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““As with the dualism of ‘wave-particles,’ we may live in a world that is 
simultaneously continuous and discontinuous. Which it is at any time may 
depend on whether we need to contemplate the forest or the trees.”♣ 

                                                            
♣ Rosser (2000), p.6. 
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Abstract 

Barkley Rosser has been a pioneer in arguing the case for the mathematics of 
discontinuity, broadly conceived, to be placed at the foundations of modelling 
economic dynamics. In this paper we reconsider this vision from the broad 
perspective of a variety of different kinds of mathematics and suggest a 
broadening of Rosser’s methodology to the study of economic dynamics. 
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§1. A Preamble2  
“By one of the many roughnesses or even superficialities forced upon us by the nature 
of the task which this volume is to fulfil, we may characterize this as a difference 
between microscopic and macroscopic points of view: there is as little contradiction 
between them as there is between calling the contour of a forest discontinuous for 
some and smooth for other purposes.” 

Schumpeter, 1939, p. 227.3 

Barkley Rosser, for almost thirty years, has been tirelessly pursuing an interesting and 

innovative research program on developing advanced applied mathematical theoretical 

technologies to provide a vision for complex economic dynamics, at macro, micro and 

methodological frontiers.  

Our own knowledge of his impressive contributions along these lines go ‘back to the 

beginning’, so to speak, of his published work, particularly his two early capital theoretic 

contributions. At the tail end of the capital theory controversies – indeed, during the brief 

afterglow of that debate – Rosser gave the twin-problems of reswitching and capital-reversal 

an unusual interpretation in terms of a cusp catastrophe (Rosser, 1978, 1983). Rosser was 

typically candid about the ‘eccentric’ nature of his reswiching model (see, especially, § III, in 

Rosser, 1983, pp. 184-190). However, our interpretation of the ‘eccentricities’ in the paper 

are of a different methodological and economic theoretic nature. The puritan’s model of 

reswitching and capital reversal, i.e., Sraffa’s own, has no scope for formal dynamics4 or 

optimization – whether of a static or dynamic nature – in it! But that belongs to another story 

than the one we try to tell here. 

Here we shall, instead, concentrate on ‘reconsidering’ Rosser’s visions on the mathematics 

and economics of continuity, discontinuity and dynamics. 

In the next section we discuss and try to suggest a view of ‘The Mathematics of (Dis)-

Continuity’, that may suggest a broadening of the Rosser vision in new mathematical 

directions that we think retain, and enhance, the complex dynamic backdrop and provide it 

                                                            
2 Part of the motivation for writing this paper arose out of thoroughly ignorant comments by several of our 
colleagues about the role of continuity in constructive and computable analysis.  
3  Perhaps  the  inspiration  for  the opening quote by Rosser,  in  this paper, was  this  typically  Schumpeterian 
‘vision’, which also appears as the last quote of Rosser, op.cit. p. 223‐4! 
4 Of the kind that is underpinned by formal dynamical systems theory, although we are of the view that this 
framework does not exhaust what dynamics is, or should mean, in economic analysis. 
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with a deeper and wider perspective from the point of view of computational economic 

dynamics.  

In section III, we give an example of how an apparently ‘discontinuous’ dynamic 

phenomenon in macroeconomic dynamics that can be given a new interpretation and 

observational validity in terms of non-standard analysis. 

The brief concluding section summarizes our discussion from methodological and 

epistemological perspectives and suggests ways in which we should go beyond the frontiers 

to which Barkley Rosser’s work, on the issues mentioned above, has brought us. 

§2. The Pure Mathematics of Continuity – and Discontinuity 
“”Somehow it is appropriate if ironic that sharply divergent opinions exist in the 
mathematical House of Discontinuity with respect to the appropriate method for 
analyzing discontinuous phenomena.” 
 
Rosser, 2000, p.9 

 
Invariably, the ‘Mathematical House’ defines ‘discontinuity’ in terms of one or another so-

called ‘rigorous’ characterization of ‘continuity’, usually some variant or generalization of 

what we think of as the notoriously unintuitive (or counter-intuitive) ‘e-d’ definition. 

Economists who tackle ‘discontinuity in economic theory and economic discontinuities’, to 

use the title of chapter 1 of Rosser (2000), are, usually, ‘the slaves of some defunct’ 

mathematician (pace Keynes). To liberate ourselves from this bondage to some defunct 

mathematician, it will be necessary to understand how the mathematical house came to 

accept, adopt and even sanctify the particular definition(s) of continuity that prevail in the 

accepted mathematical culture of modern analysis. For, to the best of our knowledge, all 

mathematical houses began, first, by defining a particular kind of continuity, as encapsulating 

the corresponding intuitive notion, and then defining discontinuity negatively – as the 

absence of that property (or properties) characterizing the defined notion of continuity.  

 

There are at least four kinds of mathematical analysis: standard real analysis, non-standard 

analysis, constructive analysis and computable analysis5. Within these broad strands, there 

                                                            
5 We would like to add ‘smooth infinitesimal analysis’ (Bell, 1998) as a fifth kind of mathematical analysis. 
However, for the limited purposes of this essay – primarily directed at the mathematically trained economist – 
such an addition would, perhaps, be an intolerable burden, given the general lack of knowledge of all but 
standard real analysis even by competent mathematical economists.  
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are further subdivisions – for example, constructive analysis could be of the pure Brouwerian 

variety, the Bishop adaptations of the original Brouwer intuitionistic kind of constructive 

mathematics, Russian constructivism, etc. The Bishop version tries to find common ground 

with standard real analysis. Russian constructivism is an amalgam of the Brouwerian version 

and computable mathematics, and so on.  

 

Now, typical rigorous definitions of a continuous function in each of these kinds of 

mathematical analysis are as follows: 

Standard Analysis  

( ) ( )
0

0 0

 real valued function  is  at the point  in its domain ,    0,     0

.   < , then < ;  and  is    int  if it is continuous 

every point of the interva

A f continuous x if

s t if x x f x f x f continuous on an erval

ε δ

δ ε

∀ > ∃ >

− −

l.
 
Boas, 1996, p. 85 

Constructive Analysis 

( ) ( ) ( ) ( )
( )

A real valued function  defined on a compact interval  is continuous on    0

   .   whenever ,    and . The operation

 is called a mod    for .

f I I if

there exists s t f x f y x y I x y

ulus of continuity f

ε

ω ε ε ω ε

ε ω ε

∀ >

− ≤ ∈ − ≤

→

 

Bishop, 1967, p. 34. 

It will be noted that the quantifier symbol for ‘there exists’ is used in the ‘standard’ definition 

but not in the constructive case. This is, of course, because the logical meaning of the concept 

in the two kinds of mathematics is very different: tertium non datur is valid in the former 

case, not so in the latter case. Equally, for the case of the ‘modulus of continuity’. 

Non­Standard Analysis 
( ) ( )0 0 0 0A function  is  at a standard point , ,  ,   . 

A function  is said to be  if it is continuous at  real number .
If  is an , then  is s

f x a x b iff f x f x x x
f every x

a b b

< < ∀

− infinitesimal

continuous
continuous

aid to be   to  and denoted by .close a a binfinitely
 

Robinson, 1996, pp. 56, 66. 
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Computable Analysis 
( )

( ) ( )( ) ( ) ( ) ( )
( ) ( )

1

1 1 1 1

A    is   at  if there is a  

  s.t, ,  .

 means, for some integer  and rational , 10 0; ,  is 

equivalen

k

recursive function f x recursively continuous x recursive function

c k x x x o c k f x f x o k

x o k k x x hence x o k

∀ − = → − =

= = =
kt to the   x <1 10 . recursive relation

 

Goodstein, 1961, pp. 8, 39. 

These canonical definitions, representing the different kinds of mathematical analysis do not 

even begin to exhaust the possibilities for variations on the theme of continuity of functions6. 

This being so, what, then, of discontinuity? Assuming we are in the world of the standard real 

analyst, fortified by the Dirichlet-Kuratowski definition of a function as a graph, consider the 

following diagram, where ABCD is a trapezoid symmetrical about the line, LL (see, 

Thurston, 1989): 

                                      

 

 

  

 

  

Now, let S consist of the points of AB a rational distance from A together with the points of 

CD an irrational distance from D. Next, if LL is, first, considered as the y-axis, then S is the 

graph of a discontinuous function; if, however, LL is considered the x-axis, then S is the 

graph of a continuous function.  

Hugh Thurston suggests, in the original paper in which this example appeared, that the 

counter-intuitiveness of the result is the absence of the compactness property of the domain. 

                                                            
6 In particular, we regret very much that space does not permit an inclusion of the definition of continuity 
along the lines of smooth infinitesimal analysis, especially because it is underpinned by the axioms and rules of 
inference of free intuitionistic logic. Aboe all (Bel, op.cit, p. 104): 

“[I]n smooth infinitesimal analysis, the law of excluded middle fails ‘just enough’ for variables so as to 
ensure that all maps on R are continuous, but not so much as to affect the propositional logic of 
closed sentences.” 

L 

Fig. 1 

L 

A  D 

CB 
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But we like to think the fault lies in Dirichlet-Kuratowski definition of a function as a graph, 

in the first place7. 

Now, will the real continuous function please stand up (pace Keith Devlin, 

http://www.maa.org/devlin/devlin_5_00.html)?).  

Surely, each of the four definitions has a claim to represent an intuition about the concepts 

‘continuity’ and ‘function’? Should we, as economists, choose the one that would not allow 

this kind of schizophrenic monster to emerge in an economic formalism? What exactly is – 

should be – the role of intuition is forging precise, formal, mathematical definitions? 

Consider, now, an example constructed by Barkley Rosser, Snr., in the opening pages of his 

classic book on Logic (Rosser, Snr., 1978). In this example of an ‘imaginary interview’ 

between a modern mathematician, say Professor X, and Descartes, the dialogue is about 

coming to an understanding and an agreement about replacing the latter’s vague and intuitive 

notion of continuity, with the former’s (ostensibly) more rigorous ‘e-d’ definition of the 

identically worded concept. The dialogue ends with agreements and understandings, but with 

a final question posed by Descartes to Professor X (ibid, p.2): 

“I have here an important concept which I call continuity. At present my notion of it 
is rather vague, not sufficiently vague that I cannot decide which curves are 
continuous, but too vague to permit of careful proofs. You are proposing a precise 
definition of this same notion. However, since my definition is too vague to be the 
basis for a careful proof, how are we going to verify that my vague definition and 
your precise definition are definitions of the same thing.”  

This eternal problem of replacing vague, intuitive, notions with rigorous mathematical 

characterizations was felicitously solved in one famous case, where also Rosser,Snr., was a 

pioneer: The Church-Turing Thesis (Kleene, 1952, p. 317) on the characterization of the 

vague and intuitive notion of effective calculability with the precise notion of Turing Machine 

Computability or Church’s l-Calculus (to the development of which Rosser,Snr., made 

                                                            
7 We should, in a more comprehensive context, have mentioned the recent work by Velleman (1997) and the 
lucid discussions in a series of papers by Gámez‐Merino, et.al., (2011) on ‘characterising continuity’. The key 
question posed is whether the well known ‘fact’ that continuous functions transform compact or connected 
sets into compact or connected sets, respectively can be the criterion for characterising continuity.  
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fundamental contributions, as a student of Alonzo Church), or of any of a few other formally 

equivalent notions8.  

It has, however, never been squarely faced in the case of continuity; and, hence, obviously, 

never has a ‘Continuity Thesis’ been suggested to underpin any formal characterization. In 

juxtaposing the emergence of the concept of the Church-Turing Thesis, out of the confluence 

of ideas that led to its formal statement in the 1930s, Robin Gandy made a most pertinent 

observation:  

“During the early part of this century it was realized that intuitive notions of ‘limit’ 
and ‘continuous’ could be applied in contexts quite different from those in which they 
had first been given precise definitions (viz. the theory of functions of real and 
complex variables). It seemed, and in standard texts such as Bourbaki’s ‘Éléments de 
Mathématique’ still seems, that these notions could be definitively characterized by 
introducing axioms for a ‘topological space’ and then defining the notion in terms of 
the primitive terms which occur in the axioms. However, cases have arisen in which 
there is a clear intuitive notion of continuity which cannot be so defined. For example, 
the notion of continuity which Kreisel .. uses in introducing his ‘continuous functional 
of finite type’, and certain refinements of it, are not topological. But there is a 
generalization, ‘filter space’, in which Kreisel’s notion of continuity can be simply 
and directly expressed. Despite much evidence from examples, and from the 
confluence of definitions – in terms of open sets, neighbourhoods, and operations of 
closure – ‘topological space’ is not the definitive concept.” 

 Gandy, 1994; p. 73; underlined emphases added. 

The same, of course, applies to the function concept, not only in the pure mathematical senses 

of alternative definitions as in the four examples for continuous functions given above, but 

also as in the example of the controversy surrounding Dirac’s d-function and its alleged 

illegitimacy as a standard function. It was only after the generalization of the function 

concept by Laurent Schwartz and others that the d-function was legitimized as a proper 

mathematical construct by the mathematicians. Dirac’s honed mathematical physics intuition 

ran far ahead of the internal, almost incestuous, development of the function concept.  

Surely, there is a lesson to be learned here, for the mathematical economist? 

In general, the formal definition of discontinuity is simply the absence of the property of 

continuity9, but it is when discontinuities over a segment or an interval have to be considered 
                                                            
8 However, one of us – Velupillai – has serious misgivings about the way Church originally suggested this 
‘equivalence’ via an attribution to Turing (Chruch, 1937). There are intricate questions of what Turing meant 
by the difference between ‘machine computable’ and effectively calculable by ‘a human calculator’. An elegant 
exposition of scepticism on this fundamental question can found in Hodges (2008). 
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that some of the more interesting conundrums begin to appear. The classic distinction 

between a discontinuity of the first and second kind (cf. Rudin, 1976, p. 94) is almost 

invariably presented in terms of the following example: 

( ) ( )

1 :
( )          

0 :
  has a discontinuity of the second kind at every point , since

neither the right-hand limit,  nor the left-hand limit,  , of  at ,  exists.

Define
x rational

f x
x irrational

Then f x

f x f x f x+ −

⎧
= ⎨
⎩  

However, in the variant of computable analysis (recursive analysis) for which a definition of 

continuity we have defined above (Goodstein, 1961), the value of a recursively continuous 

function for a recursive real argument is constructed, not defined. Hence the above example 

‘finds no place in recursive analysis’ (ibid, p. 43). 

Most famously, Markov proved, in 1954 (Markov, 1958, p. 192), the famous theorem on the 

impossibility of discontinuity of constructive functions of a real variable. Since this was a 

result developed within Russian constructivism it may well be more useful to state it in terms 

of recursive functions. A fairly mundane formal statement of the theorem – in terms of 

recursive functions - is given as an exercise in Beeson’s encyclopaedic text on The 

Foundations of Constructive Mathematics (Beeson, 1985, p. 66, exercise 4): 

  Definition: Recursive Discontinuity 
A function f from the reals to the reals is said to have a recursive discontinuity at x if 

there is a positive rational number x and a recursive sequence xn  of recursive reals 

converging (recursively) to x, such that f (xn) is bounded away from f (x) by x. 

Markov’s Theorem 
  A recursive function of a real variable cannot have a recursive discontinuity.  

The proof is fairly easy, using the Unsolvability of the Halting Problem for Turing Machines 

that an effective operation cannot have a recursive discontinuity (ibid).  

A perceptive reader would immediately see the amalgam of constructive mathematics and 

computable analysis – a feature of Russian Constructivism – especially in the proof strategy, 
                                                                                                                                                                                         
9 The classic text by Rudin (1976, p.94) is a prime and honest example of standard real analysis: 

“If x is a point in the domain of definition of the function f at which f is not continuous, we say that f is 
discontinuous at x, or that f has a discontinuity at x.” 
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where the Unsolvability of the Halting Problem for Turing Machines is used. This means, of 

course, an appeal is made to the Church-Turing Thesis – something that is avoided in pure 

Constructive Mathematics (Brouwer, Bishop, Bridges, Richman, etc.). 

In terms of pure computable analysis the related result is that computable implies continuity 

(although the contra-positive is not true10; cf. Weihrauch, 2000, p. 71). The equivalent in the 

Brouwerian version of constructive mathematics is, of course, his famous original theorem 

that every function defined on a closed unit interval is uniformly continuous. 

In fact, in this case of pure constructive mathematics – i.e., Brouwer’s original version, 

underpinned by intuitionistic logic – there is no place for discontinuity at all! Brouwer, in 

fact, introduced his axioms for intuitionism mainly to try to regain the core results about 

continuity. Bishop, on the other hand, with his attempt to develop a constructive mathematics 

consistent, as much as possible, with standard mathematics, avoided the axioms of 

intuitionism. He simply modified the definition of continuous function on the real numbers to 

mean uniform continuity – as did Goodstein, even at the elementary analysis level (cf. 

Palmgren, 2005; Goodstein, 1948).  

Weyl’s pungent summary of the Constructive approach to continuity, given in his Zurich 

Lectures of 1920, may help focus the way one should view even discontinuity (van Stigt, 

1990, p. 379; italics added): 

 “It is clear that one cannot explain the concept ‘continuous function in a bounded 
interval’ without including ‘uniform continuity’ and ‘boundedness in the definition. 
Above all, there cannot be any function in a continuum other than continuous 
functions. When the Old Analysis introduced ‘discontinuous functions’ it showed 
most clearly how far it had departed from a clear understanding of the essence of the 
continuum. What is nowadays called a discontinuous function is in reality no than a 
number of functions in separate continua …” 

Those of us who do our formal economic modelling with the mathematics of the 

constructivists – of any variety – or of the recursion theorist do not pay much attention to the 

conundrums posed by non-continuities (to retain a primitive intuition which seems to have 

become clouded after the subversion of it in formalising continuity in standard 

mathematics!).  
                                                            
10 In other words, there are continuous functions that are uncomputable. However we have long conjectured 
that the contra‐positive is true in terms of uniform continuity. Using the equivalence we conjecture between 
Brouwer’s Fan Theorem and the idea of the ‘finiteness property’ in computable analysis (see Weihrauch, 2000, 
p. 27), it should be possible to prove the contra‐positive.  
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Therefore, the question that puzzles us is quite simple to pose: why should economists 

confine themselves to standard real analysis for modelling economic phenomena? The 

domain of real analysis is manifestly unsuited for economic modelling – especially in the age 

of the digital computer. Should we, then, be surprised that the paradoxes of discontinuity are 

ubiquitous in models of economic dynamics? 

But, then, the paradoxes of uncomputabilities, undecidabilities and incompleteness would 

have to be faced, as squarely as Barkley Rosser has courageously faced the conundrums 

posed by discontinuities.   

 §3. Taming Relaxation Oscillations – with Ducks. 
“It is no exaggeration to say that bifurcation theory is the mathematics of 
discontinuity.” 

Rosser, 2000, p. 12; italics in the original. 

In chapter 2 of his admirable summary ‘manifesto’ for a General Theory of Economic 

Discontinuities’, Rosser points out (ibid, p. 19; bold italics added: 

“Among the elementary catastrophes the two simplest, the fold and the cusp, have 

been applied the most to economic problems. Figure 2.4 (Fig.2, here) depicts the fold 

catastrophe with one control variable and one state variable. Two values of the control 

variable constitute the catastrophe or bifurcation set, the points where discontninuous 

behaviour in the state variable can occur, even though the control variable may be 

smoothly varying. [Fig. 2] also shows a hysteresis cycle as the control variable 

oscillates and discontinuous jumps and drops of the state variable occur at the 

bifurcation points. 

….[T]he state variable would drop to the lower branch as soon as it lies under the 

upper branch and vice versa. The middle branch represents an unstable equilibrium 

and hence unattainable except by infinitesimal accident.” 

Are unstable equilibria ‘unattainable except by infinitesimal accident’? Rosser has, as usual, 

perceptively juxtaposed two important concepts of relevance for the economic modelling 

enterprise: the unlikelihood of a persisting unstable configuration in state space and the role 

of ‘infinitesimals’. 
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What would constitute an ‘infinitesimal accident’? We shall interpret ‘infinitesimal’ in its 

precise non-standard sense and demonstrate the clear possibility of an ‘attainable unstable 

equilibrium’. 

 
Recent results and work in experimental economics (Plott & Smith, 1999) pose fundamental 

challenges to the traditional economic theorist’s view, almost bordering on a dogma11, that 

unstable systems are unobservable and unattainable on ordinary scales. The classic view in 

economics was articulated a long time ago, by no less an authority than Paul Samuelson: 

“The plausibility of … a stability hypothesis is suggested by the consideration that 

positions of unstable equilibrium, even if they exist, are transient, nonpersistent states, 

and hence on the crudest probability calculation would be observed less frequently 

than stable states.  How many times has the reader seen an egg standing upon its 

end?” 

Samuelson, 1947, p. 5; italics added. 

 

                                                            
11 Later, Samuelson himself raised  doubts on adhering to the ‘stability dogma’ in his homage to Ragnar Frisch 
(Samuelson, 1974, p.7  ),  crucially  in  the  context of  a  statement  about  the  van der Pol‐Rayleigh  systems of 
nonlinear differential equations.  In dynamical systems theory, Ralph Abraham & Jerrold Marsden referred to 
the  ‘dogma of stability’  in their classic text on the Foundations of Mechanics (Abraham & Marsden, 1978, p. 
xx). 

C 

X 

Fig. 2 
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The cubic characteristic of, in particular, the (unforced) van der Pol equation, generates a 

geometry that is identical to the fold. The van der Pol equation, and its integrated form as the 

Rayleigh equation, played an important role in the nonlinear (endogenous) theory of the 

business cycle in the `Golden Age' of Keynesian dominance12. The full economic background 

to its use in business cycle theory, and the mathematical underpinnings, are extensively 

discussed in a series of three papers and we refer the interested reader to them for further 

information. 

Our interest here is to point out how, using nonstandard analysis, unusual phase portraits 

were discovered for this fascinating equation13. In particular, to show – only as an example – 

how the bifurcation of multi-phase dynamical systems (cf. Day, 1994, Ch. 6), in particular of 

the Liénard-van der Pol variety, can show the attainability and persistence of unstable limit 

cycles. These cycles, emerging from a bifurcation point off the ‘cubic characteristic’ of, say, a 

van der Pol equation, at the ‘infinitely fast’ transition to the stable manifold, are now called 

‘Canards’14 in ‘honour’ of the geometric appearance of the phase portraits, which resemble a 

‘Duck’s Head’. The ‘Duck’s Head’ manifests a persistent cycle and resides in the unstable 

manifold of the state space.  

Zvonkin and Shubin, in their detailed and rigorous analysis of the issue here, summarised 

admirably the nature of the discovery (Zvonkin & Shubin, 1984, p.69; italics added): 

“Ducks are certain singular solutions of equations with a small parameter, which are 

studied in the theory of relaxation oscillations. These solutions were first found for the 

van der Pol equation, and their form resembled that of a flying duck. Duck theory is, 

in the authors' opinion, the most striking application of the techniques of non-standard 

analysis. 

                                                            
12 Its first appearances  in the business cycle literature were  in unfortunately neglected papers by Hamburger 
(1930, 1931) as equation # 7, on p.5, in the former and in footnote 7, p.6 in the latter) in the formal form: 

( )
2

2 2
2 1 0d y dyy y

dt dt
α ω− − + =  

13 We hasten to add that, ex post, standard analysis has been able to re‐absorb the new discoveries  into  its 
fold.  The  point  remains,  however,  that  the  original  discovery  came  about  by  a  fertile  use  of  nonstandard 
analysis. 
14 Canard Solutions were discovered by Georges Reeb’s school in Strasbourg in 1977. They appeared during a 
Hopf bifurcation of a one‐parameter family of dynamical systems, particularly the van der Pol equation. A rich 
variety of results, in an expository manner, is available in Nonstandard Analysis in Practice edited by Francine 
and Marc Diener (Diener & Diener, 1995), who have themselves pioneered the study of ‘Canards’. 
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...... 

It was not by chance that ducks were discovered with the help of non-standard 

analysis and in connection with it. We think that the language of non-standard 

analysis will make it easy for a wide circle of mathematicians to become acquainted 

with the theory of ducks and the theory of relaxation oscillations in general." 

Relaxation oscillations encompass two-phase dynamics in the sense that there is an 

interaction between slow and fast variables in the system, rather like one set of markets 

clearing `infinitely fast', and another set clearing relatively slowly. The problem, of course, is 

that `infinitely fast' is a meaningless concept in standard analysis, but an eminently sensible 

notion in nonstandard analysis; analogously, the `infinitesimal' is a fully viable concept in 

nonstandard analysis, but not so in standard analysis. Hence, Rosser’s perceptive caveat that 

they are ‘infinitesimal accidents’ – which they have to be in standard real analysis. 

Consider, now, the following variant of the van der Pol equation (or consider it as a special 

case of the more general Liénard equation)15: 

( )

( )( )

( )

( )

1

2
2

2

3 2

0

This can be represented as the equivalent phase-plane system:
dx
dt

with the 'characteristic' given by:
1 1
3 2

d x dxx x x
dt dt

y f x

dy x
dt

f x x x

ε α

ε

α

−

+ + + + =

= −

= − +

= +

 

The phase-plane dynamics depicted in the diagrams below are for the following numerical 

values of a and ε (where the red curves are, in both cases, the graphs of the ‘cubic 

characteristic’): 

1. For Figure 3,: α=.5;ε=1000; 

2. Figure 4 (the `Duck Headed vdP' dynamics) is obtained for: α=.001012345;ε=1000; 

                                                            
15  This  example  is  clearly  and  fully  analysed  in MacGillivray,  et.al.,  (1994). We  have  used Matlab  in  our 
replication of the examples. 
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3. Finally, Figure 5, the `Unheaded Duck is obtained for: α=.00001025;ε=1000; 
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Figure 4 
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Figure 5 

 

 

The proof of existence of `Unheaded Ducks;, i.e., counter-intuitive cycles being attracted to 

unstable manifolds, for the van der Pol system is extremely simple - provided one learns a bit 

of nonstandard analysis - or, at least, nonstandard terminology. Let us simply state it, in as 

heuristic and intuitive way as possible, to illustrate what we mean; the interested reader can 

get a clear idea from the exceptionally clear and detailed article by Zvonkin and Shubin 

(op.cit.). The only thing to keep in mind is that α in an infinitesimal in the sense of 

nonstandard analysis. Then16 (referring to the last two phase-portraits and using f generically 

for the ‘cubic characteristic’): 

                                                            
16 This is only a sufficient condition and the `admissible curve' is simply a formalization of the traditional `cubic 
characteristic'  for  the  van der  Pol  equation. We  conjecture  that  `Duck  Cycles'  can be  shown  to  exist  even 

without a `cubic characteristic'; say, for example, with a `characteristic' of the form:  ( )2xeτ − . Such a form 

would have only one isolated maximum or minimum. 
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Definition: An admissible form for the characteristic, f(x) 
[ ]

( ) ( ) [ ]
( ) ( ) [ ]

1 2

2
1 2

1 2 0

1 1 1

( ) has an admissible form on a closed interval, say , ,  if:

1 . ,  is  and ;

2 . ,  has exactly two isolated extremum points, say a minimum at ,  

and a maximum at ,  and 

f x

f x

f x x

x x

β β

β β

β β

β

∈

∈

<

standard

[ ) ( ]
( ) ( )

( ) ( ) ( ) ( ) ( )

0 2 1 1 0 2

1 0

1 0 2 1

,  so that: '( ) 0 on ,  and ,  

and ' 0 on , ;

3 .  and ;

x f x x x

f x x x

f f x f f x

β β β

β β

< < >

<

< >

 

Theorem 
( ) [ ] ( )1 2 2 0  has an  on , , and if  & , ,

  a value of the infinitesimal  for which the van der Pol system has a  

s.t  is the value on the -coordinate corre

Suppose f x x x x x

then

x x

β β

β

β β

α

∈ℜ ∈

∃

admissible form

Duck  Cycle

sponding to the  of the .'beak' 'Duck'

 

The point of the exercise is that a knowledge of the possibilities for exploring a dynamical 

system with parameters and variables taking actual infinitesimal and infinite values is 

indispensable - not just for reasons of pure mathematical aesthetics; but also for eminent 

economic reasons, where financial market variables move `infinitely' fast, at least relative to 

`real' variables; and reactions in market sentiments to `infinitesimal' variations in parameters 

is a non-negligible factor in turbulent markets. An economist, narrowly trained in standard 

mathematics will always have to resort to ad hockeries to handle the infinitesimal and the 

infinite - for example, in models capable of relaxation oscillations. Quite apart from 

aesthetics and pragmatics, it is also the case that the mathematics of nonstandard analysis is 

intuitively natural, pragmatically constructive and conceptually much simpler, without any of  

the contorted paraphernalia of the Weierstrassian `ε-δ′ calisthenics. 

It is to Barkley Rosser’s credit that his honed analytical intuition was able to see the need for 

appealing to an ‘accidental infinitesimal’, if constrained to discourse in an inappropriate 

mathematical domain. 
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§3, Beyond the Rosserian Visions 

“I would like to make it clear that I find merit in the Catastrophe theorist’s use of 
modern calculus and geometric techniques in models in science. In particular 
discontinuities can often best be understood via this kind of mathematics. For 
example it would be important to find a calculus oriented approach model for the 
computer, a machine which is intrinsically discrete. Such a calculus model would not 
be exact, but it would give great insight to automata theory.” 

Smale, 1978, p.1366. 

 

Even the gods nod – sometimes! Smale discourses as if constructive and computable analysis 

do not furnish a ‘calculus oriented approach model for the computer, a machine which is 

intrinsically discrete’. What else are they, if they are not at least that? Indeed, comstructive 

and computable analysis are, in precise senses, much more ‘exact’ than the conceptual 

fudging that masquerades as precise analysis in standard calculus with its reliance on 

Zermelo-Fraenkel set theory and the Axiom of Choice. How numerical and quantitative and 

computational can such a calculus be- compared to the other three kinds of mathematics? 

We have attempted to start from visions that Rosser has, over a period of thirty years, 

developed for economic theory, mathematical modelling of economic phenomena and 

applicable dynamic theory from the vantage point of mathematical theories of discontinuities. 

The inspiration from Rosser’s provocative visions have helped focus our attention – and, we 

hope the economic profession’s – on the importance of thinking about discontinuities in 

mathematically coherent ways. Rosser has tirelessly propagated the view that one of the best 

ways to understand and, perhaps, tame –formally - the unruly dynamics of the economic 

world would be to underpin them in a theory of dynamic discontinuities. 

We have tried to clarify the mathematics of continuity, given that the pure mathematics of 

discontinuity seems always to have been developed as a minor corollary to characterizations 

of continuity in different kinds of mathematics. Our melancholy conclusion is that standard 

real analysis is wholly unsuited to any serious discourse about discontinuity, especially from 

a quantitative and computational sense – those senses that are crucial for an applied, policy 

oriented, science like economics.  

We dismiss ad hoc justifications given by unreflective economists -- or would-be economists 

– for modelling economic phenomena in terms of standard real analysis and its version of 
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continuity, as not worth serious consideration from the point of view of the foundations of 

mathematics or even from the vantage point of numerically meaningful and computationally 

significant mathematical formalisms. For example it is claimed – in a sense in the spirit of 

Smale’s above criterion – by Mount and Reiter (Mount & Reiter, 2002, p.1) that:  

"Computing with real numbers  .... is also relevant to applications in economic theory. 

Economic models typically use real variables and functions of them." 

But it is not explained or even seriously discussed why `economic models typically use real 

variables ...  .'. Similarly, discussion about continuity, discontinuity and dynamics has almost 

entirely been in terms of real analysis. We think this is an unproductive and, ultimately, a 

futile exercise. Our reasons, many of them given above, are methodological and 

epistemological. 

The standard epistemological vision may well be the one that was propagated by Hilary 

Putnam and Willard Van Orman Quine (Putnam, 1979, Quine, 1948) and generally referred 

to as the ‘indispensability argument’. The spirit of our discussion in the main body of this 

paper is best summarised by the deep objections raised by Solomon Feferman to the Putnam-

Quine ‘indispensability thesis’ (Feferman, 1998). The `indispensabilists' flounder on the deep 

ontological issues and doubts raised about their program by Feferman (ibid, p. 284)17: 

"If one accepts the indispensability arguments, there still remain two critical 
questions: 

Q1. Just which mathematical entities are indispensable to current scientific theories? 

Q2. Just what principles concerning those entities are needed for the required 
mathematics?" 

We believe these are the two crucial questions, even if not framed in the context of a critique 

of an `indispensability argument', that a mathematical economist, who relies exclusively on 

any one type of mathematical formalism for economic modelling, should try to answer - or, at 

least, keep as disciplining background criteria. Our vision in this paper is almost entirely 

                                                            
17Feferman's  thoughtful  closing  remark  and  query  is  also  relevant  in  the  context  of  the  mathematical 
economists' penchant for modelling in terms of real numbers and standard real analysis, ibid, p. 298: 

"[A]s  long  as  science  takes  the  real  number  system  for  granted,  its  philosophers must  eventually 
engage the basic foundational question of modern mathematics: `What are the real numbers, really?" 

The economic apologist's  retort may well be  that  `its philosophers' are  irrelevant  ‐‐ or don't exist  ‐‐  for  the 
mathematical modelling  enterprise  of  the  economic  theorist.  This  instrumentalist  position  is,  in  fact,  the 
dominant one in mathematical economics. 



 

21 

 

disciplined by these two perceptive questions that Feferman raises against the 

`indispensabilists'. In other words, we take it that the serious mathematical economist is at 

least a closet `indispensabilist' and, therefore, the themes in this essay are grounded on: (a). 

casting doubt on the kind of `mathematical entities that are considered indispensable' in 

orthodox mathematical modelling of economic discontinuities; and, (b). questioning the kind 

of `principles concerning entities [such as continuity, discontinuity and dynamics]' that are 

claimed as `necessary for the required mathematics'. Our examples are, therefore, chosen to 

illustrate that the chosen `mathematical entities' and the `principles concerning these entities' 

are not appropriate, necessary, relevant or indispensable for mathematical economic 

modelling – if they are extracted from, embedded in, or belong to the framework of, standard 

real analysis.  

Barkley Rosser raised the important questions, set the standards against which they must be 

considered, and provided preliminary hints towards some kind of solutions to them: to the 

problem of continuity, discontinuity and dynamics in economic modelling. Rosser’s visions 

defined a part of the frontier of methodology in economic modelling. It is our duty to try to 

push these frontiers and develop new visions. 
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