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Abstract 
We focus on a multiperson bargaining situation where the negotiation possibilities for the 

players are represented by a graph, that is, two players can negotiate directly with each other if 
and only if they are linked directly in the graph. The value of cooperation among players is given 
by a TU game. For the case where the graph is a tree and the TU game is strictly convex we 
present a noncooperative bargaining procedure, consisting of a sequence of bilateral negotiations, 
for which the unique subgame perfect equilibrium outcome coincides with the Myerson value of 
the induced graph-restricted game. In each bilateral negotiation, the corresponding pair of players 
bargains about the difference in payoffs to be received at the end. At the beginning of such 
negotiation there is a bidding stage in which both players announce prices. The player with the 
highest price becomes the proposer and makes a take-it-or-leave-it offer in terms of difference in 
payoffs to the other player. If the proposal is rejected, the proposer pays his announced price to 
the other player, after which this particular link is eliminated from the graph and the mechanism 
starts all over again for the remaining graph.  
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1. Introduction

In this paper we study multiperson bargaining situations where the negotiation possibilities for
the players are represented by a tree, that is, a connected nondirected graph without cycles. The
interpretation is that two players can directly negotiate with each other if and only if there is a
link between the two players in the tree. Moreover, there is a TU game which assigns to every
coalition of players the surplus that can be achieved if all players in this coalition cooperate.
Each pair of players linked directly in the graph bargains about their di¤erence in payo¤s to
be received from cooperation. It is assumed that a coalition of players is able to extract the
full surplus from cooperation if and only if each pair of coalition members linked directly in the
graph has reached an agreement upon its di¤erence in payo¤s. At the end of the bargaining
process the coalitions formed are exactly the maximal coalitions for which the full surplus from
cooperation can be achieved. For such a coalition there is a unique allocation which distributes
the full surplus among its members and respects the agreed upon bilateral di¤erences in payo¤s.

The situation described above is mathematically equivalent to a graph-restricted cooperative
game, which consists of a TU game and a graph representing the communication possibilities
among the players. A well-known solution for such games is the Myerson value (Myerson, 1977),
which is an extension of the Shapley value to graph-restricted games. In this paper we present
a noncooperative bargaining procedure which leads to the Myerson value in case the graph is a
tree and the underlying TU game is strictly convex. By considering strictly convex games, we
assume that the marginal contribution of a player to a coalition is increasing in the size of the
coalition.

The bargaining procedure consists of a sequence of bilateral negotiations in which pairs of
players bargain about their di¤erence in payo¤s to be realized at the end. Since a pair of
players can only negotiate directly if there is a link connecting them, each bilateral negotiation
corresponds to a link in the tree. Before the bargaining procedure starts, we choose an order
of the links such that at any moment the set of remaining links is connected. For every link
fi; jg, let ¢ij be the di¤erence in payo¤s about which the players bargain. The interpretation
of ¢ij is that, if in the future all pairs of players agree upon their di¤erence, player i’s share
from cooperation should exceed player j’s share by the amount of ¢ij. At the beginning of this
bilateral negotiation both players announce a price. The player with the highest price is then
allowed to propose a di¤erence ¢ij. The other player may accept or reject this di¤erence. In
case of acceptance both players commit to this di¤erence ¢ij and the mechanism turns to the
following link. In case of rejection the proposer has to pay his announced price to the other
player, the link fi; jg is eliminated and the mechanism starts all over again for the remaining
graph. If the remaining graph is no longer connected, the mechanism is applied separately to
each of the connected components in this remaining graph.

The procedure continues until all links in the remaining graph have been considered. The
…nal outcome of the procedure will consist of (1) a …nal graph, which is a forest (a disjoint
collection of trees), (2) the agreed upon di¤erences ¢ij for this forest and, possibly, (3) for each
player a collection of prices which he is to pay or receive as the result of rejected proposals. The
…nal payo¤s for the players are then de…ned as follows. For every tree in the resulting forest
there is a unique allocation x which distributes the value of the tree (or, to be more precise, the
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value of the coalition consisting of the players in this tree) among its members, respecting the
agreed upon di¤erences ¢ij : The …nal payo¤ for a player is then the sum of his payo¤ in x and
the net sum of the prices received and the prices paid.

The main result in this paper is that there is a unique subgame perfect equilibrium outcome
to this procedure, in which all proposed di¤erences are accepted and the …nal payo¤s for the
players coincide with the Myerson value applied to the induced graph-restricted game.

At this stage we wish to compare this procedure with related bargaining mechanisms pro-
posed in the literature. The bargaining procedures that perhaps come closest to our mecha-
nism are the bidding-for-the-surplus procedure proposed in Pérez-Castrillo and Wettstein (2001)
and Mutuswami, Pérez-Castrillo and Wettstein (2001) and the mechanism proposed by Moulin
(1984). Similarly to our mechanism, the latter procedures also consist of a bidding stage, at
which the role of proposer is decided by means of an auction, and a bargaining stage at which
the proposer makes an o¤er to other players. The mechanism in Pérez-Castrillo and Wettstein
(2001) implements the Shapley value for zero-monotonic TU games, whereas the mechanism in
Mutuswami et al. (2001) implements the Myerson value for situations where the value from
cooperation does not only depend on the coalition formed but also on the communication graph
which connects the players in the coalition1. The bidding-for-the-surplus mechanism consists
of three stages. In the …rst stage every player i chooses for each of the other players j a price
that i is willing to pay to j. The net bid of a player is the sum of the prices he is willing to
pay to the other players minus the sum of the prices the other players want to pay to him.
The player with the highest net bid becomes the proposer. At the second stage, the proposer
pays his prices to the other players and announces an allocation for each of them. In the third
stage, the other players sequentially accept or reject this proposal. In case of a rejection by
at least one player the proposer leaves the game and obtains his stand-alone payo¤, and the
mechanism starts again without considering this player. In case of unanimous acceptance, every
player except the proposer receives his share of the allocation and the proposer gets the value
of the grand coalition minus the payments made to the other players. Other noncooperative
bargaining procedures which implement the Shapley value are, for instance, Dasgupta and Chiu
(1998), Gul (1989), Hart and Mas-Colell (1996) and Winter (1994). Mutuswami et al. (2001)
extend the bidding-for-the-surplus mechanism to the provision of public goods and network for-
mation. The di¤erence with respect to the former mechanism is that at the second stage the
proposer announces in addition a coalition and a connected graph on such coalition. Vidal and
Bergantiños (2001) apply the bidding-for-the-surplus mechanim to implement the Owen value,
which is an extension of the Shapley value to cooperative situations where players are organized
in a-priori unions.

Moulin (1984) implements the Kalai-Smorodinsky bargaining solution. In this mechanism
there is a bidding stage and a bargaining stage. At the bidding stage players simultaneously
announce a probability. The player with the highest probability, say pi, is allowed to make
an o¤er to the rest of players, which sequentially accept or reject such an o¤er starting from
the player with the lowest probability. If there is a rejection, the player who rejects is allowed
to make a countero¤er to the rest of players. If at least one player rejects this countero¤er,

1The Myerson value in this more general context is also called the Jackson and Wolinsky allocation rule
(Jackson and Wolinsky (1996)).
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then the status quo point is enforced. If there is unanimous approval, then this countero¤er is
implemented with probability pi, whereas the status quo point is implemented with probability
1¡pi. Bergantiños, Casas-Méndez and Vázquez-Brage (2000) have extended the de…nition of the
Kalai-Smorodinsky bargaining solution to NTU games and have modi…ed Moulin’s mechanism
in order to implement the latter solution.

In comparison with the mechanisms above, the procedure presented in this paper di¤ers in
various aspects. First of all, the negotiations in our procedure are always bilateral, whereas
in all of the above mechanisms, except Gul’s, negotiations are multilateral. Another important
di¤erence with the mechanisms above lies in the procedure which is followed after a proposal has
been rejected. In the bidding-for-the-surplus mechanism, for instance, the player whose proposal
has been rejected should leave the game, whereas in our mechanism only the link for which the
di¤erence has been negotiated is eliminated, but the proposer stays in the game as long as he
has other links left. Finally, the role of the prices is di¤erent within our procedure in comparison
with Gul (1989) and the bidding-for-the-surplus mechanim. In the latter two procedures prices
are always paid in equilibrium, whereas in our mechanism the announced prices are paid only if
a proposal is rejected. Hence, in equilibrium, no prices are paid.

The paper is organized as follows. Section 2 presents some basic de…nitions. In Section 3
we present the mechanism and show that it implements the Myerson value. Section 4 contains
some concluding remarks.

2. The model

Let N = f1; :::; ng be the set of players and let 2N the set of all possible coalitions. A charac-
teristic function is a function v : 2N ! < which de…nes for every coalition the value or worth
obtained from cooperation among players inside this coalition. We assume that v (;) = 0. The
pair [N; v] is called a cooperative game with transferable utility (TU-game). We shall assume
throughout the paper that the game [N; v] is strictly convex, that is,

v(S [ fi; jg) ¡ v (S [ fig) > v (S [ fjg) ¡ v (S)

for all i 6= j and all S µ Nn fi; jg.
A TU-allocation rule is a function ª which assigns to every TU-game [N; v] a payo¤ vector

ª(N; v) 2 <n, where n is the number of players.

De…nition 2.1. The Shapley value is the allocation rule © with

©i(N; v) =
X

SµNnfig

s!(n ¡ s ¡ 1)!
n!

[v(S [ fig) ¡ v(S)]

for all TU-games [N; v] and all players i; where s = jSj; n = jN j:

Consider a graph g consisting of a set of n nodes and a set of undirected links. The nodes
represent the players and the links are denoted by fi; jg ; with i; j 2 N . The interpretation is
that players i and j can negotiate directly if and only if the link fi; jg is in g.
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The triple [N; v; g] is called a graph-restricted cooperative game with transferable utility.
This triple is also called a network or a communication situation. An allocation rule in this
context is a function which assigns to every graph-restricted cooperative game a payo¤ vector
in <n, where n is the number of players.

In a graph g, a path is a sequence of adjacent links fi1; i2g ; fi2; i3g ; :::; fiK¡1; iKg with
fik; ik+1g 2 g and all i1; i2; :::; iK pairwise di¤erent. For a coalition S µ N let gS be the
restriction of the graph g to nodes in S. We say that S is a maximal connected coalition if (1)
for every two nodes i; j 2 S there is a path in gS connecting them, and (2) for every i 2 S
and j =2 S there is no path in g connecting them. Let N jg be the partition of N consisting of
the maximal connected coalitions induced by g: Similarly, we de…ne Sjg to be the collection of
maximal connected coalitions in S induced by gS . A graph g is said to be connected if N is the
unique maximal connected coalition. A graph g is called a tree if for every two nodes there is a
unique path connecting them. We say that g is a forest if it is a disjoint union of trees.

Given a graph-restricted game [N; v; g], we de…ne the following auxiliary TU-game, to which
we refer as the point game induced by [N; v; g].

De…nition 2.2. The point game [N; vjg] of a graph-restricted cooperative game [N; v; g] is the
TU game de…ned by

vjg (S) =
X

T2Sjg
v(T )

for all S µ N:

Hence, the value of a coalition in the point game is given by the sum of the values of its
maximal connected coalitions.

De…nition 2.3. The Myerson value of a graph-restricted cooperative game [N; v; g] is the Shap-
ley value applied to the induced point game [N; vjg].

We denote the Myerson value of a graph-restricted cooperative game [N; v; g] by m (N; v; g).
Myerson (1977) has provided the following axiomatic characterization.

Theorem 2.4. (Myerson, 1977) The Myerson value is the only allocation rule ª which satis…es
the following two axioms:

1.Component e¢ciencyP
i2S

ªi (N; v; g) = v (S) for all [N; v; g] and all maximal connected coalitions S 2 N jg.

2.Fairness
ªi (N; v; g) ¡ ªi (N; v; gn fi; jg) = ªj (N; v; g) ¡ ªj (N; v; gn fi; jg) for all [N; v; g] and all

links fi; jg 2 g. Here, gnfi; jg is the graph which remains after deleting the link fi; jg:

3. The mechanism

In this section we present a noncooperative bargaining procedure which for a given tree g¤ and
strictly convex TU-game [N; v] yields the Myerson value m (N; v; g¤) as the unique subgame per-
fect equilibrium outcome. Since N and v are …xed, we shall write m (g¤) instead of m (N; v; g¤).
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Fix a tree g¤ and an order ¼ over the links in g¤. For every link l 2 g¤ let L+ (lj¼) be the set of
links which weakly follow link l given the order ¼. We say that the order ¼ is regular if for every
link l the graph L+ (lj¼) µ g¤ is connected. Note that in any regular ¼ the link l is always an
exterior link in L+ (lj¼). Let ¦ be a function which assigns to every subgraph g µ g¤ a regular
order on the links in g.

The bargaining procedure ¡ (v; g¤;¦) is de…ned as follows. Let ¼ = ¦(g¤). Suppose that
the link fi; jg is reached by ¼. Then, players i and j enter the following two-step bargaining
procedure.

Step 1
Players i and j simultaneously choose a non-negative price. The player with the highest bid

will be the proposer in step 2. If there is a draw, the player which is not a terminal node in
L+ (fi; jg j¼) will be the proposer in step 2. In case fi; jg is the last link, and thus both players
are terminal nodes in L+ (fi; jg j¼), the player with the lowest index becomes the proposer.

Step 2
The proposer o¤ers a di¤erence in payo¤s ¢ij 2 < and the other player can accept or reject

this di¤erence.
If ¢ij is accepted, choose the next link according to the order ¼ and return to step 1 for this

link.
If ¢ij is rejected, then the proposer must pay the price he bid at step 1 to the other player

and the link fi; jg is deleted from the graph. Afterwards, the procedure above is applied to the
reduced graph g¤n fi; jg with respect to the order ¦(g¤n fi; jg). If g¤n fi; jg is not connected,
then it is understood that the procedure is applied to each of the trees in g¤n fi; jg separately.
If, for instance, the di¤erence at link fh; kg is rejected in g¤n fi; jg, the procedure starts for the
remaining graph g¤n (fi; jg [ fh; kg), and so on, until there are no links left. In the latter case,
every player i receives his stand-alone payo¤ v (i).

The procedure stops whenever all links in the actual graph have been accepted or there are
no links left. Therefore, the procedure stops after …nitely many steps, since g¤ has …nitely many
links and after every rejection one link is deleted from the actual graph. At the end, we arrive
at a …nal subgraph gF µ g¤ for which all di¤erences have been accepted. By construction, gF

is a forest. For every tree g0 in gF there is a unique component e¢cient payo¤ vector x for the
players in g0 which respects all the agreed upon di¤erences for the links in g0. The …nal payo¤
for a player i in g0 is given by x plus the prices received minus the prices payed as the result of
rejections in the past.

We assume that the players in the bargaining procedure play a subgame perfect equilibrium
with the following tie-breaking rule: (1) if a player is indi¤erent between accepting a di¤erence
¢ij or not, he is supposed to accept, (2) if player j is a terminal node in L+ (fi; jg j¼) and player
i is not, then, if player i is indi¤erent between proposing di¤erence ¢ij and ~¢ij with ¢ij < ~¢ij,
he is supposed to propose ~¢ij, and (3) if player i is indi¤erent between choosing prices p1 and p2

at the bidding stage, with p1 < p2, then he is supposed to choose price p1. In the sequel, when
we write subgame perfect equilibrium, we always mean subgame perfect equilibrium satisfying
this tie-breaking rule.

Theorem 3.1. Let the TU-game [N; v] be strictly convex, g¤ a tree which connects all players
in N and ¦ a function which assigns to every subgraph of g¤ a regular order over the links.
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Then, the mechanism ¡(v; g¤;¦) has a unique subgame perfect equilibrium outcome. In this
outcome all the di¤erences proposed in g¤ are accepted and the …nal payo¤s for the players
coincide with the Myerson value m (N; v; g¤).

Proof of Theorem 3.1. We prove this result by induction on the number of links in g¤. If
g¤ has no link, the result is trivial. Consider now a graph g¤ with K links. For the sake of
convenience we assume that g¤ is a tree which connects all players. If not, each tree of the forest
g¤ could be treated separately. Assume that the result holds for every forest with at most K ¡1
links. We prove that the statement in the theorem holds for g¤.

We need the following notation. Let L be the set of all links in g¤. For a given link fi; jg let
L¡ (fi; jg) be the set of links which preceed fi; jg and let L+ (fi; jg) be the set of links which
weakly follow fi; jg given the order ¦(g¤). For a given pro…le of di¤erences ¢ = (¢l)l2L let
x (¢) 2 <n be the unique component e¢cient payo¤ vector which respects the di¤erences in
¢. If players i and j have agreed upon a di¤erence ¢ij, then, whenever all future di¤erences
are accepted, the payo¤s xi and xj for players i and j are such that xi ¡ xj = ¢ij. We use the
following convention: for every link fi; jg, if we write ¢ij, then j is a terminal node in L+ (fi; jg).
Recall that ¦(g¤) is a regular order, and hence fi; jg is an exterior link in L+ (fi; jg). For every
link fi; jg in L let

¢¤
ij = mi (N; v; g¤n fi; jg) ¡ mj (N; v; g¤n fi; jg) :

We refer to ¢¤
ij as the fair di¤erence at fi; jg. In the sequel, for a subgraph g µ g¤, we simply

write m (g) to denote the Myerson value of the graph-restricted game [N; v; g], since [N; v] is
…xed. By Theorem 2.4 the Myerson value m (g¤) is the unique component e¢cient allocation
which respects all fair di¤erences in L. By ¢L¡(fi;jg) we denote a pro…le of past di¤erences
that has been agreed upon before reaching fi; jg. For a given ¢L¡(fi;jg), let ¡

¡
¢L¡(fi;jg)

¢
be

the subgame starting at link fi; jg where all past di¤erences have been accepted and coincide
with ¢L¡(fi;jg). For every di¤erence ¢ij let ¡

¡
¢L¡(fi;jg);¢ij

¢
be the subgame starting directly

after fi; jg in which the past di¤erences are given by
¡
¢L¡(fi;jg);¢ij

¢
. Let Daij

¡
¢L¡(fi;jg)

¢
be

the set of di¤erences ¢ij for which the induced subgame ¡
¡
¢L¡(fi;jg);¢ij

¢
contains a subgame

perfect equilibrium in which all proposed di¤erences are accepted. De…ne ¢min
ij

¡
¢L¡(fi;jg)

¢
=

inf Daij
¡
¢L¡(fi;jg)

¢
. Note that ¢min

ij
¡
¢L¡(fi;jg)

¢
can be ¡1 or 1. However, we will show that

¢min
ij

¡
¢L¡(fi;jg)

¢
is …nite whenever fi; jg is not the last link. Let Xa

¡
¢L¡(fi;jg);¢ij

¢
be the set

of payo¤ vectors in <n induced by subgame perfect equilibria ¾ in the subgame ¡
¡
¢L¡(fi;jg);¢ij

¢

where all di¤erences are accepted in ¾. Note that Xa
¡
¢L¡(fi;jg); ¢ij

¢
is nonempty if and only

if ¢ij 2 Daij
¡
¢L¡(fi;jg)

¢
. Let

Xa
¡
¢L¡(fi;jg)

¢
=

[

¢ij

Xa
¡
¢L¡(fi;jg);¢ij

¢
:

By Xaij
¡
¢L¡(fi;jg)

¢
we denote the projection of the set Xa

¡
¢L¡(fi;jg)

¢
on <fi;jg. The set

Xaij
¡
¢L¡(fi;jg)

¢
may be interpreted as the set of achievable payo¤s for players i and j when

they face a history given by ¢L¡(fi;jg) and all future di¤erences are to be accepted. Let
¢¤
L+(fi;jg) = (¢¤

l )l2L+(fi;jg) be the pro…le of fair di¤erences in the subgame ¡
¡
¢L¡(fi;jg)

¢
. We
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de…ne the set

DL¡(fi;jg) =
n

¢L¡(fi;jg)j x
³
¢L¡(fi;jg); ¢¤

L+(fi;jg)

´
> m (gnl) for all l 2 L

o
;

where the inequality should be read coordinatewise. We prove the following lemma.

Lemma 3.2. Consider a subgame ¡
¡
¢L¡(fi;jg)

¢
. Then the following properties are satis…ed.

(1.a) Daij
¡
¢L¡(fi;jg)

¢
=

h
¢min
ij

¡
¢L¡(fi;jg)

¢
; 1

´
.

(1.b) The sets Daij
¡
¢L¡(fi;jg)

¢
and Xaij

¡
¢L¡(fi;jg)

¢
depend continously on ¢L¡(fi;jg).

(1.c) The set of payo¤s Xaij
¡
¢L¡(fi;jg)

¢
consists of a connected union of non-increasing non-

horizontal2 line segments.
(2) If ¢L¡(fi;jg) 2 DL¡(fi;jg), then there is a unique subgame perfect equilibrium outcome in
¡

¡
¢L¡(fi;jg)

¢
where at every link the corresponding players agree on the fair di¤erence.

(3) If ¢min
ij

¡
¢L¡(fi;jg)

¢
> ¢¤

ij , then in every subgame perfect equilibrium in ¡
¡
¢L¡(fi;jg)

¢
for

which all di¤erences are accepted, players i and j agree on the di¤erence ¢min
ij

¡
¢L¡(fi;jg)

¢
.

(4) If ¢min
ij

¡
¢L¡(fi;jg)

¢
· ¢¤

ij , then in every subgame perfect equilibrium in ¡
¡
¢L¡(fi;jg)

¢
for

which all di¤erences are accepted, players i and j agree on the fair di¤erence ¢¤
ij.

Proof of Lemma 3.2. We prove this result by induction on the number of links that follow
fi; jg. Consider a pro…le of di¤erences ¢L¡(fi;jg). From now on, we will omit ¢L¡(fi;jg) from
the variables whenever this cannot lead to confusion.

Suppose …rst that there is no link following fi; jg.
(1) Note that if the link fi; jg is built, the grand coalition is formed. Given the past di¤erences

¢L¡(fi;jg) each ¢ij 2 < induces the unique payo¤ vector x 2 <n satisfying
X

r2N
xr = v (N) ;

xh ¡ xk = ¢hk for all fh; kg 2 L: (3.1)

Let
Si = fig [ fr 2 N j there is a path in gn fi; jg connecting r and ig :

Let si be the number of player in Si. Similarly we de…ne sj . For every link fh; kg 6= fi; jg we
de…ne

Sh (fh; kg) = fhg [ fr 2 N j there is a path in gn fh; kg connecting r and hg ;

and sh (fh; kg) as the cardinality of Sh (fh; kg). Similarly we de…ne Sk (fh; kg). Let

c (fh; kg j fi; jg) =
½

sk (fh; kg) ; if path from fi; jg to k contains h
¡sh (fh; kg) ; otherwise.

2Our convention is to put player i’s payo¤ on the horizontal axis and player j’s payo¤ on the vertical axis.
Recall that, by convention, player j is the exterior node in L+ (fi; jg). Non-horizontal thus means that player j’s
payo¤ cannot be constant on any of the line segments.
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Then it may be veri…ed that system (3.1) is equivalent to

sixi + sjxj = v (N) +
X

l2Lnfi;jg
c (lj fi; jg) ¢l;

xi ¡ xj = ¢ij: (3.2)

Consequently,

Xaij =

8
<
:(xi; xj) 2 <2j sixi + sjxj = v (N) +

X

l2L¡(fi;jg)
c (lj fi; jg) ¢l

9
=
; : (3.3)

Since si and sj are strictly positive and ¢l is given for l 6= fi; jg, the set Xaij is a strictly
decreasing line.

(1.a) is satis…ed since ¢min
ij = ¡1 and Daij = (¡1;1), (1.b) and (1.c) follow inmediately

from (3.3).
(2) Suppose that ¢L¡(fi;jg) 2 DL¡(fi;jg). Let ei = mi (g¤n fi; jg) and ej = mj (g¤n fi; jg).

Then, de…ne the price

p¤ = max
©
p 2 <j 9 (xi; xj) 2 Xaij such that xi ¸ ei + p and xj ¸ ej + p

ª
:

Assume that i < j. If a di¤erence ¢ij is rejected, the procedure for the reduced graph g¤n fi; jg
starts. By the induction hypothesis at the beginning of the proof, the procedure for the reduced
graph g¤n fi; jg yields the Myerson value m (g¤n fi; jg). Suppose that player i is the proposer
and has chosen price p. Then ej + p can be seen as the outside option for player j, since by
rejecting player i’s di¤erence he receives the price p from player i and gets payo¤ ej in the
procedure for the reduced graph g¤Â fi; jg. Similarly, if player j is the proposer and has chosen
price p, ei + p can be seen as the outside option for player i. Since ¢L¡(fi;jg) 2 DL¡(fi;jg), it is
easily seen that p¤ > 0. We prove now that players i and j can guarantee a payo¤ ei + p¤ and
ej + p¤, respectively, by choosing the price p¤ at the bidding stage. Consider player i. If player
j wins the auction, i.e., pj > p¤, then player i can guarantee the payo¤ xi = ei+ pj > ei+ p¤ by
rejecting player j’s o¤er. If player i wins the auction by choosing p¤ he may o¤er the di¤erence
¢¤
ij which induces the payo¤ pair (ei + p¤; ej + p¤). Player j will then be indi¤erent between

accepting this di¤erence and rejecting. By the tie-breaking rule player j will then accept. Hence,
player i can guarantee payo¤ ei + p¤ by choosing price p¤. Similarly for player j.

So any equilibrium at this step should yield expected payo¤s xi ¸ ei + p¤ and xj ¸ ej + p¤.
But there is only one feasible pair (xi; xj) 2 Xij such that xi ¸ ei+p¤ and xj ¸ ej + p¤, namely³
x¤i ; x

¤
j

´
= (ei+ p¤; ej + p¤). This implies that, if there is an equilibrium at this stage, it should

imply payo¤s (ei+p¤; ej+p¤). It may be veri…ed by the reader that there is a unique equilibrium
behavior in which both players choose price p¤ at step 1, player i o¤ers the di¤erence ¢¤

ij which
induces the payo¤ pair (ei + p¤; ej + p¤) and player j accepts this di¤erence. Hence, property
(2) holds.

(3) Since ¢min
ij = ¡1, it cannot be the case that ¢min

ij > ¢¤
ij , and therefore there is nothing

to show.
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(4) This property is shown in the same way as (2). This completes the proof of the lemma
for the last link.

Now consider some link fi; jg which is followed by at least one other link. By induction,
assume that for every link fh; kg following fi; jg and for every pro…le of di¤erences agreed upon
until fh; kg the properties (1) to (4) hold. We prove that properties (1) to (4) hold for link fi; jg
and for every pro…le of di¤erences ¢L¡(fi;jg).

(1.a) Let ¢1
ij 2 Daij and ¢2

ij ¸ ¢1
ij. We prove that ¢2

ij 2 Daij, which would imply (1.a).
Let fh; kg be the link which immediately follows fi; jg. By induction assumptions (3) and (4)
applied to link fh; kg, we know that ¢1

ij induces a unique di¤erence ¢1
hk which is agreed upon

at link fh; kg in equilibrium.
For every pro…le of di¤erences (¢l)l2L the …nal payo¤s for the players are given by

X

r2N
xr = v (N) ;

xi ¡ xj = ¢ij;
xm ¡ xr = ¢mr;

for all fm; rg 2 Ln fi; jg. This system of equations implies

xi (¢) =
1
n

2
4v (N) +

X

l2Lnfi;jg
c (lj fi; jg)¢l + sj¢ij

3
5 ; (3.4)

xm (¢) =
1
n

2
4v (N) + sr (fm; rg) ¢mr +

X

l2Ln(fi;jg[fm;rg)
c (lj fm; rg) ¢l + c (fi; jg j fm; rg)¢ij

3
5 ;

(3.5)
for all links fm; rg 6= fi; jg ; where ¢ = (¢l)l2L.

For all links fm; rg 2 L+ (fh; kg) we have, since the rule of order ¼ is regular, that c (fi; jg j fm; rg) =
sj and c (fh; kg j fm; rg) = sk. Recall that, by convention, j is an exterior node in L+ (fi; jg)
and k is an exterior node in L+ (fh; kg) µ L+ (fi; jg), and hence every link fm; rg 2 L+ (fh; kg)
belongs to Si and Sh (fh; kg). As such, c (fi; jg j fm; rg) = sj and c (fh; kg j fm; rg) = sk for all
links fm; rg 2 L+ (fh; kg). Suppose that ¢2

hk is such that

sj¢1
ij + sk (fh; kg) ¢1

hk = sj¢2
ij + sk (fh; kg)¢2

hk: (3.6)

By the system of equations (3.5), it is easily veri…ed that the subgame ¡
³
¢L¡(fi;jg);¢1

ij;¢
1
hk

´

is equivalent, for the players remaining in this subgame, to the subgame ¡
³
¢L¡(fi;jg);¢2

ij;¢
2
hk

´
.

Note that the players remaining in these subgames are exactly the players in L+ (fh; kg). The
fact that both subgames are equivalent for the players in L+ (fh; kg) follows from the following
observation: for every pro…le of di¤erences ¢L+(fh;kg)nfh;kg we have that

xm
¡
¢L¡(fi;jg);¢

1
ij; ¢

1
hk;¢L+(fh;kg)nfh;kg

¢

= xm
¡
¢L¡(fi;jg);¢2

ij; ¢
2
hk;¢L+(fh;kg)nfh;kg

¢

10



for every player m in L+ (fh; kg). The latter equation follows from the system of equations (3.5).
We know by induction assumptions (3) and (4) that ¢1

ij and ¢1
hk induce a unique sub-

game perfect equilibrium outcome in the subgame ¡
³
¢L¡(fi;jg);¢1

ij;¢
1
hk

´
in which all di¤er-

ences are accepted. Let ¢ be the pro…le of di¤erences accepted in this outcome in the subgame
¡

³
¢L¡(fi;jg);¢1

ij;¢
1
hk

´
. Since the subgames ¡

³
¢L¡(fi;jg);¢1

ij;¢
1
hk

´
and ¡

³
¢L¡(fi;jg); ¢2

ij;¢
2
hk

´

are equivalent, we may thus conclude that the latter subgame has a unique subgame perfect equi-
librium outcome in which the pro…le of di¤erences ¢ is accepted.

Let
¡
x1
h; x

1
k
¢

be the payo¤ pair for players h and k induced by
³
¢L¡(fi;jg);¢1

ij;¢
1
hk;¢

´
and

let
¡
x2
h; x

2
k
¢

be induced by
³
¢L¡(fi;jg);¢2

ij;¢
2
hk;¢

´
. By equation (3.5) applied to player h we

obtain that x1
h = x2

h. Recall that, by convention, player k is a terminal node in L+ (fh; kg).
From equation (3.6) it follows that ¢2

hk · ¢1
hk. Since x1

k = x1
h ¡ ¢1

hk, x2
k = x2

h ¡ ¢2
hk and

x1
h = x2

h, it follows that x2
k ¸ x1

k. Since
¡
x1
h; x

1
k
¢

is a subgame perfect equilibrium payo¤, we
know, in particular, that

¡
x1
h; x

1
k
¢

is not dominated, for players h and k; by any outcome in
which one future di¤erence is rejected. Since x1

h = x2
h and x2

k ¸ x1
k; the payo¤ pair

¡
x2
h; x

2
k
¢

is
not dominated, for players h and k, by any outcome in which one future di¤erence is rejected.
As such, there is a subgame perfect equilibrium in ¡

³
¢L¡(fi;jg); ¢2

ij

´
where all di¤erences are

accepted. Hence, ¢2
ij 2 Daij.

(1.b) Let fm; rg be the link which immediately preceeds fi; jg. Fix a pro…le of di¤erences
¢L¡(fm;rg). We show that Daij and Xaij depend continuously on ¢mr. By induction, this would
imply eventually that Daij and Xaij depend continuously on ¢L¡(fi;jg). For every ¢mr, de…ne
Daij (¢mr) = Daij

¡
¢L¡(fm;rg);¢mr

¢
and ¢min

ij (¢mr) = ¢min
ij

¡
¢L¡(fm;rg);¢mr

¢
. We show the

following claim.
Claim 1. For all ¢1

mr, ¢2
mr we have that

¢min
ij

¡
¢2
mr

¢
= ¢min

ij
¡
¢1
mr

¢
+

sr (fm; rg)
sj

£
¢1
mr ¡ ¢2

mr
¤
:

Proof of Claim 1. De…ne

¢2
ij = ¢min

ij
¡
¢1
mr

¢
+

sr (fm; rg)
sj

£
¢1
mr ¡ ¢2

mr
¤
:

Note that, by construction,

sr (fm; rg)¢1
mr + sj¢min

ij
¡
¢1
mr

¢
= sr (fm; rg)¢2

mr + sj¢2
ij:

By choosing ¢2
ij after ¢2

mr the induced subgame ¡
³
¢L¡(fm;rg);¢2

mr;¢2
ij

´
is equivalent for

the remaining players to the subgame ¡
³
¢L¡(fm;rg);¢1

mr;¢min
ij

¡
¢1
mr

¢´
. This follows from the

system of equations (3.5). Since ¢min
ij

¡
¢1
mr

¢
2 Daij

¡
¢1
mr

¢
we know that in the latter subgame

there is a unique equilibrium outcome in which all future di¤erences will be accepted. Hence,
by choosing ¢2

ij after ¢2
mr, all future di¤erences after fi; jg will be accepted too. Then, by
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de…nition, ¢2
ij 2 Daij

¡
¢2
mr

¢
, which implies that

¢min
ij

¡
¢2
mr

¢
· ¢2

ij = ¢min
ij

¡
¢1
mr

¢
+

sr (fm; rg)
sj

£
¢1
mr ¡ ¢2

mr
¤
: (3.7)

By exchanging the roles of ¢1
mr and ¢2

mr we can similarly show that

¢min
ij

¡
¢1
mr

¢
· ¢min

ij
¡
¢2
mr

¢
+

sr (fm; rg)
sj

£
¢2
mr ¡ ¢1

mr
¤
: (3.8)

It is easy to verify that inequalities (3.7) and (3.8) can only be satis…ed when both are equalities.
This completes the proof of Claim 1.

By (1.a) it follows that

Daij
¡
¢2
mr

¢
= Daij

¡
¢1
mr

¢
+

sr (fm; rg)
sj

£
¢1
mr ¡ ¢2

mr
¤
; (3.9)

for all ¢1
mr, ¢2

mr, which implies that Daij depends continuously on ¢mr. By applying induction
assumptions (1.a), (1.b), (3) and (4) to the links following fi; jg we know that every di¤erence
¢ij 2 Daij induces a unique pro…le of future di¤erences ¢ (¢ij) which depends continuously on
¢ij. Since the set Daij depends continuously on ¢mr, and moreover, the payo¤s xi and xj depend
continuously on the realized di¤erences, we may also conclude that Xaij depends continuously
on ¢mr. This completes the proof of property (1.b).

(1.c) Let fm; rg be the link which immediately follows fi; jg. By induction assumptions (1.b),
(3) and (4) applied to link fm; rg, it follows that every ¢ij 2 Daij induces a unique subgame
perfect equilibrium payo¤ (xi (¢ij) ; xj (¢ij)), which depends continuously on ¢ij. Since by
(1.a) applied to link fi; jg we know that Daij is connected, it follows that Xaij is connected.

We now show that Xaij consists of non-increasing non-horizontal line segments. For every
¢ij 2 Daij let ¢(¢ij) be the pro…le of future equilibrium di¤erences induced by ¢ij. Let³
D1
ij;D

2
ij;D

3
ij; :::

´
be a partition of Daij such that (1) ¢(¢ij) is constant for all ¢ij 2 D1

ij and

(2) for all k ¸ 2 there is a link lk following fi; jg such that lk is the …rst link for which ¢lk (¢ij)

changes with respect to ¢ij 2 Dkij . We show that for every Dkij the total derivative
dxi
d¢ij

is

constant and ¸ 0, whereas
dxj
d¢ij

is constant and < 0.

Assume …rst that ¢ij 2 D1
ij. Since ¢l (¢ij) is constant on D1

ij, it follows from equation (3.4)

that
dxi
d¢ij

=
sj
n

> 0 and
dxj
d¢ij

= ¡si
n

< 0.

Assume now that ¢1
ij, ¢2

ij 2 Dkij, where k ¸ 2. Hence ¢l
³
¢1
ij

´
= ¢l

³
¢2
ij

´
for all l

following fi; jg and preceding lk, and by choosing ¢1
ij and ¢2

ij close enough we have ¢lk
³
¢1
ij

´
6=

¢lk
³
¢2
ij

´
. Let lk = fh; kg and ¢lk = ¢hk. Recall that, by our convention, player k is a terminal
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node in the remaining graph L+ (fh; kg). Note also that fh; kg cannot be the last link, since in
this case ¢lk

³
¢1
ij

´
= ¢¤

hk = ¢lk
³
¢2
ij

´
, which would be a contradiction.

Claim 2. If ¢1
ij is close enough to ¢2

ij, then

sj¢1
ij + sk (fh; kg) ¢hk

¡
¢1
ij

¢
= sj¢2

ij + sk (fh; kg)¢hk
¡
¢2
ij

¢
: (3.10)

Proof of Claim 2. Let Lfh;kg+ be the set of links following fi; jg and preceding fh; kg. Let

¢
Lfh;kg+

³
¢1
ij

´
be the equilibrium di¤erences for links in Lfh;kg+ if the di¤erence ¢1

ij is agreed

upon. For ¢1
ij we de…ne Dahk

³
¢1
ij

´
as the set of those di¤erences ¢hk for which all di¤erences at

links following fh; kg are accepted, given that the di¤erences ¢1
ij and ¢

Lfh;kg+

³
¢1
ij

´
are already

realized. Let Xahk
³
¢1
ij

´
be the set of feasible payo¤ pairs for players h and k if the di¤erences

¢1
ij and ¢

Lfh;kg+

³
¢1
ij

´
have been realized and all future di¤erences are to be accepted. Similarly

we de…ne Dahk
³
¢2
ij

´
and Xahk

³
¢2
ij

´
. By induction assumption we know that the sets Xahk

³
¢1
ij

´

and Xahk
³
¢2
ij

´
are connected unions of non-increasing non-horizontal line segments.

Let ¢min
hk

³
¢1
ij

´
= inf Dahk

³
¢1
ij

´
and ¢min

hk

³
¢2
ij

´
= inf Dahk

³
¢2
ij

´
. We …rst show that

¢min
hk

³
¢1
ij

´
and ¢min

hk

³
¢2
ij

´
are …nite numbers. Recall that player k is a terminal node in

L+ (fh; kg) and that fh; kg is not the last link. Hence, if ¢hk is too small, then at every future
link in L+ (fh; kg) every proposed di¤erence will be rejected. This implies that ¢min

hk

³
¢1
ij

´
and

¢min
hk

³
¢2
ij

´
cannot be ¡1. Let fm; rg be the link immediately following fh; kg. By choosing

¢hk large enough, one can always insure that ¢L¡(fm;rg) 2 DL¡(fm;rg), and hence, by induction

assumption (2), all future di¤erences are accepted. This implies that ¢min
hk

³
¢1
ij

´
and ¢min

hk

³
¢2
ij

´

cannot be 1.
We now distinguish two cases.
Case 1. If ¢min

hk

³
¢1
ij

´
> ¢¤

hk. Then, if ¢2
ij is close enough to ¢1

ij, we have that ¢min
hk

³
¢2
ij

´
>

¢¤
hk. The latter follows from the fact that ¢min

hk (¢ij) depends continuously on ¢ij. Then, by
induction assumption (3) of our lemma, it holds that ¢hk

³
¢1
ij

´
= ¢min

hk

³
¢1
ij

´
and ¢hk

³
¢2
ij

´
=

¢min
hk

³
¢2
ij

´
.

From above, we know that

xi (¢ij) =
1
n

2
4v (N) +

X

l2Lnfi;jg
c (lj fi; jg) ¢l + sj¢ij

3
5 ; (3.11)

xm (¢ij) =
1
n

2
4v (N) + sr (fm; rg)¢mr +

X

l2Ln(fi;jg[fm;rg)
c (lj fm; rg)¢l + c (fi; jg j fm; rg)¢ij

3
5 ;

(3.12)
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for all links fm; rg 6= fi; jg.
For all links fm; rg 2 L+ (fh; kg) we have, since the rule of order ¦(g¤) is regular, that

c (fi; jg j fm; rg) = sj and c (fh; kg j fm; rg) = sk (fh; kg). Suppose that ~¢hk is such that

sj¢1
ij + sk (fh; kg)¢hk

¡
¢1
ij
¢

= sj¢2
ij + sk (fh; kg) ~¢hk:

Recall that, by assumption, ¢Lfh;kg+

³
¢1
ij

´
= ¢Lfh;kg+

³
¢2
ij

´
, where Lfh;kg+ is the set of links

following fi; jg and preceding fh; kg. Then, by the system of equations (3.12), it is easily

veri…ed that the subgame ¡
µ

¢L¡(fi;jg);¢1
ij; ¢Lfh;kg+

³
¢1
ij

´
;¢hk

³
¢1
ij

´¶
is equivalent, for the

players remaining in this subgame, to the subgame ¡
µ

¢L¡(fi;jg);¢2
ij;¢Lfh;kg+

³
¢2
ij

´
; ~¢hk

¶
.

We show that

¢hk
¡
¢2
ij
¢

= ~¢hk = ¢hk
¡
¢1
ij

¢
+

sj
sk (fh; kg)

¡
¢1
ij ¡ ¢2

ij
¢
;

which would complete the proof of the claim for case 1. By choosing ~¢hk after ¢2
ij the induced

subgame ¡
µ

¢L¡(fi;jg);¢2
ij;¢Lfh;kg+

³
¢2
ij

´
; ~¢hk

¶
is equivalent for the remaining players to the

subgame ¡
µ

¢L¡(fi;jg);¢1
ij;¢Lfh;kg+

³
¢1
ij

´
;¢hk

³
¢1
ij

´¶
. Since we know that in the latter sub-

game there is a unique equilibrium outcome in which all future di¤erences will be accepted, we
know that by choosing ~¢hk after ¢2

ij all future di¤erences after fh; kg will be accepted too.

Hence, by de…nition, ~¢hk 2 Dahk
³
¢2
ij

´
. Since ¢hk

³
¢2
ij

´
= ¢min

hk

³
¢2
ij

´
it follows that

¢hk
¡
¢2
ij
¢

· ~¢hk = ¢hk
¡
¢1
ij

¢
+

sj
sk (fh; kg)

¡
¢1
ij ¡ ¢2

ij
¢
: (3.13)

By exchanging the roles of ¢1
ij and ¢2

ij we can similarly show that

¢hk
¡
¢1
ij
¢

· ¢hk
¡
¢2
ij

¢
+

sj
sk (fh; kg)

¡
¢2
ij ¡ ¢1

ij
¢
: (3.14)

It is easy to verify that inequalities (3.13) and (3.14) can only be satis…ed when both are
equalities. This completes the proof of the claim for case 1.

Case 2. If ¢min
hk

³
¢1
ij

´
< ¢¤

hk. Then, if ¢2
ij is close enough to ¢1

ij, we have that ¢min
hk

³
¢2
ij

´
<

¢¤
hk. By induction assumption (4) applied to link fh; kg we know that ¢hk

³
¢1
ij

´
= ¢hk

³
¢2
ij

´
=

¢¤
hk, which is a contradiction to the assumption that ¢hk

³
¢1
ij

´
6= ¢hk

³
¢2
ij

´
. This completes

the proof of the claim.

By the claim we have that sj¢ij + sk (fh; kg)¢hk (¢ij) is constant on Dkij. From the above

we know that all the subgames ¡
µ

¢L¡(fi;jg);¢ij;¢Lfh;kg+
(¢ij) ;¢hk (¢ij)

¶
for ¢ij 2 Dkij are
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equivalent for the players remaining after fh; kg. From induction assumptions (3) and (4) in
the lemma it follows that each of these subgames has a unique pro…le of equilibrium di¤erences.
Therefore, all these subgames induce the same pro…le of equilibrium di¤erences. From equation
(3.11) we have therefore that

dxi (¢ij)
d¢ij

=
1
n

·
sj + c (fh; kg j fi; jg) @¢hk (¢ij)

@¢ij

¸
:

Recall that

c (fh; kg j fi; jg) =
½

sk (fh; kg) ; if path from fi; jg to k contains h
¡sh (fh; kg) ; otherwise. :

Since sj¢ij + sk (fh; kg)¢hk (¢ij) is constant, we know that

@¢hk (¢ij)
@¢ij

= ¡ sj
sk (fh; kg)

;

which implies that

dxi (¢ij)
d¢ij

=
½

0; if path from fi; jg to k contains h
sj

sk(fh;kg) ; otherwise.

Suppose that the path from fi; jg to k does not contain h. Then, the path from fi; jg to h
contains k. We therefore know that Sk (fh; kg) ¶ Sj [ fig. Recall that j is a terminal node in
L+ (fi; jg) and fh; kg 2 L+ (fi; jg). This implies that sj · sk (fh; kg) ¡ 1.

Thus, for every ¢ij 2 Dkij it holds that

0 · dxi (¢ij)
d¢ij

< 1:

Since xj (¢ij) = xi (¢ij) ¡ ¢ij it follows that

¡1 · dxj (¢ij)
d¢ij

< 0

for every ¢ij 2 Dkij . Given that both
dxi (¢ij)

d¢ij
and

dxj (¢ij)
d¢ij

remain constant in Dkij, we may

conclude that the set of feasible payo¤ pairs (xi (¢ij) ; xj (¢ij)) for ¢ij 2 Dkij constitutes a
non-increasing non-horizontal line segment in <fi;jg.

We may thus conclude that the set of feasible payo¤ pairs Xaij is a connected union of
non-increasing non-horizontal line segments. We have thus shown property (1.c).

(2) Let ¢L¡(fi;jg) 2 DL¡(fi;jg). Let fh; kg be the link which directly follows fi; jg. Then,

by de…nition of DL¡(fi;jg) and DL¡(fh;kg), there is an open interval
³
¢¤
ij ¡ ²;¢¤

ij + ²
´

such that

for every ¢ij 2
³
¢¤
ij ¡ ²;¢¤

ij + ²
´

we have that
¡
¢L¡(fi;jg);¢ij

¢
2 DL¡(fh;kg). By applying
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induction assumption (2) to link fh; kg we know that for every ¢ij 2
³
¢¤
ij ¡ ²;¢¤

ij + ²
´

it holds
that ¢L+(fh;kg) = ¢¤

L+(fh;kg) in equilibrium. Let

p¤ = max
©
p 2 <j 9 (xi; xj) 2 Xaij such that xi ¸ ei + p and xj ¸ ej + p

ª
:

This implies that (ei + p¤; ej + p¤) 2 Xaij and, moreover, belongs to the relative interior of a
strictly decreasing line segment in Xaij. By (1.c) we know that Xaij is a connected union of
non-increasing non-horizontal line segments. Hence,

f(xi; xj) 2 Xijj xi ¸ ei + p¤ and xj ¸ ej + p¤g = f(ei + p¤; ej + p¤)g .

Note that players i and j can guarantee ei+p¤ and ej+p¤. Moreover, we know that (ei + p¤; ej + p¤)
dominates every payo¤ pair (xi; xj) corresponding to an equilibrium in which some future dif-
ference is rejected. Thus it follows, similarly to the proof of property (2) for the last link, that
there is a unique equilibrium behavior where players i and j agree on the fair di¤erence ¢¤

ij.

(3) Let ¢min
ij

¡
¢L¡(fi;jg)

¢
> ¢¤

ij . We de…ne the price p¤ by

p¤ = max
©
p 2 <j 9 (xi; xj) 2 Xaij such that xi ¸ ei + p and xj ¸ ej + p

ª
:

Since Xaij is a connected union of non-increasing non-horizontal line segments and ¢min
ij

¡
¢L¡(fi;jg)

¢
>

¢¤
ij, it may be veri…ed easily that

©
(xi; xj) 2 Xaijj xi ¸ ei + p¤ and xj ¸ ej + p¤

ª
= f(ei + ~p; ej + p¤)g ,

for some ~p ¸ p¤. Players i and j can guarantee payo¤s ei + p¤ and ej + p¤ by choosing price
p¤ at step 1 of the mechanism. Hence, if there is a subgame perfect equilibrium in which all
di¤erences are accepted, the equilibrium payo¤s for players i and j should be (ei + ~p; ej + p¤).
Since ¢min

ij
¡
¢L¡(fi;jg)

¢
is the unique di¤erence which induces the payo¤s ei + ~p and ej + p¤ we

may conclude that in every subgame perfect equilibrium in ¡
¡
¢L¡(fi;jg)

¢
for which all di¤erences

are accepted, players i and j agree on the di¤erence ¢min
ij

¡
¢L¡(fi;jg)

¢
.

(4) Let ¢min
ij

¡
¢L¡(fi;jg)

¢
· ¢¤

ij . We distinguish two cases.

Case 1. If
³
xi

³
¢¤
ij

´
; xj

³
¢¤
ij

´´
belongs to the relative interior of a strictly decreasing line

segment in Xaij . De…ne the price p¤ by

p¤ = max
©
p 2 <j 9 (xi; xj) 2 Xaij such that xi ¸ ei + p and xj ¸ ej + p

ª
:

Since by property (1.c), the set Xaij consists of a connected union of non-increasing non-horizontal
line segments, it may be veri…ed that

©
(xi; xj) 2 Xaijj xi ¸ ei + p¤ and xj ¸ ej + p¤

ª
= f(ei + p¤; ej + p¤)g .

We know that players i and j can guarantee payo¤s ei + p¤ and ej + p¤ by choosing price p¤ at
step 1 of the mechanism. Hence, if there is a subgame perfect equilibrium in which all di¤erences
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are accepted, the equilibrium payo¤s for players i and j should be (ei + p¤; ej + p¤), and hence
both players should agree on ¢¤

ij .

Case 2. If
³
xi

³
¢¤
ij

´
; xj

³
¢¤
ij

´´
belongs to a vertical line segment in Xaij . De…ne the price

p¤ by
p¤ = max

©
p 2 <j 9 (xi; xj) 2 Xaij such that xi ¸ ei + p and xj ¸ ej + p

ª
:

We …rst show that in every equilibrium in which the di¤erence at fi; jg is accepted, player j
chooses a price pj · p¤. Suppose that player j chooses a price pj > p¤ in equilibrium. We
distinguish two cases. If player j becomes the proposer, then player i only accepts the di¤erence
if he receives at least ei + pj > ei + p¤. This implies that player j’s payo¤ is strictly less
than ej + p¤, which is a contradiction since player j can always guarantee a payo¤ equal to
ej + p¤. If player i becomes the proposer, that is, pi ¸ pj > p¤, then player j should get at
least ej + pi > ej + p¤ and player i receives at most ei + p¤. However player i can get more
than ei + p¤ by choosing some p0i with p¤ < p0i < pj and rejecting player j’s o¤er, which is a
contradiction. Hence, we may conclude that in every equilibrium in which the di¤erence ¢ij is
accepted, player j chooses a price pj · p¤.

De…ne
~p = max

©
pj (ei + p¤; ej + p) 2 Xaij

ª
:

Since, by assumption, (ei + p¤; ej + p¤) 2 Xaij we have that ~p ¸ p¤. We show that in every
equilibrium in which the di¤erence ¢ij is accepted, player i chooses a price pi 2 [p¤; ~p]. Suppose
…rst that pi > ~p. Since we know that player j chooses pj · p¤, player i becomes the proposer
and should give at least ej + pi > ej + ~p to player j. However this implies that player i gets
strictly less than ei + p¤, which is a contradiction since player i can guarantee ei + p¤. Suppose
now that pi < p¤. We distinguish two cases. If player i becomes the proposer, player j would
obtain ej + pi < ej + p¤, which is a contradiction since player j can always guarantee a payo¤
ej + p¤. If player j becomes the proposer, that is, pj > pi, then it would be strictly better for
player j to choose some p0j with pi < p0j < pj, because in the latter case he only has to give
ei + p0j < ei + pj to player i. The reason that this is strictly better for player j follows from the
fact that there are no horizontal parts in Xaij. This is a contradiction. Hence, we may conclude
that in every equilibrium in which ¢ij is accepted, player i chooses a price pi 2 [p¤; ~p].

Since player j chooses a price pj · p¤, then, if player i chooses a price pi 2 [p¤; ~p] his
…nal payo¤ is always ei + p¤. Hence, player i is indi¤erent among all prices in [p¤; ~p]. By the
tie-breaking rule player i is supposed to choose the price p¤.

Let ~¢ij be the di¤erence which induces the payo¤ pair (ei + p¤; ej + ~p). Hence, ~¢ij · ¢¤
ij.

Given that player i chooses the price p¤, player i is indi¤erent among all di¤erences in
h
~¢ij; ¢¤

ij

i
.

By the tie-breaking rule, player i is supposed to choose ¢¤
ij . Hence, we may conclude that in

every subgame perfect equilibrium in ¡
¡
¢L¡(fi;jg)

¢
for which all di¤erences are accepted, players

i and j agree on the fair di¤erence ¢¤
ij. This completes the proof of Lemma 3.2.

In order to prove the statement in Theorem 3.1 we need the following lemma.

Lemma 3.3. If the TU-game [N; v] is strictly convex and g is a tree which connects all players
in N , then mi (N; v; g) > mi (N; v; gna) for all links a 2 g and for all players i 2 N .
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The proof of this lemma is given in the appendix.
Since by assumption the game [N; v] is strictly convex and the Myerson value is the unique

component e¢cient allocation rule which respects all fair di¤erences, Lemma 3.3 implies for
every link fi; jg 2 L: if ¢L¡(fi;jg) = (¢¤

l )l2L¡(fi;jg) then ¢L¡(fi;jg) 2 DL¡(fi;jg). But then, by
applying property (2) of Lemma 3.2 recursively, starting at the …rst link, we have that there
is a unique subgame perfect equilibrium outcome in which at every link the fair di¤erence is
proposed and accepted. Consequently, the unique subgame perfect equilibrium outcome of the
mechanism is the Myerson value. ¥

4. An extension

In this paper we have restricted ourselves to cooperative games in which the surplus from
cooperation depends only on the coalition and not on the graph connecting that coalition.
There is a more general model in which the surplus from cooperation depends on the particular
network fromed. Thus, two networks connecting the same group of players can have di¤erent
values. Let gN be the complete graph on N and let C (g) be the set of connected components in
some graph g. The value or worth of a graph is represented by a function w :

©
gjg µ gN

ª
! <.

The function w is called component additive if for every graph g

w (g) =
X

h2C(g)
w (h) :

The function w is called strictly convex if

w (g) ¡ w (gna) > w (gnl) ¡ w (gn fl; ag)

for every tree g and pair of links l; a 2 g; l 6= a. For a given graph g and value function w we
may de…ne the TU-game [N;Ug] by

Ug (S) =
X

h2C(gS)
w (h) :

The Myerson value is de…ned as the Shapley value of the game [N;Ug], i. e.,

m (N;w; g) = ©(N;Ug):

We can prove the following lemma.

Lemma 4.1. Let w be a function from
©
gj g µ gN

ª
to < and let g be a tree which connects all

players in N . If w is strictly convex and component additive, then mi (N;w; g) > mi (N;w; gna)
for all links a 2 g and all players i 2 N .

The proof of Lemma 4.1 is similar to the proof of Lemma 3.3 and is therefore omitted.
Our mechanism ¡(v; g¤;¦) may be de…ned for this more general context, too. By making use

of Lemma 4.1 and using the fact that the Myerson value in this context is the unique allocation
rule satisfying component e¢ciency and fairness, we may prove that this mechanism has a unique
subgame perfect equilibrium outcome, which coincides with the Myerson value.
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5. Appendix

Proof of Lemma 3.3. Consider a reduced graph gna, and the corresponding point game
[N; vj (gna)]. De…ne the TU-game [N;w], where

w (S) = vjg (S) ¡ vj (gna) (S) =
X

T2Sjg
v(T ) ¡

X

T2Sj(gna)
v(T ):

We show that for all i 2 N it holds that w (S) ¡ w (Sn fig) ¸ 0 for all S µ N and i 2 S, and
w (S) ¡ w (Sn fig) > 0 for some S µ N and i 2 S.

Case 1. Assume …rst that player i is one of the two nodes in a, namely a = fi; jg. Recall
that gS = ffi; jg 2 gj i 2 S and j 2 Sg is the graph g restricted to S. This graph gS is a forest,
given that gS µ g, and g is a tree. We know, by strict convexity of the game, that w (S) > 0
whenever Sjg 6= Sj (gna). If Sjg = Sjgna, it holds that w (S) = 0. If players i and j belong to
S we have that w (S) > 0 and w (Sn fig) = 0, and hence w(S) ¡ w(Sn fig) > 0. If i 2 S but
j =2 S, we have that w(S) = w(Sn fig) = 0, hence w(S) ¡ w(Sn fig) = 0.

Case 2. Now assume that player i is not a node in a. We use the following notation. Let
a = fj; kg. Given g is a tree, once this link a is deleted, player i will be (directly or indirectly)
connected with just one of these two players, say player j. If coalition S does not contain j or k
or both, then we have that Sjg = Sj (gna) and therefore w (S) = w (Sn fig) = 0. Let S be such
that players i, j and k belong to S: Consider the set

Sj (fj; kg) = fjg [
©
r 2 Sj there is a path in gSn fj; kg connecting r and j

ª

and
Sk (fj; kg) = fkg [

©
r 2 Sj there is a path in gSn fj; kg connecting r and k

ª
:

It is easy to see that S = Sj (fj; kg) [ Sk (fj; kg) and Sj (fj; kg) \ Sk (fj; kg) = ;. Furthermore,
the sets Sj (fj; kg) and Sk (fj; kg) are disconnected in gna. By assumption, i 2 Sj (fj; kg).
Hence,

w (S) = vjg (S) ¡ vj (gna) (S) = vjg (S) ¡ vjg (Sj (fj; kg)) ¡ vjg (Sk (fj; kg))

and

w (Sn fig) = vjg (Sn fig) ¡ vj (gna) (Sn fig) =
= vjg (Sn fig) ¡ vjg (Sj (fj; kg) n fig) ¡ vjg (Sk (fj; kg)) ;

since i =2 Sk (fj; kg). Hence,

w (S) ¡ w (Sn fig) = [vjg (S) ¡ vjg (Sn fig)] ¡ [vjg (Sj (fj; kg)) ¡ vjg (Sj (fj; kg) n fig)] :

Given that Sj (fj; kg) µ S and the game [N; vjg] is convex3, we know that w (S)¡w (Sn fig) ¸ 0.
It remains to check that there exists at least one S such that w (S) ¡ w (Sn fig) > 0.

3Van den Nouweland (1993) proves in Theorem 2.4.2 that if the underlying TU-game is convex and the graph
has no cycles, then the point game is also convex.
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Since g is a tree, there exists a unique path going from player i to player j. Let P be the
set of players on the path from i to j. Note that the minimal number of players in P is two,
which is the case when players i and j are directly connected. Take S = P [ fkg. Note that S,
Sj (fj; kg), Sn fig and Sj (fj; kg) n fig are connected in g. Thus,

w (S) ¡ w (Sn fig) = v (S) ¡ v (Sn fig) ¡ [v (Sj (fj; kg)) ¡ v (Sj (fj; kg) n fig)] > 0;

by strict convexity of the game [N; v].

Applying the Shapley value to [N;w] yields

©i(N;w) =
X

SµN
i2S

(s ¡ 1)!(n ¡ s)!
n!

[w(S) ¡ w(Sn fig)] > 0;

since there always exist at least one S µ N such that w(S)¡w(Sn fig) > 0, while in general
for any other S we know that w(S) ¡ w(Sn fig) ¸ 0. But, by additivity of the Shapley value,
this implies

©i(N;w) = ©i(N; vjg) ¡ ©i(N; vj (gna)) = mi (N; v; g) ¡ mi (N; v; gna) > 0:

This completes the proof of Lemma 3.3. ¥
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