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Abstract
We propose a bootstrap resampling scheme for the least squares estimator of the
parameter of an unstable first-order autoregressive model and we prove its asymptotic

validity. This method is alternative to the invalid one studied by Basawa et al. (1991).
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1 INTRODUCTION

Let {X.}, t =1,2,... be a first-order autoregressive process defined by

Xy =BX-1 + uy, Xo =0, (L.1)

where {u,} is a sequence of independent and identically distributed random
variables with E(u;) =0, and V(u;) = 0% < co. Let

n -1 5
B = (ZXE.I) > XX

t=1 t=1
be the least squares estimator of 3, based on a sample of n observations
(Xi,...,X5). In the stationary case, | 8 |< 1, Bose (1988) showed the
asymptotic validity of the bootstrap estimators corresponding to 3. and in
the explosive case, | 3 |> 1, this has been established by Basawa, Mallik,
McCormick and Taylor (1989). If | 8 |= 1, the unstable case, B, has a non-
normal asymptotic distribution with a complicated density (see, e.g., Rao
(1978)), so it is interesting to study the bootstrap approximation in this
situation. Basawa, Mallik, McCormick, Reeves and Taylor (1991) give a
bootstrap resampling scheme which leads to an asymptotic random distri-
bution showing, in this way, that this bootstrap method is asymptotically
invalid even for normally distributed errors. In this paper, we introduce a
different bootstrap strategy and we prove that it correctly approaches the
asymptotic distribution of 3,.

In Section 2 we describe the bootstrap resampling and we establish its

asymptotic validity. Section 3 contains the proof of this result which needs
a bootstrap invariance principle given in Proposition 3.1.

2 MAIN RESULT

It is known (see Anderson (1951)) that when 8 =1,

Zn =0 2= ZWH1) - 1) (/01 Wz(t)dt>_l/2 asn — oo,  (2.2)

where



I
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n 1/2 X
Z, = (zxz_l) (G - B)
t=1

and {W(t)} is a standard Wiener vprocess.

We now describe our bootstrap resampling scheme. Let ¢ = X, —

BnXi—1, t =1,...,n, and define & = ¢, —n~! T7_, ¢;, the centered residuals.

Denote by £, the empirical distribution function based on {é&:t=1,...,n}
and take a random sample {¢;,: ¢ =1,...,n} from F,. So, the random
variables {¢;,: t = 1,...,n} are i.i.d. with distribution function F., condi-
tionally on Xi,...,X,. Then, the bootstrap sample {X;,: t =1,...,n} is
recursively obtained from the model for 8 =1

Xoe=Xo it t=1,...,n (2.3)
with X, = 0. The bootstrap least squares estimate is then given by

n -1 n
ﬂ; = (Z X:?t—l) Z Xr:,tXr:,t—l-
t=1

t=1
Let

n /2
Z: = (Zx,:i-l) (3 -1) (2.4)

t=1
be the bootstrap version of Z, under 8 = 1. Our goal is to show that
Z» —, Z almost surely and so this bootstrap resampling approaches properly
the correct limiting distribution. Thus, our main result is the following.

Theorem 1 . For Z; defined in (2.4), under the model (1.1) with 8 =1, we
have that

| Zy—wZ
for almost all sample (X, X3,...) where Z is defined in (2.2).

Remark. Basawa et al (1991) take i.id. {u;} with distribution N(0,1) and
they obtain {X;} from




Xi =0 X+, X5 =0,
where 3, is the least squares estimate for the AR(1) model; they show that
- o 0\ -1 -
for B = ( e Xt*_zl) =1 X; X;_,, the sequence

converges to a random distribution not approaching the asymptotic correct
one. However, our resampling method works in the sense that the bootstrap
distribution of Z; almost surely approximates the asymptotic distribution.

3 PROOF OF THEOREM 1

We will first establish, in Proposition 3.1, a bootstrap invariance princi-
ple. To that end consider the sequence of partial sums S;, = 0, S, =
ELI € k=1,...,n nc¢€ N. A sequence of continuous-time process

{Y,2(t): t € [0,1]}:2, can be obtained from the sequence

{Sipik= 1,...,n}:"_1
by linear interpolation, 1.e.,
- ]‘ L] ]‘ L] E N
}/n (t) = W—T:Sn,[nt] + (nt - [nt]);/—ﬁen,[nt]+lv te [07 |]7 ne (35)

where [s| denotes the greatest integer less than or equal to s.

To prove Proposition 3.1, we need some lemmas. In Lemma 3.1 we will
obtain the convergence of the finite-dimensional distributions; tightness will
be proved in Lemma 3.2 and Lemma 3.3.

Hereafter, P*, E*, V* will denote the respectively bootstrap probability,
expectation and variance conditionally on the sample ¢, ..., ¢€,.

Lemma 3.1. Conditionally on (€,...,€,) and for almost all sample paths
(€1y .-y €n)y




)

(@), Yo (E) =0 (W), .., W(ta)) (3.6)
for all (t,...,t4) € [0,1]%.
Proof. It is enough to show that, for all s,¢ € [0, 1],
(Y2 (8), Y7 (1) =w (W(s), W(2)) a.s.
Now, conditionally on (e, ...,€,), since

[n¢]

* 1 ™ 1 *
'Yn (t) - }7‘;; 6n,j| < rﬁ'en,[ntl+1|a

we obtain by the Cebisev inequality that

i 1 V()
P {|Yn (t) - mzen‘jl > 6} < W (3.7)

j=1
But
=18 _ i
w/ % = _ j=
Vi(en,) = =+ 0(1)
1 - 2 1 = 2 2
== Xi = (=2 Xj.)Ba+o(1)
j=t J=t
L 1
= (2 S XL - B + X2+ o(1), 1<i<n,
j=1

has a non degenerate limiting distribution when 8 = 1 and so the right hand
side in (3.7) converges to zero. Therefore,

[ns] [nt]
1
(Y (), Yr(t) = —=(Q_enpn 2_en)l —p 0 as.
: al\/ﬁ 1=1 ! j=1 ?
and it suffices to prove that
[ns] [nt]

(L ) —u (WO WE)  as

0\/"’ j=1
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This is equivalent to show that

[m} (n]

n]’

j=[ns]+1

i) —w (W(s), W(t) — W(s)) a.s.; (3.8)

but, since the components on the left hand side are independent, (3.8) follows
from the bootstrap central limit theorem (see, e.g., Singh (1981)). O

Lemma 3.2. For any n > 0,

50 n—oo

llmllmsup 6P {1<]<[n6]+1 |Sh il > 170’\/_} =0
conditionally on (ey,...,€,) and for almost all sample paths (eq,...,€,).

Proof. By the bootstrap central limit theorem (see, e.g., Singh (1981)),
we have that (1/0/[né] +1)S; 541 converges weakly almost surely to a
standard normal random variable V. Fix A > 0 and let {4}, be a sequence

of bounded, continuous functions on R with i | 1(—e0Ajujp,e0). We have for
each k,

limsup P~ {|S" a1l = /\0'\/_}

n—oo

< Jim £ ( (%\/%554"61*‘)) = ZledV)

Then, if £ — oo we obtain

1
lim sup " {152 moya] 2 Aovné} < P(IV] > )) < SEVE.  (39)

We now define 7 = min{j > 1: S} ,| > nov/n}. f0 <6< -'121, we have

P* {is];?[i%(]+l IS;,]l > 7]0’\/5} < P {IS;,[TL6]+1l > 0’\/;(17 -— \/2_6)}
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[nd]

+ 3 P {ISs sy | < ov/mln = V28|77 = 5} P{7; = j}.
j=1
But for 7} =7,

1S5 msjer| < oV/n(n — V26)

(3.10)

implies |5} ; = S} 41| > 0V2n6, and by Cebisev inequality it follows that

P* {|S; sl < ov/n(n = v28) | 72 = j}

1 [né]+1
S ongar” 2 6;'i) , 1<7<nd]

i=j+1

(3.11)

Moreover, the right hand side in (3.11) is bounded above by ;5= ¥F_, &.

Therefore, going back to (3.10)

p {Osgﬁﬂlb’n,jl > na\/ﬁ}
< P*{|S2 puspaa| = ov/nln — V26)}
1 z A2 = *
b () P (77 < o)
< P {|S5 fuspt| = v/l — V26)}
]' i A2 = *
+2‘02n (; E") i {05]%[‘:}5(]+1 15541 > na\/ﬁ} )

It follows that

P o 551> oV

<(1-

Putting A = (n — v/26)//6 in (3.9), we have

1 Z A _1 - -
o 2o8) P {[Siiaal 2 oVl - VE).
k=1




(n - V26)°

where R is the non degenerate limit of (1 — 5 Thet ei) - (see the proof of
Lemma 3.1). Now letting § | 0 the lemma follows. O

: 1 ’
limsup gP*{ max |5 . > no\/r—z} < R,

n—00 0<5<[né]+1

Lemma 3.3. Foranyn >0and T > 0,

lim lim sup P"{ max |Sm ewi = S| > na\/ﬁ} =0
810 noco 1<j<[né]+1 h *
0<k<[nT]+1
conditionally on (€y,...,€,) for almost all sample paths (e, ...,€,).

Proof. Once we have Lemma 3.2, the proof follows as in Lemma 4.19 of
Karatzas and Shreve (1988), page 69, replacing S by Spek=1,...,n,n¢€
N. O '

Now, we establish the bootstrap invariance principle.

Proposition 3.1. Let {€,}3%, be a sequence of independent and identically
distributed random variables with mean zero and finite variance o? > 0 de-
fined on the probability space (2, A, P). Let F, be the empirical distribution

»

associated to € = ¢; — —‘:‘—C’, i=1,...,nand lete;;, ¢t =1,...,n be inde-
pendent random variables with distribution F,. Define {Y,*(¢) : t € [0,1]}22,
by (3.5). Then Y, —,, W as. in C|0,1], where W is the standard one-
dimensional Brownian motion on [0, 1].

Proof. For all the sample paths in ; N Q5 N N3, the proof in page 71 of
Karatzas and Shreve (1988) gives the tightness of {Y.*}52,; this and the
finite dimensional convergence in (3.6) imply, by theorem 4.15 in Karatzas
and Shreve (1988), the weak convergence in C[0,1]. O




Finally, to prove Theorem 1 we will need the following lemma.

Lemma 3.4. Let

i me e (7)o

Then, conditionally on (€;,...,€,) and for almost all sample paths (ey, ..., €,)

R:z —p Ov

[‘? as n — oo.
Proof. It is straightforward from Proposition 3.1. O
Proof of Theorem 1. Observe that

i z; = (Tmaxz)" (B -1)

n " 1/2 " "
= ( t=1 Xn,zt—l) ( Xn t-1€ nt)
Now, by squaring (2.3) and by summing we obtain

= " ]' = »
r‘i ant 1€n, t Xn,zn - 5 Zen?t' (312)
L_‘ t=1
Then, expressing the quantities X ; in terms of Y,*(¢), defined in (3.5),
we have
X,:?n = na?Y (1) (3.13)
[ and

n n—1 k
Z X"’:?t—l = TI,U2 Z Y,,:z (;) . : (314)
t=1 k=1

It follows from (3.12), (3.13) and (3.14) that

"i? e 5) (B ()

2
Unt:l




By the bootstrap weak law of large numbers and Proposition 3.1, the nu-
merator converges to (W?%(1) — 1). Moreover, from Lemma 3.4, Propo-
sition 3.1 and the continuous mapping theorem, the denominator tends to

gfol Wz(t)dt)l/z. Since can be easily proved that the bootstrap version of
lutsky’s theorem holds, the theorem follows.O

Remark. It is straightforward to check that in the case § = —1, the result
also holds if the innovations distribution is symmetric around zero.
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