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Abstract	 _ 

This paper considers Bayesian long-run prediction in time series models. We allow 
time series to exhibit stationary or non-stationary behavior and show how differences 
between prior structures which have little effect on posterior inferences can have a 
large effect in a prediction exercise. In particular, the Jeffreys' prior given in Phillips 
(1991) is seen to prevent the existence of one-period ahead predictive moments. A 
Bayesian counterpart is provided to Sampson (1991) who takes parameter uncertainty 
into account in a classical framework. An empirical example illustrates our results. 
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section 1: Introduction 
Prediction is an important activity of econometricians and 

statisticians, but one that has received relatively little 

attention in the Bayesian time series literature. This paper 
represents an attempt to fill this gap. We present several new 
results and link these to existing results, paying special 
attention to the role of prior information in long-term 
forecasting. 

Chow (1973) considers an autoregressive process with 

exogenous variables and Normal LLd. errors and discusses 
Bayesian mUlti-period prediction from a decision-theoretic point 
of view. Assuming a diffuse prior, he derives the Bayesian 
predictor under quadratic loss and demonstrates that it requires 
calculation of high order moments of the Student-t posterior of 
the coefficients of the autoregressive process. Since not all 
moments of Student-t densities are finite, the Bayesian predictor 

may not exist when the researcher wants to forecast far ahead. 

Differences between Chow's predictor and what he calls a "naively 

constructed predictor" are due to his Bayesian predictor being 

the mean of the predictive density rather than an estimated 
conditional expectation of future values given the sample, as in 
the sampling theory approach (see, e.g., Fuller and Hasza 

(1981». 
Bayesian forecasting, whether performed in a decision 

context or not, is based on the predictive density. For an AR(p) 

process with Normal i.i.d errors, Broeme1ing and Land (1984) show 
1 that the mUlti-period predictive density corresponding to a
L 

Normal-gamma or diffuse prior can be written as a product of 

conditional univariate Student-t densities. This representation 

facilitates, and gives a Bayesian interpretation to, sequential 

forecasting. In other words, the researcher can predict the 

(k+1)th future value given forecasts of the preceding k future 
values. Stressing that the joint mUlti-period predictive density 

is not a mu1tivariate-t density, Broeme1ing and Land (1984) give 

explicit formulae for the two period ahead marginal predictive 

mean and variance. 

The computational aspects of Bayesian mUlti-period 
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forecasting are considered by Thompson and Miller (1986), who 
propose: i) generating parameter values from the joint posterior; 
ii) simulating future paths of the time series; and iii) 
presenting certain characteristics of the resulting bundle of 
future paths. Schnatter (1988) proposes using Gaussian sum 
approximations to the n period ahead marginal predictive 
distribution. 

since all these authors assume a natural conjugate or 
diffuse prior, they do not examine the sensitivity of the 
predictive distribution with respect to the prior. In this paper 
we show the crucial role played by prior assumptions, especially 
with respect to long-term forecasting. 

In Section 2 we consider Bayesian mUlti-period prediction 
in a regression model with a general lag structure for the 
endogenous variable and possibly correlated or heteroscedastic 
errors. No specific prior for the autoregressive coefficients is 

assumed; rather we attempt to establish relationships between the 
form of the prior and the existence of first and second order 
predictive moments. section 3 examines the behavior of the 
predictive variance for a simple AR( 1) model as the forecast 
horizon, n, tends to infinity. contrary to the case where the 
autoregressive coefficient a is known (and in the stationary 
region), we demonstrate that imposing stationarity through the 
prior for a need not lead to the stabilization of the predictive 

variance as n increases. In addition, we show how assuming a 
prior which strongly favors explosiveness (as in the case of 
Phillips' (1991) "objective prior") can prevent the existence of 
predictive moments even for forecasting one period ahead. Section 
4 demonstrates that the predictive variance in a simple trend­
stationary model with O<a<l grows at least at the same rate as 

in the corresponding unit root model (which imposes not only a=l, 
but also an additional parametric restriction). This is a 
Bayesian counterpart of the result obtained by Sampson (1991) 
whose sampling theory points to the crucial role played by a 
researcher's lack of knowledge of trend or drift parameters. We 
also stress that neglecting the additional restriction of the 
unit root model has severe predictive consequences. Finally, 
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section 5 gives an empirical illustration of some of the 
theoretical results described in the other sections and Section 
6 concludes. 
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l.	 
section 2: General Formulae for predictive Densities and Moments 

Consider the following dynamic regression model: 

(2.1)
! .. ~. 

l	 where xt (t=l, 2, ... ) is a kX1 vector of exogenous variables 
treated as known constants I , a=(al aq) , Er s;;Rqand {3ER" are 

vectors of unknown coefficients, and Et is an error term. We are 

interested in forecasting Yt for t=T+1, , T+n, given that we 

[	 observe Yt (t=l, ... , T) and all the XtS (t=l, , T+n) and condition 

on initial values Y(O)= (Yl.q' ... , Yo) '. Defining Y and Y· to be the 
vector of T observations and n future values respectively, we can 
rewrite (2.1) in matrix form as: 

where X=(xlt •• ,xT)' and X·=(xT+lt •• ,XT+
D
)', and the matrices Y and 

Y" group the appropriate lagged values of Yt' We assume that the 
errors are jointly Normal with a positive definite symmetric 
covariance matrix dependent on a precision factor, rER+, and 

possibly on a parameter vector, '7EH. In other words, 

(2.3) 

where w'=({3' a' '7' 1}=({3' 8' 1) with 8'=(a' '7')EeS;;rxH.For 

example, '7 is the vector of MA coefficients if the errors in 
I·:	 (2.2) follow a moving average process.! . 
l~ since we are mainly interested in the effect of prior 

assumptions about a on long-term Bayesian forecasts, we simplify 
our presentation by assuming improper uniform priors for {3 and 

lOur notation does not make explicit the conditioning on the 
Xts. In cases of particular interest, like the trend-stationary 
model of Section 4, the XtS are known constants. 

r:	 3 

j 
L .. J 



log(f}. The same qualitative results could be derived by adopting 
a Normal-gamma prior for (~ r). 

It is well known that posterior inference about the,­
I ! 

parameters is not affected by the presence of lagged endogenous 
I ' 

variables. Under the following prior structure2 (possiblyl. 

depending	 on initial values), 

the joint posterior density of the parameters of (2.2) and (2.3) 
is: 

where V=V(f1), 

L 

and 

1	 -(T-k) 

p(8 I Y(O)'Y) oc (IVIIX'V- 1XI) -2'p(8 I y(O»SSEe 2 ; (206) 

provided that the right hand side of (2.6) is integrable over e. 
However, as documented by Chow (1973) and Broemeling and Land 

(1984), the presence of lagged YtS has implications for Bayesian 

forecasting if the focus is on forecasting more than one period 

2The improper prior on r, p (r) oc r-1 , used in (2.4) leads to 
perfect robustness of our predictive results with respect to 
departures from Normality of the errors within t.he class of 
jointly elliptical distributions. Following Osiewalski and Steel 
(1992), we can prove that if (e' eO,), given Y(O) and w has a 
(T+n)-variate continuous elliptical distribution with the same 
location and scale as in (2.3), then integrating out r leaves the 

(i	 same marginal density for (y,yO,~,8), given y~, as follows from 
(2.3), i.e. under Normality of errors. In particular, we can 
prove that the form of the predictive density p(yOIY,y(O) would 
remain the same. 
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In order to obtain relatively simple and easily programmable 

formulae for marginal predictive densities and moments, we adopt 

t:he following notation: 

! 
~ ... 

\lrhere C is nxT with non-zero elements ci,T.j=a i +j for 

i=l, ... ,min{q,n} and j=O, ... ,q-i. Furthermore, A is an nxn lower 

triangular matrix with l' s on the diagonal and ai+jJ=-ai 

lj=1, ... ,n-1 and i=l, ... ,min{q,n-j}) its remaining non-zero 

Ellements. Note that the determinant of A is one and thus A is 

nonsingular. For example if q=3, 

[-c 

O••• 0 -a) -a 2 

0 0 -a3 

A] =O..•..•••. 0 

-a 1 1 1 0 .......•...• 0 

-a21-a1 1 0 ...•..... 0 

-a3 1-«2 -all O••••••• 0 

• • • • • • • • • • • • 11 • • I. . . . . . . . . . . . . . . . . 
0 •.••••••••••• 0 10 •••• -«) -a2 -all 

. 

From (2.2) and (2.7) we obtain: 

\ , 

and in particular, 

(2.8) 

(2.9) 

"There aD' denotes the last (i. e. nth) row of A-I. Since the 

marginal predictive density requires numerical integration over 

C!, it is important to find a simple analytical expression for A-I. 

~:'he first row of A-I, aI', consists of a one followed by n-1 

4:eros. It is easy to show that, if ar' is the rth row of A-I 

(r=1,2, ... ,n-1), then the elements of the (r+1)th row, a r +I', can 

be obtained as follows: 

(2.10) 

ar+1·j=ar.j-1, j=2, ... ,n. 

re 

l , 
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This simple recursive formula demonstrates that the non-zero 
elements of ~I are polynomials in the ~s, and that the maximal 

power in the (r+1) th row is air. Therefore, the maximal power in 
the last row, an', is at l and a,/ Cy is an nth order polynomial in 
the (liS. 

Due to the Normality of the conditional sampling 
distribution of £' given £=y-Y.a-X{3, we obtain from (2.8), 

p (y' I Y, Y(OI ' (j») = 
(2.11)

f;(y' I A-1 [C)/+OP+W'V-1 (y-Y_«)] ,.!.A-15(A-l)') 
't 

where S = V· - W'V1W, Q = X' - W'V-IX. Integrating out {3 and r with 

the use of the Normal-gamma conditional posterior density inf···' 
l,__ (2.5), we obtain the following n-variate Student t post-sample 

predictive density given 8: 

p (y' Iy, Y (0) , e) =f: (Y' IT- k , A -1 [Cy+oPe+w'v- 1 (y- y_«) ] , 
:;~ A 1[5+0 (X'V-1X) -10'1 -lA) ,	 (2.12) 

where the notation specifies degrees of freedom, location vector 
and precision matrix, respectively. 

The unconditional predictive density, p(y"y,y(O»' can be(f 
(	 obtained by marginalizing (2.12) with respect to the posterior 

density for 8 given in (2.6). No convenient analytical expression 
exists for this unconditional predictive density and numerical 

integration is required. 3 Although p(y"y,y(o» is a proper density 

for any n, its unconditional predictive moments need not exist, 

especially for long-term forecasting. We will focus on the 

predictive distribution of YT+o and assume that T>max{k+2,k+q}. 

p(YT+Qly,y~,8) takes the form of a univariate t density with T-k 

degrees of freedom, mean 

and variance 

3Note that our approach requires numerical integration over 
the space of 8 only. The approaches of Thompson and Miller (1986) 
and Schnatter (1988) amount to integration over the entire 
parameter space. 
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SSE 
Var(YT+n I Y'Y(OI ,6) =T_k_82 a~[s+Q(XIV-1X) -lQ/] an (2.14) 

if T-k> 2 . 

Note that (2.13) is a polynomial of degree n and that (2.14) is 

a polynomial of degree 2n in the Qis. Hence, E(YHor IY,Y(O),71) exists 
iff the conditional posterior of Q given 71 has finite (rn)th 

(. order moments (r=1,2). This conditional posterior takes the form:
l' 

p(a. I Y'Y(OI' '1) = 
K,;l p(a. I Ylol,'l)fl(a I T-k-q,fi", T-k,.-qY!M"YJ, (2.15) 

sl'I 

where 

The existence of high order moments of YT+o depends crucially 

on p(QIY~,71). If we let ~(Q) denote a polynomial of order j in 

the QiS and f max denote the maximum value for the Student t density 

given in (2.15). Then, 

. \"'r 
l .. 

and, therefore, the existence of the (rn)th order conditional 
prior moment of Q is sufficient for the existence of 

E(YT+or IY,Y(o)f71) (r=1,2). 
To examine the dependence of predictive moments on the prior 

consider the following situations: 

A. If p(QIY~,71) possesses all moments, then the conditional 

predictive mean and variance (given 71) exist at any finite 
forecast horizon. Examples of this case include Normality for the 
conditional prior or uniformity for the conditional prior over 
any bounded support (e.g. the stationary region). 

B. If p(QIY~,71) is a student t density with u degrees of 

freedom, then p(QIY,Y~,71) is a 2-0 poly-t density whose moments 

exist up to any order less than u+T-k (see Dreze (1977». Hence, 

the predictive mean of YHo given 71 exists iff n<u+T-k, and the 

predictive variance exists iff n<~(u+T-k). 
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c. If p(a,~ly~) = p(a)p(~ly~) and pea) is improper uniform 
over Rq, then 

and the predictive mean and variance of YT+D (given~) exist iff 
n<T-k-q and n<~(T-k-q), respectively. 

As cases A, B, and C indicate, aspects of the prior for a 
(given ~) which are practically irrelevant for posterior 
inference on the parameters and for short term forecasting, may 
be crucial for long term prediction. For example, if we use a 
uniform prior, it makes little difference for first and second 
posterior moments whether the prior is proper and defined over 
a sUfficiently large but bounded subset of Rq, or whether it is 
improper and defined over all of Rq. However, predictive means 

and variances for the proper uniform prior will always exist and 
will become infinite at some horizon for the improper uniform 

prior. 

section 3: Predictive variance. in the AR(l) Model 
In this section we focus on the influence of prior 

uncertainty about a on the long term predictive variance in the 
model: 

(3.1) 

with exER,which is the simplest case of (2.1). Assuming the prior 
structure: 

(3.2) 

we obtain the joint posterior density: 

p(ex,t I y'Yo)ccp(a I Yo) 

1 I T-l I T SSE« (3.3)
f s (a T-1, a, --w) fG(t -, --) 

8 2 2 2 

where 
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T 2s2=E (Ye-&Ye-l) , 
e-l 

and 

In the case of (3.1), (2.12) simplifies and leads to 

(3.4) 

The conditional variance from (3.4), treated as a function of the 

forecast horizon, is bounded from above when lal<l, is 
r	 proportional to n when lal=l, and grows exponentially with n when 

lal>l. However, the unconditional predictive variance takes the 
form: 

var(YT+n I Y'Yo) = 
(3.5)	 n-l 

_l_E( [S2+ W(Cl-&)2] 1: Cl 21 I Y'Yo) + y;Var(Cln I y'Yo) ,
T-2	 1-0 

which requires the existence of posterior moments ef a up to 

order 2n. To examine the limiting behavior of predictive variance 

(3.5) as n increases, note that 

2 n-l 

Var(YT+n I y'Yo) > :-21: E (Cl 21 I y'Yo) , (3.6) 
1·0 

r 
\.	 which gives a restriction that bounds the variance from below. 

By way of illustration of the role of prior uncertainty, consider 
the following priors for a. 

1. If p(alyo) is uniform over (0,1), then, for any r, 

(3.7) 

where c. and c· are, respectively, the inf and sup of the marginal 

posterior density of a, a truncated Student t density. Note also 
that c.>O due to truncation. using (3.6) and (3.7) we deduce that 

Cl 
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(' and, since the harmonic series ~:i-l diverges,
 

lim Var(YT+n I Y'Yo)=00 • (3.8), n-­

contrary to the case where aE(O,l) and is known, the 
unconditional predictive variance tends to infinity as the 
forecast horizon increases. Therefore, imposing stationarity on 
(3.1) does not guarantee that the predictive variance will 
stabilize at some finite level as n grows. 4 

r' 2. Suppose p(alyo) is uniform over (O,l+d), d>O. For any r, 
, . 

(3.9) 

and thus, 

\ 
\ 

Allowing for explosiveness magnifies the effect found in the 
previous case, even if d is very small. In the present case, the 
predictive variance is bounded from below by a series growing 
faster than the harmonic one. Note, however, that the variance 
is finite for any finite n. 

3. Suppose p(alyo) is uniform over the real line and thus is 

improper. Then 

1 I T-1p(u Y'Yo) =fs (u T-1, a, --w) ,I 52 

and the predictive variance exists iff n<~(T-1). In the present 
case there is too much prior uncertainty about a in the sense 
that the explosiveness of (3.1) is infinitely many times more 

4If there is uncertainty about a in the stationary AR(l) 
model and if p(alyo)~c>o for aE(d,l)or for aE(-l,d),where dE(­
1,1), then (3.8) holds. However, if p(alyo) is, e.g., uniform 
over (O,d] where dE (0,1), then Var(YT+nly,yo) has a finite limit 
as n-+co. 
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probable a priori than is stationarity, and the predictive 
variance exists in the case of short and medium term forecasting 
only. 

4. Suppose that Phillips' "objective" prior is assumed 
(Phillips (1991)). In this case, the marginal posterior of Q is 
a proper distribution with Cauchy tails and thus lacks integer 
moments. In this case, predictive moments do not exist at all, 
and consequently, Chow's predictor does not exist, even for one

I' period forecasting. 
This section has illustrated for a very simple case some 

implications of the more general results derived in section 2. 
For typical macroeconomic time series, the priors described in 
1, 2, and 3 of this section would yield very similar posterior 
inferences; however the implications for long-term forecasting 

would differ greatly. Phillips' prior, which has been advocated 
as one which yields sensible posterior inferences in the context 
of unit root testing, is shown to yield surprising predictive 
results. 

Section 4: A Bayesian counterpart to Sampson's (1991) Result 

Assume that the deviations from the linear trend of YI 

follow a simple AR(1) process. That is, 

t=1,2, ... (4.1) 

The structural model in (4.1) has the following reduced form: 

which is a special case of (2.1), where q=1, k=2, XI '=(1 t), 
r .8=['Y(1-Q)+QJ,I. J,I.(1-Q)]', and w'=(Q .8' r). For this case, (2.11)
L leads to: 

n-l 

P(YT+n I Y'Yo,(j»)=f~(YT+n I «nYT+q~p,..!.Ecx21) , (4.3) 
t i-o 

r where 

11 
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n 
~ (T+i) an- i ] • 
lo1 

We will see that taking the structural form (4.1) as a starting 
point will have serious consequences for our predictive analysis. 

Note that if we consider the conditional variance of YT+n 

given the parameters as a function of the forecast horizon, then 
this function is bounded above by [1 (1_a2)].1 when Ia 1<1, is equal 

to nl1 when lal=l, and grows exponentially when lal>l, since then 
it equals 1 

01 (a2n -1) / (a2-1). This behavior of the conditional 

variance of YT+n has been used to justify taking the unit root 
model as the null hypothesis in classical unit root testing (see 
Dickey, Bell and Miller (1986» or even as an argument against 
trend-stationary models (see, e.g., Phillips (1991». As Sampson 
(1991, p. 67) writes: "The idea that uncertainty is bounded in 
the long run would appear to be implausible, since it seems 
unlikely that one could be as confident of a prediction for GNP 

in the year 2000 as the year 2200. Thus there would seem to be 
a strong a priori argument for unit root models". However, as 
Sampson shows, this argument relies crucially on the assumption 
that the parameters are known. In this section, we will show that 

the same result holds from a Bayesian viewpoint. 
In the previous section we have discussed the role of the 

form of the prior distribution of a. Here we will focus on prior 

uncertainty about l' and J.I.. This corresponds to the purely 

classical analysis of Sampson (1991) who shows for both the unit 

root and the trend-stationary models, that the sampling theoretic 

forecast variances grow with n2 (i.e. at a much faster rate than 

without parameter uncertainty) and that "the key parameter is the 
trend or drift coefficient". 

Assume the following prior structure 

(4.4) 

where (3ER2 , aER, and 1ER+. Note that (4.4) corresponds to 

where (1-a)2 is the Jacobian of the transformation «(31,(32)~('Y,J.I.). 

12 
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The factor (1-a)2 ensures integrability of the posterior, 

p(a,~,~,rly,yo), in the case where p(alyo) is flat near a=l. A 
flat prior on the original parameters, p(a,~,~,f) ocr-I, leads to 

an improper posterior (see Schotman and van oijk (1991». 
Under (4.2) and (4.4), the joint density (2.5) can be 

rewritten as 

(4.5) 

where 

[ 
l .. 

SSE« = (y-exyJ 'M(y-exy_) =8 2 +w( ex -ti) 2 , 

M=IT-X(X'X) -lX', y (y Y y)'-= 0 1"· T-l ' 

Marginalizing (4.3) with respect to the Normal-gamma posterior 

of (~,r) given a in (4.5) leads to 

[' 
\ 
l,' 

The conditional variance given a (when T>4) is 

Var(YT+n I y,yo,ex) = 
SSE n-l n n (4.7)2n- i ­--« [~ ex 21 + 2 r I; h (i, j) ex j ] 
T-4 ~ T(T2-1) 1'=1 j'"l 

where 

hU,j) =6ij+3 (T-l) (i+j) +2T2-3T+l 

Since, for aE (0,1), 

h(n,n) ~f f hU,j) ex2n-i-j~h(n,n)t f ex 2n- i - j <h(n,n~ ,
t1 1'=1 j-l1'=1 (l-ex) 

it follows that Var(YT+nly,yo,a)=O(n2). That is, for the trend­

13 
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stationary model, the conditional predictive variance given a 

grows with the square of the forecast horizon. 

If we set a=l in (4.7), the predictive variances grow at a 
much faster rate (o(n4)). Remember, however, that the unit root[ 
model derived from the structural form, (4.1), also imposes a 
zero coefficient on the time trend. In the reduced form 
parameterization, (4.2), this unit root model will thus 
correspond to a=l, {j(=#J. and {j2=O. In this case (indexed here by

f a *),
i. 

and under the improper prior: s 

we obtain 

i " 
and 

where 

For the simple unit root model 

variance is 

which grows exactly at the 

(4.8) 

(4.9) 

T

z=E (Yt-Yt-l-ll.) 2 
•
 

t-l
 

considered here, the predictive 

(4.10) 

same rate as the conditional 

predictive variance in the case of trend-stationarity. Therefore, 

SAlternatively, the same results can be derived by using 
(4.2) with the prior structure given in (4.4) and conditioning 
on a=l and {j2=O. Hence, the prior structure in (4.8) is fully 
consistent with the improper prior given in (4.4). 

14 
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from the viewpoint of a Bayesian forecaster, the unit root model 
is no longer more plausible than the trend-stationary model when 
the parameters of (4.1) are unknown and prior (4.4) is assumed. 6 

Finally, note that the unconditional predictive variance for the 
trend-stationary model grows at least at the same rate as (4.10) 
since, from (4.7), 

and the argument based on (3.7) can be applied. 
In this section, we contrasted trend-stationary and unit 

root models. If, in addition, we wish to consider models that 
allow for explosiveness, we can apply an argument similar to that 
given in (3.9) to the formula in (4.7) to show that marginal 
predictive variances grow explosively with n. 7 This exponential 
growth is faster than occurs for the trend-stationary or unit 
root models. 

Section 5: Empirical Illustration 
In the Bayesian unit root literature, it has been common to 

specify truncated uniform priors for a (see, e.g. DeJong and 
Whiteman (1991) and Koop and Steel (1991). Our application 
investigates the sensitivity of predictive distributions to the 
choice of truncation points. In addition, we examine the 

predictive consequences of imposing a unit root both in the 
structural parameterization (4.1) and in the reduced form (4.2). 

Our likelihood function is based on (4.2) and we use a prior of 
the form (4.4), where p(alyo) is uniform on the interval (O,l+d). 

6The restriction that ~2=0 implicit in the structural 
parameterization (4.1) is crucial for this result. If this 
restriction is neglected and we only impose a=l on the reduced 
form parameterization (4.2), then the predictive variance «4.7) 
with a=l imposed) grows much faster than it would for trend­
stationarity «4.7) with aE(O,l». 

7Such reasoning holds, not only for a uniform prior over 
(O,l+d) for d>O, but also for any prior defined on (O,l+d) with 
p(alyo)~c>o. 
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We use as data the natural logarithm of U.S. nominal wages. s 

Table 1 reports posterior means and standard deviations as 
well as predictive means for n=1,10,25,35,42,50,60,70,80,85,90, 
100 and predictive standard deviations for n=1,10,25,35,42,50 for 
various values of d. The last columns report results for a flat, 
untruncated prior9 and for the unit root cases: Q=l and (a=l, 
~2=0). A graphical display of the behavior of predictive means 
and standard deviations as functions of the forecast horizon, n, 
is provided in Figures 1 and 2. Finally, Figure 3 depicts the 
predictive density of YT+42 marginalized with respect to Q. 

For the truncated priors, the posterior of Q takes the form 
of a truncated student t density (see (4.5)). The quantities in 
Table 1 are calculated using Monte Carlo integration with 
importance sampling and antithetic acceleration. As an importance 
function we choose a student t with mean and variance taken as 
the usual ordinary least squares quantities. standard Monte Carlo 
diagnostics indicate that this importance function yields results 
which are approximately as good as those obtained by drawing 
directly from the posterior. 

For the flat prior without truncation, the posterior for a 
is a student t density with moments existing up to T-3 and finite 
predictive variances for n«T-3)/2. Entries in Table 1 for this 
prior are calculated analytically using results in Zellner (1971, 
p. 336) and Chow (1973). 

Several things are worth noting about the results. i) The 

predictive variances increase rapidly with n and do not stabilize 

since parameter uncertainty about ~ is taken into account. tO ii) 

SThis series, which has 89 annual observations from 1900-88 
on u.S. data, is taken from the extended Nelson-Plosser data set 
and is described in Koop and Steel (1991). The series was chosen 
since there is little evidence that it contains a moving average 
component. 

9It is worth emphasizing that, for finite d, all predictive 
moments exist, but for the untruncated uniform prior predictive 
variances only exist up to and including n=42 whereas predictive 
means exist up to and including n=85. 

IOFor our priors, even with {j fixed, the predictive variances 
would grow indefinitely with n, albeit at a slower rate (see
footnote 4) . 
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The different priors have very little effect on predictive means 
and variances for small n. However, as n increases differences 
between the priors grow. As we expect, differences across priors 
are especially large in the case of predictive variances. iii) 
The explosion of the predictive variance at n=43 under the 
untruncated prior is found to be quite sudden, as this predictive 
variance is only slightly above its d=.l counterpart when n~42. 

The same behavior is witnessed for the predictive mean at n=86. 
iv) Rates of growth of predictive means are linear for the 
structural unit root case (see (4.9)), at least of order n for 
the trend-stationary case (from (4.6) and (3.7)), of order n2 for 
the reduced form unit root model (from (4.6) with ex=l),ll and are 
exponential when explosive behavior is not excluded. These 
differences are illustrated in Figure 1. v) It can be seen from 
Figure 3 that the marginal predictive densities for n=42 are 
highly skewed to the right, especially if we do not exclude the 
explosive region. Note that for n=l the predictive density is 
student-t if an untruncated uniform prior is assumed. 
Furthermore, conditional on ex the predictive density is student­
t. Hence, the considerable deviation from the student-t that is 
illustrated in Figure 3 is due to uncertainty about ex and a 
prediction horizon greater than one. vi) Imposing a unit root in 
the structural model (4.1) is seen to have very different 
consequences for prediction than imposing it in the reduced form 
(4.2). Koop and steel (1991) use a decision framework with a loss 
function based on avoiding errors in predictive variances. They 
contrast trend-stationary, reduced form unit root, and explosive 
models and find that the reduced form unit root model is favored 
as n~. Figure 2 confirms these results for one of the series 
they used, but also suggests that their decision analysis would 

favor trend-stationarity for moderate or large n if a structural 

unit root model was considered. 

section 6: Conclusions 
This paper considers long-run prediction in time series 

liThe reduced 
quadratic trend. 

form unit root model implicitly imposes a 
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models and emphasizes the role played by prior information. It 
is shown how aspects of the prior, which have little effect on 
posterior inferences or short-run predictions, can have large 
effects on medium- or long-run forecasts. In particular, the 
existence of predictive means and variances depends crucially on 
the existence of prior moments. We also prove that imposing 
stationarity through the prior on the autoregressive coefficient, 

a, in the simple AR(l) model need not lead to stabilization ofn the predictive variance as the forecast horizon increases, 
contrary to the case with known a in the stationary region. For 
models with a linear deterministic trend, we derive a Bayesian 
analogue to Sampson's (1991) result, which shows how the forecast 
variance of trend-stationary and unit root models both becomeCj 
infinite at infinite forecast horizons when parameter uncertainty 
is allowed for. Furthermore, the rate of growth of predictive 
variances in the trend-stationary model is at least as fast as 
that associated with the structural unit root model. Finally, we

l.� examine the predictive consequences of imposing a unit root in 
the reduced form model as opposed to the structural unit root 
model. Our results are illustrated in an empirical example. 

n 
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Table 1: Posterior and Predictive Means and standard Deviations 

Prior for a 

C' d=O d=.05 d=.l� untrun Unit Unit 
Unif. • Root in Root in 

(4.2) (4.1) 

MC" MC MC Ex··· Ex Ex 

E(a) .95330 .95877 .95898 .95898 1.0 1.0 

[j� SO(a) .02639 .03074 .03090 .03093 --- --­
E (YT+I) 10.180 10.181 10.181 10.181 10.191 10.175 

SO(YT+I) .06401 .06421 .06424 .06424 .06405 .06330 

E (YT+IO) 10.636 10.651 10.652 10.652 10.755 10.578 

SO (YT+l0) .21081 .22190 .22298 .22311 .24544 .21005 

E (YT+2S) 11.425 11.474 11. 477 11.478 11. 760 11.250 

SO (YT+2S) .36575 .43071 .44154 .44262 .51345 .35663 

E (YT+35) 11. 962 12.044 12.052 12.054 12.476 11. 698 

SO (YT+3S) .46445 .60461 .64009 .64411 .71535 .44024 

E (YT+42) 12.341 12.454 12.464 12.469 12.998 12.012 

SO (YT+42) .53537 .75764 .83790 .84571 .87056 .49579 

E (YT+so) 12.777 12.934 12.915 12.960 13.616 12.370 

u SO (YT+so) .61927 .97813 1.1430 00 1.0627 .55735 

E (YT+60) 13.326 13.551 13.589 13.597 14.422 12.818 

E (YT+70) 13.874 14.195 14.270 14.285 15.263 13.266 

E (YT+80) 14.427 14.872 15.021 15.052 16.141 13.714 

E (YT+8S) 14.705 15.226 15.438 15.481 16.594 13.938 

E (YT+90) 14.983 15.593 15.894 00 17.055 14.162 

E (YT+IOO) 15.540 16.374 17.002 00 18.005 14.610 

* Untruncated un1form pr10r.� 
** MC means calculated using Monte Carlo integration.�
*** Ex means calculated using analytical formulae.� 
The fact that means and standard deviations are conditional on� 
the observed data has not been made explicit in column 1.� 
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