterminacy,

respectively.
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2.1 Structural system

The reference model is taken from Benati and Surico (2009). It features the following

three equations:

ỹt = γEtỹt+1 + (1− γ)ỹt−1 − δ(Rt − Etπt+1) + ωỹ,t (1)

πt =
β

1 + βα
Etπt+1 +

α

1 + βα
πt−1 + κỹt + ωπ,t (2)

Rt = ρRt−1 + (1− ρ)(ϕππt + ϕỹỹt) + ωR,t (3)

where

ωx,t = ρxωx,t−1 + εx,t , -1<ρx<1 , εx,t ∼WN(0, σ2x) , x = ỹ, π,R. (4)

The variables ỹt, πt, and Rt stand for the output gap, inflation, and the nominal interest

rate, respectively; γ is the weight of the forward-looking component in the intertemporal

IS curve; α is price setters’ extent of indexation to past inflation; δ is households’ in-

tertemporal elasticity of substitution; κ is the slope of the Phillips curve; ρ, ϕπ, and ϕỹ

are the interest rate smoothing coefficient, the long-run coefficient on inflation, and that

on the output gap in the monetary policy rule, respectively; finally, ωỹ,t, ωπ,t, and ωR,t are

the mutually independent, autoregressive of order one (AR(1)) structural disturbances

described by eq. (4).

This or similar small-scale models have successfully been employed to conduct empiri-

cal analysis concerning the U.S. economy. Clarida et al. (2000) and Lubik and Schorfheide

(2004) have investigated the influence of systematic monetary policy over the U.S. macro-

economic dynamics; Boivin and Giannoni (2006), Benati and Surico (2009), and Lubik

and Surico (2010) have replicated the U.S. Great Moderation, Benati (2008) and Benati

and Surico (2008) have investigated the drivers of the U.S. inflation persistence; Castel-

nuovo and Surico (2010) have replicated the VAR dynamics conditional on a monetary

policy shock in different sub-samples; Inoue and Rossi (2011) have analyzed the role of

parameter instabilities as drivers of the Great Moderation. A more general formulation,

allowing for positive trend inflation, has been exploited by Coibion and Gorodnichenko

(2011) to assess the relevance of variations in trend inflation for the evolution of the U.S.

macroeconomic dynamics.
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2.2 Reduced form solutions

We compact the system composed by eqs. (1)-(4) in the representation

Γ0Xt = ΓfEtXt+1 + ΓbXt−1 + ωt (5)

ωt = Ξωt−1 + εt , εt ∼WN(0,Σε) (6)

Ξ := dg(ρỹ, ρπ, ρR) , Σε := dg(σ2ỹ, σ
2
π, σ

2
R)

where Xt:=(ỹt, πt, Rt)
0, ωt:=(ωỹ,t, ωπ,t, ωR,t)

0, εt:=(εỹ,t, επ,t, εR,t)0 and

Γ0 :=

⎡⎢⎢⎣
1 0 δ

−κ 1 0

−(1− ρ)ϕỹ −(1− ρ)ϕπ 1

⎤⎥⎥⎦ , Γf :=
⎡⎢⎢⎣

γ δ 0

0 β
1+βα

0

0 0 0

⎤⎥⎥⎦ , Γb :=
⎡⎢⎢⎣
1− γ 0 0

0 α
1+βα

0

0 0 ρ

⎤⎥⎥⎦ .
(7)

Let θ := (γ, δ, β, α, κ, ρ, ϕỹ, ϕπ, ρỹ, ρπ, ρR)
0 be them×1 vector of structural parameters,

m:=dim(θ). The elements of the matrices Γ0, Γf , Γb and Ξ depend nonlinearly on θ. The

space of all theoretically admissible values of θ is denoted by P.
A solution to system (5)-(6) is any stochastic process such that EtXt+1 exists and

when substituted into the model (1)-(4), the equations are verified at any time, for given

initial conditions. A reduced form solution associated with system (5)-(6) is a model,

taken from the solution set, such that Xt depends on its own lags, on εt and lags of εt
and, possibly, other arbitrary stochastic variables (sunspot shocks) independent on εt.

The solution properties depend on whether θ lies in the determinacy or indeterminacy

region of P.
The theoretically admissible parameter space P is decomposed into two disjoint sub-

spaces, the determinacy region, PD, and its complement PI :=P\PD. Since we consider

only stationary (asymptotically stable) solutions of system (5)-(6), PI contains only values

of θ that lead to multiple stable solutions. It is assumed that ∀θ ∈ P an asymptotically
stationary (stable) reduced form solution to system (5)-(6) exists.

Determinacy/indeterminacy is a system property that depends on all structural pa-

rameters in θ. There are cases in which part of the elements of θ are suitably restricted

and it becomes relatively simple to identify the region PD (PI) of the parameter space.

For instance, if θ is restricted such that γ:=1, α:=0, ρ:=0, system (1)-(4) collapses to a
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‘purely forward-looking’ model and it can be shown that the inequality

ϕπ +
1− β

κ
ϕỹ > 1 (8)

is sufficient and ‘generically’ necessary (Woodford, 2003, Proposition 4.3, p. 254) for de-

terminacy. In this case PD:=
©
θ, ϕπ +

1−β
κ
ϕỹ > 1

ª
. Mavroeidis (2010) uses the condition

in eq. (8) to address the analysis of determinacy/indeterminacy of U.S. monetary policy

by estimating a Taylor-type monetary policy rule in isolation from other structural equa-

tions, with the risk of dealing with a ‘wrong’ determinacy condition if the intertemporal

IS curve and NKPC are characterized by non-negligible backward-looking components.

Aside from these special cases, however, it is generally difficult to derive from system

(5)-(6) a set of (closed-form) inequality constraints that are both necessary and sufficient

for determinacy (indeterminacy) and that can potentially be used to test whether θ lies

in PD or PI .3

It can be proved (Binder and Pesaran, 1995; Fanelli, 2011) that if for a given point

θ ∈ P the matrix G(θ):=(Γ0 − ΓfΦ1)
−1Γf is stable (i.e. all its eigenvalues lie inside the

unit circle in the complex plane) and additional technical conditions hold, then system

(5)-(6) has a unique stable reduced form that can be represented as the finite order VAR

[I3 − Φ1(θ)L− Φ2(θ)L
2]Xt = Υ(θ)−1εt (9)

where L is the lag/lead operator (LhXt:=Xt−h), X0 and X−1 are fixed initial conditions,

Φ1(θ), Φ2(θ) and Υ(θ) are 3 × 3 matrices whose elements depend nonlinearly on θ and

embody the cross-equation restrictions (Hansen and Sargent, 1980, 1981) implied by the

new-Keynesian DSGE model, see the Appendix for details. The matrix Υ(θ) is defined

as Υ(θ):=(Ψ− ΞΓf), Ψ:=Ψ(θ):=[Γ0 − ΓfΦ1(θ)], and the matrices Φ1(θ) and Φ2(θ) solve

a quadratic matrix equation involving Γ0, Γf , Γb and Ξ.

Conversely, if for a given point θ ∈ P the matrix G(θ) has 1≤ q ≤ 3 eigenvalues that
lie outside the unit circle in the complex plane, then the reduced form solutions of the

3The following example shows that the condition in eq. (8) is not necessary for determinacy if the

structural model (1)-(4) involves lags of the variables, other than leads. Consider the system based on

β := 0.99, κ := 0.085, δ := 0.40, γ := 0.25, α := 0.05, ρ := 0.95, ϕỹ := 2, ϕπ := 0.77, ρỹ := ρπ :=

ρR := 0.9. In this case ϕπ +
1−β
κ ϕỹ > 1, but the rational expectation-solution to system (1)-(4), while

being stable, is not unique. Recall that we assume the existence of at least a solution under rational

expectations.
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system can be chosen from the class of ‘VARMA(3,1) + VMA(1)’ processes:

[I3 −Π(θ)L][I3 − Φ1(θ)L− Φ2(θ)L
2]Xt = [M(θ, μ)−Π(θ)L]Ψ(θ, μ)εt + τ t (10)

τ t := [M(θ, μ)−Π(θ)L]Ψ−1ΞΓfV (θ, μ)P (θ)ζt + P (θ)ζt. (11)

In system (10)-(11) the matrices Φ1(θ) and Φ1(θ) are defined as in system (9), Π(θ) and

P (θ) are 3 × 3 matrices whose elements depend nonlinearly on θ, and M(θ, μ), Υ(θ, μ)

and V (θ, μ) are a 3 × 3 matrices whose elements depend nonlinearly on θ and on the

vector μ which may contain up to q2 arbitrary auxiliary (nuisance) parameters unrelated

to θ, where q measures the ‘degree of parametric multiplicity’ of solutions; finally, the

additional moving average term τ t depends on the ‘sunspot shock’ ζt which is is a 3× 1
martingale difference sequence (MDS), Etζt+1 = 03×1, independent on the fundamental

disturbance ut, with covariance matrix Σζ. Precise details about the structure of the

matrices Π(θ), P (θ), M(θ, μ), Ψ(θ, μ) and V (θ, μ) and on identification issues may be

found in Fanelli (2011).

While the determinate equilibrium in eq. (9) depends only on the state variables of

the structural system (5)-(6), there are two sources of indeterminacy that characterize

the model equilibria in eq. (10). First, the ‘parametric indeterminacy’ that stems from

the presence of the auxiliary parameters in the vector μ: these parameters index solu-

tion multiplicity and are not identifiable under determinacy. Secondly, the ‘stochastic

indeterminacy’ that stems from the presence of the sunspot shocks ζt; these shocks may

arbitrarily alter the dynamics and volatility of the system induced by the fundamental

disturbances, see Lubik and Schorfheide (2003, 2004) and Lubik and Surico (2009) for

discussions. Interestingly, indeterminacy occurs also if the sunspot shocks are absent,

i.e. if Σζ :=03×3 (ζt:=0 a.s.∀t) implying τ t:=0 a.s. in eq. (11) because of the presence of
the auxiliary parameters μ. Lubik and Schorfheide (2004) denote a situation like this as

‘indeterminacy without sunspots’.

The reduced form solutions in eq. (9) and eqs. (10)-(11) turn out to be observationally

equivalent when in system (10)-(11) the following conditions jointly hold

μ := Iq ⇒M(θ, μ) := I3 (12)

τ t := 03×1 a.s. ∀ t (Σζ :=03×3). (13)
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While equation (12) posits that the matrix of auxiliary parameters is equal to the identity

matrix, eq. (13) requires the absence of sunspot shocks in the indeterminate equilibria.

Subject to (12)-(13), system (10)-(11) collapses to a Minimum State Variable (MSV)

solution that has the same representation as the determinate reduced form in eq. (9). Even

admitting the absence of sunspot shocks a priori, it must be noticed that the condition

in eq. (12) occurs with zero-Lebesgue measure in the space of auxiliary parameters μ,

henceforth denoted with the symbol U . This observational equivalence has consequences
on the statistical properties of our proposed test for the hypothesis of determinacy, see

the next Section.4

From our derivation of the reduced form solutions it follows that, provided a set of ad-

ditional conditions hold, the eigenvalues of the matrixG(θ) play a crucial role in governing

the determinacy/indeterminacy of the system. A useful broad characterization of the de-

terminacy region of the parameter space is therefore given by PD:={θ, λmax[G(θ)] < 1},
where λmax[·] denotes the largest eigenvalue in absolute value of the matrix in the argu-
ment. Similarly, PI :={θ, λmax[G(θ)] > 1} .5

3 Detecting determinacy/indeterminacy

In this Section we first present our inferential method for detecting determinacy against

indeterminacy in the reference new-Keynesian system (1)-(4) (Section 3.1). Then, we dis-

cuss a simple indicator of determinacy/indeterminacy that can be applied to complement

the results of the test when the researcher suspects that some of the structural parameters

of the system might be ‘weakly identified’.

4Observational equivalence between determinate and indeterminate reduced form solutions may be also

obtained from system (5) when the vector of structural shocks is absent, i.e. when Σε:=03×3 (εt := 03×1
a.s. ∀ t). In this case, indeed, under a set of restrictions (including Ξ := 0n×n), the structural model

can be solved as in eq. (9); see Beyer and Farmer (2007) for a comprehensive discussion. While being

interesting from a theoretical standpoint, the case of absence of fundamental disturbances in the structural

equations is empirically unpalatable, and will not be considered in our analysis.
5The case λmax[G(θ)] := 1 is deliberately ignored because it is associated with non-stationary

processes.
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3.1 Test

Our inferential approach is based on a simple intuition: provided the structural new-

Keynesian model (1)-(4) is correctly specified, it is straightforward to apply standard

diagnostic tools to assess whether its reduced form solution obtained under determinacy,

given by the econometric model in eq. (9), is supported (determinacy) or rejected (in-

determinacy) by the data. Thus, conditional upon the non-rejection of the structural

model, if we find that a stationary VAR for Xt:=(ỹt, πt, Rt)
0 with two lags, subject to

the cross-equation restrictions implied by system (1)-(4) is not rejected by the data, the

empirical evidence favours determinacy; otherwise, the data would favour indeterminacy.

This simple argument breaks down when the structural model omits important prop-

agation mechanisms (lags) and is not able to fully address the time series features of the

data, i.e., under model misspecification. In these situations, the attempt to determine if

the model equilibrium is determinate or indeterminate is likely to lead to misleading con-

clusions. Therefore, the assessment of the data adequacy of the structural model before

one investigates its determinacy/indeterminacy plays a crucial role.

The above considerations inspire the following two-step approach:

Step 1 We estimate θ directly from system (1)-(4) by using a GMM estimator which

is robust to determinacy/indeterminacy. Then, we test the data adequacy of the

structural model (model misspecification). If the model is rejected, we search for an

alternative - possibly dynamically augmented - specification. Otherwise, we move

to step 2.

Step 2 If the model estimated in Step 1 is not rejected, we estimate the reduced form

VAR in eq. (9) with maximum likelihood (ML) under the cross-equation restrictions

implied by rational expectations, and test their validity with a Lagrange multiplier

(LM) test. If the cross-equation restrictions are not rejected, the joint evidence

favours the hypothesis of determinacy. Otherwise, the joint evidence supports in-

determinacy.

As for Step 1, if Xt involves only observable variables (as it can be the case with the

class of small-scale new-Keynesian monetary models we deal with)6, the ‘natural’ esti-

6The output gap, which is included among our observables, is computed by considering the level of

potential output as estimated by the Congressional Budget Office. The list of observables exploited to

estimate our models is presented in Section 4.
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mator of θ is obtained by minimizing the GMM criterion function Qcon,T (θ) (defined in

the Appendix); GMM is robust to determinacy/indeterminacy under the maintained as-

sumptions of correct specification and suitably selected instruments (Wickens, 1982; West,

1986; Mavroeidis, 2005; Fanelli, 2011). Accordingly, Hansen’s overidentification restric-

tions test (‘J-test’) can potentially be used to assess the data adequacy of the structural

equations. A well known shortcoming of this test is its finite-sample lack of power against

certain types of misspecification (Hall, 2005). However, the researcher’s attention may be

confined to the case of possible omission of lags in the structural equations and in this

case, Mavroeidis (2005) and Jondeau and Le Bihan (2008) have shown that the power of

the overidentification restrictions test increases if a limited set of (relevant) instruments

is used in conjunction with a parametric estimator of the weighting matrix that accounts

for the moving average structure of model disturbances.7 Another shortcoming of GMM-

based inference in system (1)-(4), shared by other estimation methods, is related to the

possible occurrence of weakly identified parameters, i.e., parameters with respect to which

the criterion Qcon,T (θ) exhibits little curvature. We postpone a discussion on this issue to

Section 3.3.

As for Step 2, we estimate θ from the constrained VAR in eq. (9) by ML. Follow-

ing Hansen and Sargent (1980, 1981), we then test the implied set of cross-equation

restrictions via a LM (henceforth LM-CER) test. The mechanics of the ML estimation

algorithm and that of the resulting LM-CER test are summarized in our Appendix. The

cross-equation restrictions tested on the determinate reduced form solution should not be

rejected by the data under determinacy and rejected under indeterminacy (Fanelli, 2010).

By combining these two steps, the overall assessment of the determinacy/indeterminacy

(or misspecification) of the new-Keynesian model can be based on the joint test resulting

from the sequence: J-test (Step 1) & LM-CER (Step 2). In the next sub-Section we sum-

marize the main properties of this test and show how it can be used in practice; additional

technical features are confined in the Appendix.

7It is well known that, in finite samples, the power of the J-test may be affected by the type of

Heteroscedasticity Autocorrelation Covariance (HAC) estimator used for the weight matrix to account

for serial correlation and possible heteroscedasticity in the GMM residuals. Different HAC estimators,

albeit asymptotically equivalent, can differ substantially in finite samples, thus imparting substantial

distortions to GMM-based inference.
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3.2 Properties

Let H0 be the null hypothesis: ‘the reduced form solution of the structural new-Keynesian

model is given by system (9)’ (θ0 ∈ PD) and H1 the alternative: ‘the reduced form

solution of the structural new-Keynesian model is given by system (10)-(11)’ (θ0 ∈ PI);

both hypotheses are considered under the maintained assumption that the small new-

Keynesian DSGE model (1)-(4) is correctly specified.

We denote by JT the over-identification restriction test statistics obtained from the

direct (joint) estimation of the equations of the structural model by GMM (see eq. (24) in

the Appendix), and by LMT the LM-CER test statistic for the cross-equation restrictions

that arise under determinacy (see eq. (28) in the Appendix).

From the robustness of the GMM estimator of θ to determinacy/indeterminacy, we

have that

JT −→D χ2(a1) , ∀ θ ∈ P (14)

where a1:=3r − m, r is the number of instruments used in estimation, and ‘−→D’ de-

notes converge in distribution for large T . Let P J
∞[·] be the probability taken from the

asymptotic distribution of JT ; a consequence of eq. (14) is that

P J
∞[JT ≥ ca1(η1)] = η1 , ∀ θ ∈ PD ; P J

∞[JT ≥ ca1(η1)] = η1 , ∀θ ∈ PI

where ca1(η1) is the 100(1-η1) percentile of the asymptotic distribution of the JT statistics.

On the other hand,

LMT −→D χ2(a2) , ∀ θ ∈ PD (15)

where a2:=18−m, while

LMT ∼ Op(T ) ,

(
∀ θ ∈ PI , ∀μ ∈ U∗ if Σζ:=03×3
∀ θ ∈ PI , ∀μ ∈ U if Σζ 6= 03×3

(16)

where U∗:=U\ {vec(Iq)}. The result in eq. (16) is motivated by the fact that the reduced
form solution in system (9) (from which the ML estimation of θ is carried out and the

LM-CER test is computed) is misspecified when the data generating process belongs to

the class of reduced form solutions described by system (10); moreover, as observed in sub-

Section 2.2, when both the conditions in eqs. (12)-(13) hold, system (10)-(11) collapses

to a MSV solution that is observationally equivalent to the determinate reduced form

solution with the consequence that the LM-CER test is not able to reject the null of
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determinacy if the data are generated under indeterminacy in the special case μ:=vec(Iq)

and, in addition, sunpost shocks are absent. Denoting with PLM
∞ [·] the probability taken

from the asymptotic distribution of the LMT test, from eqs. (15)-(16) we derive that

PLM
∞ [LMT ≥ ca2(η2)] = η2 , ∀ θ ∈ PD ;

PLM
∞ [LMT ≥ ca2(η2)] = 1 ,

(
∀ θ ∈ PI , ∀μ ∈ U∗ if Σζ :=03×3
∀ θ ∈ PI , ∀μ ∈ U if Σζ 6= 03×3

.

Finally, let P J,LM
∞ [·, ·] be probability taken from the joint distribution of the JT and

LMT test statistics. Given these definitions, the asymptotic type I error of the joint test

can be specified as

η:=Pr( rejecting H0 | H0):=P J
∞[JT ≥ ca1(η1)]

+P J,LM [JT < ca1(η1) , LMT ≥ ca2(η2)] , ∀ θ ∈ PD.

(17)

Eq. (17) formalizes the idea that the rejection of H0 may occur either indirectly through

the rejection of the structural model by the overidentification restrictions test (Step 1), or

directly by the LM test for the cross-equation restrictions that arise under determinacy

(Step2) when a positive assessment of the structural model by the overidentification re-

strictions test is obtained. It can be proved that the asymptotic type I error in eq. (17) is

bounded by the asymptotic type I errors pre-specified for the two tests, i.e. that (Fanelli,

2010)

η ≤ η1 + η2 , ∀ θ ∈ PD. (18)

The result in eq. (18) ensures that fixed the levels of significance of the J-test (η1) and

LM-CER test (η2), respectively, the type I error of the joint test is under control in large

samples. On the other hand, if the overall significance level η is pre-fixed before running

the test, it is sufficient to set the levels of significance of the individual tests such that

the condition in eq. (18) is respected; for instance, a reasonable choice is η:=0.05 and

η1:=0.025=:η2. In practice, the J-test & LM-CER procedure works as follows: given η

(e.g. 5%) and η1 and η2 (e.g. 2.5%), if the p-value associated with the J-test is less than

η1 it is necessary to look for an alternative structural specification (since the small DSGE

model is not supported by the data); if the p-value associated with the J-test is greater

13



than η1 one looks at the LM-CER test and selects determinacy (indeterminacy) if the p-

value of this test is greater (less) than η2. As a matter of fact, the computations required

to condict out analysis are straightforward. The J-test has become a standard diagnostic

for models estimated by GMM and is routinely calculated in most computer packages.

Similarly, the LM-CER test can be implemented with any econometric package featuring

the maximization of an objective function under nonlinear parametric constraints.

As regards the asymptotic power of the joint test against the alternative of indetermi-

nacy, H1, one has

ηpind:=Pr(rejecting H0 | H1):=P J
∞[JT ≥ ca1(η1)]+P

J,LM
∞ [JT < ca1(η1), LMT ≥ ca2(η2)] , ∀ θ ∈ PI

(19)

because under indeterminacy the null of determinacy can be rejected either because the

J-test incorrectly rejects the structural model, or because the LM-CER test correctly

rejects the cross-equation restrictions when the J-test validates the structural model. It

can be proved that (Fanelli, 2010)

ηpind:=1 ,

(
∀ θ ∈ PI , ∀μ ∈ U∗ if Σζ :=03×3
∀ θ ∈ PI , ∀μ ∈ U if Σζ 6= 03×3

i.e. that the test is consistent ‘almost everywhere’ in the space of auxiliary parameters

if sunpost shocks are absent, and is consistent irrespective of the values assumed by the

auxilairy parameters when the indeterminate equilibria feature sunspot shocks.

Notably, since the J-test is consistent against the omission of relevant lags in the

specified structural equations (Hall, 2005), the joint test is consistent as well, namely

ηpmis:=Pr(rejecting H0 | lag-augmented version of system (1)-(4)) = 1 ,

see Fanelli (2010) for details. The consistency of our test against the omission of prop-

agation mechnisms in the structural system implies that the risk of incorrectly selecting

indeterminacy in misspecified models is under control in large samples.

The advantages of the proposed method are, besides its computational simplicity, that

(i) inference is of standard type because no nuisance parameter appears under the null

of determinacy;8 (ii) it is not necessary to identify the parametric inequality restrictions

that define the parametric regions PD (PI), with the advantage of circumventing the use

8Given our economic representation, even in the absence of sunspot shocks (Σζ :=03×3 in eq. (11)),

a classical likelihood-based test would call for the comparison between the VAR(2) in eq. (9) and the
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of nonstandard asymptotic inference; (iii) it is not necessary to specify prior distributions

for θ and, notably, for the auxiliary parameters μ governing solution multiplicity. Thus,

compared to Lubik and Schorfheide’s (2004) approach, the researcher is exempted from

choosing a prior distribution for the arbitrary auxiliary parameters μ that index solu-

tion multiplicity. As a matter of fact, the use of informative priors for these nuisance

parameters is due to the need to simplify computations, more than to a (quite unlikely)

prior knowledge about the type of indeterminacy governing the system. With respect to

Boivin and Giannoni (2006), our method is based on the direct estimation of the Euler

equations in the system (1)-(4). Hence, we need not minimize the distance between some

selected impulse responses taken from a VAR for Xt and the structural model-based re-

sponses, a strategy which is unfortunately bias-inducing as for expectations-based models

like ours (Canova and Sala, 2009). More importantly, we need not assume anything on

the solution under indeterminacy, as opposed to the MSV solution assumed by Boivin

and Giannoni (2006): while being plausible, such solution is anyhow arbitrary, and may

importantly affect the simulated moments of interest (Castelnuovo, 2010). Compared to

Mavroeidis (2010), who applies identification-robust methods to investigate the determi-

nacy/indeterminacy of U.S. monetary policy conditional on the estimation of the policy

rule in isolation, our full-system analysis other than being based on a ‘hybrid’ model,

provides the estimates of the economic structure as a whole, which we then exploit to

assess the determinacy/indeterminacy case.

3.3 Determinacy/indeterminacy indicator

The GMM estimates of the structural parameters θ can be also used to quantify the

relative importance of the region PI (PD) of the parameter space such that the possibility

of weakly identified parameters is explicitly taken into account. This Section presents an

indicator that can be used to evaluate the extend of indeterminacy (determinacy) within

a suitably chosen identification-robust confidence set for the parameters of interest.

As detailed in the previous sub-Section, under standard regularity conditions, the

J-test is asymptotically χ2(3r − m)-distributed. There exists little empirical evidence

VARMA(3,1) system in eq. (10). As is known, this would clearly be a non-standard inferential problem

involving nuisance parameters, see e.g. Lubik and Schorfheide (2004) and Fanelli (2010). The advantage

of our method, along this dimension, is that nonstandard distributions are not required and, notably, the

asymptotic type I error of the joint test is under control.
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about the finite sample performance of the JT statistics in presence of weakly identified

parameters, especially in the context of new-Keynesian models. It is reasonable to expect,

however, that the discrepancy between the empirical size and the nominal size of the test

be negatively affected by this phenomenon, see e.g. Hall (2005, Ch. 6). Likewise, the

likelihood function of the determinate VAR reduced form might be nearly uninformative

(‘flat’) along several dimensions of the parameter space and this might have consequences

on the finite sample performance of our test.

We decompose θ as θ = (θ0id, θ
0
un)

0, where θid is mid × 1 and contains the structural
parameters of the new-Keynesian system which are thought of being ‘strongly identified’;

θun is mun× 1; mun:=m−mid, and contains the structural parameters which are thought

of being weakly identified; θ0,id and θ0,un are the ‘true’ values of θid and θun, respectively.

The available empirical evidence about system (1)-(4) suggests that in samples typically

available to macroeconomists, variations in α, κ, ϕỹ and ϕπ tend to be associated with

almost negligible changes in the estimation objective function. Hence, these parameters

are potential candidates for being grouped into the sub-vector θun.9 Following Stock and

Wright (2000), identification-robust, asymptotically ‘valid’, confidence sets for θ0,un can

be based on the restricted GMM estimation in which the minimization of the objective

function is performed over θid, conditional on fixed values of θun. More precisely, let

θ̂id,T (θ̄un) denote the GMM estimator of θid conditional on the choice θun:=θ̄un. It can

be proved that under correct specification the objective function evaluated at the point

(θ̂
0
id,T (θ0,un), θ

0
0,un)

0, TQcon,T (θ̂id,T (θ0,un), θ0,un), is asymptotically χ2(3r−mid)-distributed,

hence an asymptotically valid 100(1− η)% confidence set for θ0,un is given by

C1−η(θ0,un) :=
n
θun , TQcon,T (θ̂id,T (θun), θun) < c3r−mid

(η)
o

(20)

where c3r−mid
(η) is the 100(1-η) percentile of the χ2(3r −mid) distribution.

Fixed η and obtained the confidence set C1−η(θ0,un) in Eq. (20), we consider the follow-
ing algorithm. Given the GMM estimate θ̂T :=(θ̂

0
id,T , θ̂

0
un,T )

0 obtained with the available

sample, we fix the strongly identified parameters θid at θid:=θ̂id,T and then consider a

(sufficiently fine) grid of points for the elements of θun, denoted G(θun); for each point
θun:=θ̆un ∈ (C1−η(θ0,un)∩G(θun)), we define the vector θ∗:=(θ̂

0
id,T , θ̆

0
un)

0 and check whether

9Given the specific purposes of this paper, the parameters α and κ of the NKPC have been fixed in

the empirical analysis of section 4. Hence, only the policy parameters ϕỹ and ϕπ will be explicitly treated

as weakly identified, i.e. θun := (ϕỹ, ϕπ)
0.
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λmax[G(θ
∗)]>1 (indeterminacy) (λmax[G(θ

∗)] < 1, indeterminacy), see Section 2. With this

procedure we are able to quantify the fraction of points within the identification-robust

confidence set C1−η(θ0,un) that belong to the indeterminacy region PI (determinacy region

PD) of the parameter space, conditional on fixing the strongly identified parameters at

their point GMM estimates.

The resulting indicator, denoted In, varies by construction between 0 (the set C1−η(θ0,un)
does not contain points that lead to indeterminacy) and 1 (all points in C1−η(θ0,un) lie in
the indeterminacy region of the parameter space). As shown in the next Section, we argue

that this indicator of indeterminacy (determinacy) can fruitfully be used to compare the

empirical evidence obtained on different samples and to support the outcomes of the test

described in sub-Sections 3.1-3.2.

4 Empirical evidence

We employ U.S. quarterly data, sample 1954q3-2008q3. The end of the sample is justified

by our intention to avoid dealing with the non-standard ‘zero-lower bound’ phase began

in December 2008, which triggered a series of non-standard policy moves by the Federal

Reserve. We employ three observable variables, Xt:=(ỹt, πt, Rt)
0 . The output gap ỹt is

computed as percent log-deviation of the real GDP with respect to the potential output

estimated by the Congressional Budget Office. The inflation rate πt is the quarterly

growth rate of the GDP deflator. For the short-term nominal interest rate Rt we consider

the effective Federal funds rate expressed in quarterly terms (averages of monthly values).

The source of the data is the Federal Reserve Bank of St. Louis’ web site.

Following most of the literature on the Great Moderation, we divide the post-WWII

U.S. era in two periods, roughly corresponding to the ‘Great Inflation’ and the ‘Great

Moderation’ samples. We take the advent of Paul Volcker as Chairman of the Federal

Reserve to identify our first sub-sample, i.e., 1954q3-1979q2. As for the Great Moderation,

we consider the sample 1985q1-2008q3. Our choice is due to the ‘credibility build-up’

undertaken by the Federal Reserve in the early 1980s, a period during which private agents

gradually changed their view on the Fed’s ability to deliver low inflation (Goodfriend and

King, 2005). Moreover, the first years of Volcker’s tenure (until October 1982) were

characterized by non-borrowed reserves targeting. Hence, one can hardly expect a good

fit of conventional policy rules within this period (Estrella and Fuhrer, 2003; Mavroeidis,

17



2010), a fact which would carry consequences on the estimates of all parameters of the

system.10

We first document the estimation of the structural model (1)-(4). Then, we discuss

the results of the test of determinacy and the indicator of indeterminacy introduced in

the previous Section.

4.1 Estimation and testing results

Classical estimation procedures often lead to unreliable or ‘absurd’ values as for a subset

of the structural parameters characterizing the reference new-Keynesian DSGE model, a

typical feature of rational expectation models being nonlinear in the parameters. Our

case represents no exception. Accordingly, after some experimentation we fixed a sub-

set of them to plausible values borrowed from the literature to reduce this phenomenon,

as well as the extent of weak identification. The discount factor β is set to 0.99, a

standard calibration at quarterly frequencies; the intertemporal elasticity of substitution,

the slope of the New Keynesian Phillips curve, and the extent of firms’ indexation to past

prices are calibrated by borrowing the posterior medians in Benati and Surico (2009), i.e.,

δ=0.125, κ:=0.05, α:=0.05. Given these calibrations, the vector of the ‘free’ structural

parameters θf :=(γ, ρ, ϕỹ, ϕπ, ρỹ, ρπ, ρR)
0 has been estimated by using both GMM and ML

under determinacy (some details are summarized in the Appendix).

Our estimates are reported in Table 1.11 We analyze the results concerning the Great

Inflation sample first. Our points estimates turn out to be quite similar to those in a

variety of contributions in the literature. In particular, we find the weight of forward

looking expectations in the IS curve to be about 0.50, a value supporting the role of habit

formation in influencing households’ consumption decisions; a fair amount of policy rate

smoothing by the Federal Reserve; persistent inflation and policy rate shocks; and a sta-

tistically significant policy reaction to inflation. As for this last parameter, our estimates

agree with Clarida, Galí, and Gertler (2000) and most of the following contributions, in

that (i) the reaction is significant; (ii) it suggests a weak policy reaction, which does not

10Our results, however, are robust to the employment of a shorter Great Inflation sample (1966q1-

1979q2) and, with qualifications, to a longer Great Moderation sample (1979q4-2008q3). The results

obtained on these samples are available upon request to the authors.
11Estimation has been carried out over each sub-period of Table 1, taking initial values within each

regime and not from the previous regime, see Boivin and Giannoni (2006) for a similar choice
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meet the Taylor principle; (iii) a substantial amount of uncertainty surrounds it.

Clearly, relying exclusively on our point estimate of ϕπ would not lead us to any

reliable conclusion on the presence of multiple equilibria in the 1970s because of the

uncertainty surrounding it, and because of the uncertainty surrounding the remaining

structural parameters which jointly determine indeterminacy/uniqueness. Differently, our

formal test takes, by construction, such uncertainty into account. The result of our testing

strategy, which relies in the first step on the J-test, suggests that the small scale model at

hand is (statistically) suited to describe our dataset (p-value of 0.31). At first, this result

may appear surprising, in light of the popularity of larger scale DSGE models like Smets

and Wouters (2007) and a variety of its extensions. While such larger scale models are

obviously superior in terms of their ability to describe and predict a set of variables which

are left unexplained here (e.g. consumption, investments, and real wages, among others),

their superiority as for the variables we focus on in this paper is still to be established.

Intriguingly, a recent paper by Herbst and Schorfheide (2011) shows that a small-scale

model like ours performs at least as well as Smets and Wouters’ (2007) as far as a variety

of forecasting exercises is concerned.12

Conditional on our model not being misspecified in the sample under scrutiny, we move

a step forward and investigate the indeterminacy issue. We estimate the VAR representa-

tion in eq. (25) of the new-Keynesian structural model obtained under determinacy with

ML, and test the implied set of cross-equation restrictions. Our LM-CER test speaks loud

in favor of indeterminacy because the cross-equation restrictions that would arise under

determinacy are strongly rejected from the VAR representation of the data (p-value of

0.00). This is possibly the reason why some awkward results arise when taking the model

to the data with the VAR-based (and not VARMA-based) likelihood approach, first and

foremost the absence of a significant reaction to inflation in the policy rule. Furthermore,

the differences between the GMM and ML estimates of the structural parameters reflect

12More precisely, Herbst and Schorfheide (2011) contrast a small-scale new-Keynesian AD/AS model

with a larger scale model à la Smets and Wouters (2007) in the context of forecasting exercises regarding

the U.S. GDP growth rate, inflation, and the federal funds rate during the U.S. Great Moderation. They

show that the two models attain very similar root-mean-squared errors. However, the Smets-Wouters

model does not lead to a uniform improvement in the quality of the density forecasts and prediction of

comovements. In particular, the predictive density for output appears to be poorly calibrated. Moreover,

the small-scale model performs better in terms of predicting the sign of the deviations of output growth

and inflation with respect to their targets.
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the possible misspecification of the VAR representation of the data in eq. (25), along the

lines documented in Jondeau and Le Bihan (2008).

Dramatically different results arise when scrutinizing the Great Moderation sample.

Our GMM point estimate of the Taylor parameter ϕπ is clearly larger than one and

significant at standard confidence levels (even if somewhat imprecisely estimated). We

also find a slightly lower γ in the IS curve, and a larger degree of policy rate smoothing, this

latter result being in line with what found in Mavroeidis (2010). Again, we find shocks to

inflation and the policy rate to be autocorrelated. More importantly for our purposes, the

J-test does not reject our model specification at conventional significance levels (p-value

0.09).13 Notably, differently from what obtained on the Great Inflation sample, our LM-

CER test for the restricted VAR representation of the data in eq. (9) has a p-value of 0.04;

recalling the discussion entertained in sub-Section 3.1 on how to interpret the result of the

joint test based on the ’J-test & LM-CER’ sequence, our empirical evidence suggests that

the null of determinacy is not rejected at the overall significance level of 5% (η:=0.05).

We record some differences between our GMM and our ML estimates. However, they

do not exceed the statistical discrepancies that can be expected in a correctly specified

rational expectations model, see West (1986) and Jondeau and Le Bihan (2008). Hence,

our results point to an aggressive reaction to inflation and a high degree of interest rate

smoothing during the Great Moderation, a policy conduct which - conditional on the

economic structure in place - possibly induced a unique equilibrium.

Our conclusions point towards a policy switch in the late 1970s. This result is not new

in this literature, as it corroborates the one proposed by Clarida, Galí, and Gertler (2000),

Lubik and Schorfheide (2004), Boivin and Giannoni (2006), Benati and Surico (2009),

Mavroeidis (2010), and Inoue and Rossi (2011), among others. Importantly, however,

this results is obtained in this paper with formal tests on (i) model misspecification, a

crucial information when conducting inference, and on (ii) determinacy vs. indeterminacy

in a full-system context, without appealing to any a-priori distribution or any calibration

of nuisance parameters. Clearly, our prior-free approach maximizes the role attached to

the data in determining our results.

13The p-value of the J-test conditional on the longer sample 1979q4-2008q2 is even larger, i.e., 0.19.
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4.2 Indicator of indeterminacy

As previously discussed, weak-identification might invalidate our testing procedure. The

solidity of our results is then checked by appealing to the identification-robust indicator

of indeterminacy presented in our sub-Section 3.3.

We proceed with our analysis by constructing, as it is standard in the literature on

identification-robust methods, a 90% (η:=0.10) conservative confidence sets for the pol-

icy parameters ϕỹ and ϕπ, along the lines discussed in Section 3.3, see eq. (20). We

disentangle θf as θf = (θf 0id, θ
f 0
un)

0, where θfun:=(ϕỹ,ϕπ)
0 and θfid:=(γ, ρ, ρỹ, ρπ, ρR)

0 and con-

struct a grid G(θfun) for the weakly identified parameters by letting ϕỹ and ϕπ vary in

the intervals 0.05 - 2 and 0.05 - 5.5, respectively. For each sub-sample (pre-Volcker,

and post-1984), we collect all points θ̆
f

un:=(ϕ̆ỹ,ϕ̆π)
0 ∈ G(θfun) that are not rejected by

the TQcon,T (θ̂id,T (θ̆
f

un), θ̆
f

un) criterion at the 10% level of significance in the identification-

robust confidence set C0.90(θf0,un). The set C0.90(θf0,un) is then projected out (Dufour, 1997)
obtaining the identification-robust confidence intervals for ϕỹ and ϕπ reported in Table

2. For comparison purposes, Table 2 also reports the ‘conventional’ Wald-type 90% con-

fidence intervals for ϕỹ and ϕπ.

It is well known that ‘conventional’ Wald-type confidence sets tend to look smaller

than their identification-robust counterparts when inference is affected by weak identifi-

cation (see Mavroeidis, 2010 and references therein for details); this phenomenon seems

to characterize our projected confidence intervals. We notice that ϕỹ and ϕπ are very

imprecisely estimated in the pre-Volcker sample (the identification-robust 90% confidence

set C0.90(θf0,un) tends to coincide with the whole grid G(θfun)). Instead, comparatively more
informative confidence intervals for the long run responses to output gap and inflation are

obtained on the post-1984 sample (despite these intervals remaining still quite ‘large’).

This result resembles the one in Mavroeidis (2010), who find that, when focusing on the

Greenspan tenure (a sample fairly similar to our ‘Great Moderation’ one), the weak iden-

tification issue is less severe than the one arising when also involving data from the 1979

to 1986 in the analysis. Mavroeidis points out that this result can be explained, to a

large extent, by the large fall in the variability of the monetary policy shock occurring

since the mid-1980s. Some evidence on the 1979q2-2008q3 sample, not reported to save

space, confirms that the inclusion of the early 1980s renders the identification issue more
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severe.14

We finally compute the indicator of indeterminacy discussed in Section 3.3. After fixing

θfid:=θ̂
f

id,T at the CU-GMM estimates presented in Table 1, for each point θ̆
f

un ∈ C0.90(θf0,un)
we check whether λmax(G(θ

∗)) > 1 (indeterminacy), where θ∗:=(θ̆
f 0
un, θ̂

f

id,T )
0, and obtain

the indicator In. Then, we re-compute the value of our In indicator by appealing to

the estimates obtained by Benati and Surico (2009), which we employ to calibrate our

structural model. In other words, we fix the vector θfid at the median of the 90% confidence

intervals of Table 1 (last column) in Benati and Surico (2009), while the weakly identified

parameters θfun are selected from the grid G(θfun).15 The computation of our In indicator
conditional on Benati and Surico’s estimates is conducted to ease the interpretation of

our results.

Table 2 reports the outcomes of our computations. The indicator In, reported in the

fifth row of Table 2, shows that for the Great Inflation sample our identification-robust

measure of indeterminacy is as high as 6%. The same measure dramatically drops to zero

when considering the alternative Great Moderation sample. Notably, the same values

are obtained when conditioning on Benati and Surico’s (2009) calibration. Therefore,

we draw conclusions in line with those obtained with our formal test, i.e., indeterminacy

is very likely to have occurred in the 1970s, but not in the period following Volcker’s

appointment.

5 Concluding remarks

This paper has proposed and implemented a novel approach to test for monetary policy

indeterminacy in the United States. Our approach formally deals with model misspecifi-

cation, which may render the identification of indeterminacy (vs. determinacy) unreliable.

Conditional on a model being correctly specified, we propose a second-stage in which the

null hypothesis of equilibrium uniqueness is tested. Importantly, our methodology re-

quires neither the use of prior distributions nor that of nonstandard inference. Therefore,

the degree of arbitrariness of our empirical results is substantially reduced.

Our two-step strategy is conducted via a conditional sequence of GMM and ML es-

14Results relative to the period 1979q2-2008q3 are available upon request.
15The value borrowed from Benati and Surico (2009) read as follows: γ = 0.74, ρ = 0.59, ρỹ = 0.80,

ρπ = 0.42, ρR = 0.40.
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timations of a standard small-scale monetary DSGE model for the United States. We

find formal support in favor of a switch from indeterminacy to uniqueness roughly cor-

responding with the advent of Paul Volcker as Chairman of the Federal Reserve. This

result, which lines up with a number of previous contributions in the literature, is consis-

tent with, but not necessarily pointing to, the ‘good policy’ explanation of the U.S. Great

Moderation. We plan to elaborate further on our methodology to assess whether other

explanations, in addition to the change in conduct of monetary policy documented in this

paper, have contributed significantly to the Great Moderation phenomenon.

In light of the recent financial crisis, the uniqueness scenario supported by our analysis

as for the period mid-1980s-onwards may very well be over. When enough data become

available, our methodology will help shedding light on this issue. We also believe our

methodology may be fruitfully applied to understand if other economic realities have

experienced changes in their macroeconomic environment of the type documented here.

Benati (2008) documents a reduction in inflation persistence in a variety of countries

under stable monetary regimes with clearly defined nominal anchors, e.g., official inflation

targeters. We plan to apply our formal testing strategy to these countries in future

research.

Appendix

This Appendix summarizes the mechanics of the GMM and ML estimators of θ taken

form system (1)-(4) and the determinate reduced form in eq. (9), respectively.

GMM estimation

Other than being relevant for the Step 1 of the joint test proposed in Section 3.1,

GMM estimation plays a crucial role in the construction of the indicator of determi-

nacy/indeterminacy summarized in Section 3.3.

We start by combining the structural model in the eqs. (5)-(6) in the expression

(Γ0 + ΞΓf)Xt = ΓfXt+1 + (Γb + ΞΓ0)Xt−1 − ΞΓbXt−2 + ΞΓfξt + εt − Γfξt+1,

where ξt:=Xt −Et−1Xt is a vector MDS, and then we define the 3× 1 vector function

h(Xt, θ) := (Γ0 + ΞΓf)Xt − ΓfXt+1 − (Γb + ΞΓ0)Xt−1 + ΞΓbXt−2. (21)
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Since both the terms ξt and εt are MDSs, they can be thought of being linearly connected

through the relationship ξt:=Kεt, where K is an arbitrary 3 × 3 matrix; this argument
shows that h(Xt, θ) in eq. (9) has a VMA(1)-type representation.

The ‘robust’ GMM estimation of θ can be obtained by minimizing the criterion

Qcon,T (θ) := T−1
TX
t=1

ϕ(Xt, θ)
0 [ST (θ)]

−1 T−1
TX
t=1

ϕ(Xt, θ) (22)

where ϕ(Xt, θ):=h(Xt, θ)⊗Zt, Zt is a r× 1 vector of instruments that is discussed below,
r ≥ m, and ST (θ) is a consistent estimator of the long run covariance matrix

S(θ) := V0(θ) + [V1(θ) + V1(θ)
0] , Vi(θ) := E [ϕ(Xt, θ)ϕ(Xt−i, θ)

0] , i = 0, 1. (23)

The particular structure of the long run covariance matrix in in eq. (23) is motivated by

the following argument. Under standard regularity conditions, also the autocorrelation

structure of ϕ(Xt, θ) follows a VMA(1) process. Fanelli (2011) shows that if the data

generating process belongs either to system (9) or system (10) (which implies the correct

specification of the structural equations), then the r × 1 vector of instruments is given
by Zt:=(X 0

t−1,X
0
t−2, ...,X

0
t− )

0 where is such that r:=n ≥ dim(θ), is relevant for θ other
than valid under both determinacy and indeterminacy.

The overidentification restrictions test (J-test) is obtained as

JT := TQcon,T (θ̂T ) (24)

and is asymptotically χ2(3r −m)-distributed if the new-Keynesian DSGE model is cor-

rectly specified, see sub-Section 3.2.

The minimization of the objective function in eq. (22) in which the dependence of the

matrix ST (θ) on θ is treated explicitly in the estimation algorithm defines the continuos

updating GMM estimator of Hansen et al. (1996) (henceforth CU-GMM). The reason

why we prefer this version of GMM compared to the ‘iterated’ counterpart of GMM

(henceforth I-GMM) is twofold. First, in the presence of weak identification, a situation

that can be characterized as the objective function Qcon,T (θ) being nearly uninformative

about part or all elements of θ, the CU-GMM allows us to construct asymptotic valid

confidence sets for θ0 or part of its elements, the so-called ‘S-sets’, see Stock and Wright

(2000); the indicator of determinacy/indeterminacy discussed in Section 3.3 is based on

asymptotic valid confidence set for a subset of elements of θ0. Second, even if under the
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correct specification of the structural model the CU-GMM and I-GMM estimators are

asymptotically equivalent, the available empirical evidence (e.g. Hall, 2005) shows that

the finite sample performance of the overidentification restrictions test based on the CU-

GMM is characterized by a smaller discrepancy between the empirical and nominal size

of the test.

If we had infinite observations, we might simply replace θ in the matrix G(θ):=(Γ0 −
ΓfΦ1)

−1Γf defined in Section 2 with its consistent estimate θ̂T , and evaluate the stabil-

ity of G(θ̂T ); as shown in Section 2, the system admits a determinate reduced form if

λmax[G(θ̂T )] < 1, while multiple solutions if λmax[G(θ̂T )] > 1. In actual samples, how-

ever, we can not ignore the variability of the estimator in hand. A ‘natural’ indicator of

indeterminacy (determinacy), therefore, might be based on the evaluation of the insta-

bility (stability) of the matrix G(θ) in correspondence of suitably chosen points within

a 100(1 − η)% confidence sets for θ0; in particular, we might assess the strength of in-

determinacy (determinacy) by computing the fraction of times in which the condition

λmax[G(θ)] > 1 (λmax[G(θ)] < 1) is fulfilled within the confidence set. However, ‘stan-

dard’ confidence sets for θ0 are not reliable when part or all of the structural parameters

are weakly identified (Dufour, 1997), hence the indicator described in Section 3.3 relies

on an identification-robust confidence set for the elements of θ which are thought of being

weakly identified.

ML estimation

Consider the VAR model of lag order two

Xt = ΦZt + ut, (25)

where Φ:=[Φ1 : Φ2], Φ1 and Φ2 are unrestricted 3×3 matrices, Zt:=(X 0
t−1, X

0
t−2)

0 and ut is

assumed to obey a 3-dimensional Gaussian white noise process with covariance matrix Σu.

The estimation of the reduced form solution in eq. (9) amounts to estimate a counterpart

of system (25) subject to the cross-equation restrictions that the structural system (1)-(4)

entails on Φ1, Φ2 (and indirectly on Σu).
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It can be proved (Fanelli, 2010, 2011) that defined the matrices

Γ̊0 :=

"
(Γ0 + ΞΓf) 03×3

03×3 I3

#
, Γ̊f :=

"
Γf 03×3

03×3 03×3

#
,

Γ̊b :=

"
(Γb + ΞΓ0) −ΞΓb

I3 03×3

#
, Φ̊ :=

"
Φ1 Φ2

I3 03×3

#
,

the implicit form version of the cross-equation restrictions is given by the quadratic matrix

equation

Γ̊f Φ̊
2 − Γ̊0Φ̊+ Γ̊b = 06×6

which links the structural parameters θ contained in Γ̊f , Γ̊0 and Γ̊b to the reduced form

parameters contained in Φ̊. These nonlinear constraints can alternatively be expressed in

the form

Φ̊ = (̊Γ0 − Γ̊f Φ̊)
−1Γ̊b , (26)

which shows that the elements in the upper-block of the matrix Φ̊ depend on θ, i.e.,

Φ̃1 = Φ1(θ) and Φ̃2 = Φ2(θ), where Φ1(θ) and Φ1(θ) correspond to the matrices in the

reduced form solution in eq. (9).

The log-likelihood of system (9) corresponds to the concentrated log-likelihood of the

VAR (25) subject to the restrictions in eq. (26) and is given by

logL(θ) = c− T

2
log

"
det

Ã
TX
t=1

(Xt − Φ(θ)Zt)(Xt − Φ(θ)Zt)
0

!#
, (27)

where c is a constant and Φ(θ):=[Φ1(θ) : Φ2(θ)]. The maximization of logL(θ) hinges

on numerical (iterative) techniques based on various approximations of the restrictions

in eq. (26). Departures from the normality assumption imply that the estimator of θ is

actually a Quasi-ML estimator. Given the ML estimate of θ, θ̂, and defined the vector

of constrained VAR coefficient estimates, φ̂c:=vec(Φ̂c), Φ̂c = Φ(θ̂):=[Φ1(θ̂) : Φ2(θ̂)], the

efficient score (LM) statistic for the cross-equation restrictions in eq. (26) is given by

LMT :=
1

T
sT (φ̂c)

0
∙
Σ̂u ⊗ (

1

T
Z 0Z)−1

¸
sT (φ̂c) (28)

where Σ̂u:= 1
T

PT
t=1(Xt− Φ̂cZt)(Xt− Φ̂cZt)

0, X and Z are the T × 1 and T × 2n matrices
of observations on Xt and Zt, respectively, and

sT (φ̂c) := vec

µ
∂ logL(φ)

∂φ0

¯̄̄
φ:=φ̂c

¶
= vec

½
[Z 0X − (Z 0Z)Φ̂0c]

³
Σ̂ε

´−1¾
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is the score of the unrestricted VAR evaluated at the constrained VAR coefficients. The

test statistic LMT is asymptotically χ2(18−m)-distributed under the null that eq. (26)

holds, i.e., if the data are generated from the reduced form solution in eq. (9), see sub-

Section 3.2.

Joint test

The combined (sequential) use of the JT test in eq. (24) and the LMT test in eq. (28)

is described in detail in our sub-Sections 3.1-3.2; see also Fanelli (2010).
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Tables

Table 1. CU-GMM and ML estimates of the structural parameters θf of system (1)-(4),

along with formal tests.

1954q3-1979q2 1985q1-2008q3

Parameter Interpret. CU-GMM MLdet CU-GMM MLdet
γ IS, forward look. term 0.50

(0.03)

∗ 0.73
(0.02)

∗ 0.35
(0.08)

∗ 0.73
(0.01)

∗

ρ Rule, smoothing term 0.43
(0.01)

∗ 0.60
(0.05)

∗ 0.87
(0.04)

∗ 0.63
(0.04)

∗

ϕey Rule, react. to out. gap 0.06
(0.04)

0.14
(0.51)

0.27
(0.11)

∗ 0.28
(0.41)

ϕπ Rule, react. to inflation 0.93
(0.12)

∗ 1.34
(0.75)

2.98
(1.32)

∗ 4.67
(0.97)

∗

ρey Out. gap shock, persist. 0.06
(0.15)

0.85
(0.02)

∗ 0.16
(1.22)

0.92
(0.01)

∗

ρπ Inflation shock, persist. 0.67
(0.11)

∗ 0.82
(0.11)

∗ 0.70
(0.12)

∗ 0.94
(0.03)

∗

ρR Pol. rate shock, persist. 0.67
(0.07)

∗ 0.71
(0.01)

∗ 0.60
(0.08)

∗ 0.83
(0.01)

∗

J-test 12.70
[0.31]

− 17.66
[0.09]

−

LM-CER test − 45.30
[0.00]

− 20.50
[0.04]

NOTES: The parameters δ, κ and α are fixed at the values 0.125, 0.05 and 0.05, re-

spectively. ML estimates have been obtained as detailed in the Appendix. A numerical grid

search was used for the parameters γ, ρ, ϕỹ, ϕπ, using the following ranges: [0.55, 0.75] for γ,

[0.60, 0.98] for ρ, [0.05, 2] for ϕỹ, [0.5, 5.5] for ϕπ and increment 0.03 for all parameters (by

discarding all combinations of point that led to λmax(G(θ))>1). CU-GMM system estimates

are obtained by using Zt:=(X
0
t−1, X

0
t−2)

0 as vector of instruments and the procedure summa-

rized in the Appendix. The starting values of the CU-GMM estimates are I-GMM estimates

which in turn have been obtained by using 2SLS initial estimates. J-test is the overidentifica-

tions restrictions test; LM-CER is a LM test for the nonlinear cross-equation restrictions that

the new-Keynesian model entails on its reduced form solution under determinacy. Asymptotic

standard errors in parentheses; asterisks * indicate point estimates whose t-ratio is greater than

1.96 in absolute value; p-values in brackets. Estimation on each sub-period is carried out by

considering within-periods initial values and variables are demeaned within each sub-period.
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Table 2. Projected 90% asymptotic confidence intervals for the policy parameters ϕỹ and

ϕπ and indicator of indeterminacy

1954q3-1979q2 1985q1-2008q3

Iden-Rob ϕỹ [0.05 , 2] [0.15 , 0.95]

Wald-type ϕỹ [0 , 0.129] [0.09 , 0.45]

Iden-Rob ϕπ [0.5 , 5.5] [1.5 , 5.5]

Wald-type ϕπ [0.48 , 0.85] [0.80 , 5.20]

In (our estimates) 6.00% 0.00%

In (Benati and Surico’s) 6.28% 0.00%

NOTES: ‘Iden-Rob’ 90% confidence intervals are obtained by projecting out the set C0.90(θf0,un),
θfun:=(ϕỹ,ϕπ)

0; ‘Wald-type’ denotes conventional 90% confidence intervals; In (Indet) is the in-

dicator of indeterminacy discussed in Section 3.3, whose value is computed conditional on either

our estimates or Benati and Surico’s (2009), Table 1 (last column).
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